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ABSTRACT

The numerous applications of Maxwell Nanofluid Stagnation Point Flow, such as those in production industries,
the processing of polymers, compression, power generation, lubrication systems, food manufacturing and air
conditioning, among other applications, require further research into the effects of various parameters on flow
phenomena. In this paper, a study has been carried out for the heat and mass transfer of Maxwell nanofluid flow over
the heated stretching sheet. A mathematical model with constitutive expressions is constructed in partial differential
equations (PDEs) through obligatory basic conservation laws. A series of transformations are then used to take the
system into an ordinary differential equation (ODE). The boundary conditions (BCs) are also treated similarly
for transforming into first-order ordinary differential equations (ODEs). Then these ODEs are computed by using
the Shooting Method. The effect of factors on the skin friction coefficient, the local Nusselt number, and the local
Sherwood number are explored, and the results are displayed graphically. The obtained results demonstrate that
by increasing the values of the Maxwell and slip velocity parameters, velocity deescalates. For investigators tasked
with addressing unresolved difficulties in the realm of enclosures used in industry and engineering, we thought this
work would serve as a guide.

KEYWORDS
Maxwell fluid; stagnation point flow; heat and mass transfer; thermal radiations; shooting method

Nomenclature

u (m/s) Horizontal Velocity
α

(
m2/s

)
Thermal Diffusivity

v (m/s) Vertical Velocity
τ The Ratio of Heat Capacity of Base Fluid to the Nanoparticles Heat Capacity

Coefficient
ρf

(
kg/m3

)
Density of Fluid

DT

(
m2/s

)
Thermophoretic Parameter
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νf

(
m2/s

)
Kinematic Viscosity

DB

(
m2/s

)
Brownian Diffusion Coefficients

λ1 (s) Relaxation Time of Maxwell’s Fluid
σ ∗ Stefan-Boltzmann Constant
σ

(
s3.m2/kg

)
Electrical Conductivity

k∗ Mean Absorption Coefficient
B0(kg/(m2.s2)) Strength of Magnetic Field
δ Unsteady Parameter
β Maxwell Parameter
ε Stretching Parameter
Pr Prandtl Number
R Thermal Radiation Parameter
Nb Brownian Motion Parameter
Nt Thermophoresis Parameter
Sc Schmidt Number
M Magnetic Parameter
fw Suction/Injection Parameter
Cw (x, t) Volume Fraction of Nanoparticles at the Sheet
C∞ Volume Fraction of Nanoparticles Farther Apart from the Sheet
Tw (x, t) (K) Temperature at the Sheet
T∞ (K) Temperature Farther Apart from the Sheet
�B Transverse Magnetic Field
J̄ ∗ �B Lorentz Force
J̄

(
A/m2

)
Electrical Current Density

1 Introduction

It is a fact that our earth is covered with a hundred per cent air and approximately seventy per
cent water. Since water and air are fluids, fluids have great significance in our lives. Archimedes
was the mathematician who examined the statics and buoyancy of the fluids. Researchers have
shown their great interest in non-Newtonian fluids during the last few decades. Non-Newtonian
fluids are the most critical fluids because of their enormous applications in biological sciences,
food processing industry, geophysics, oil pipelines, chemical industry, rocket engines, air conditioning
systems, petroleum industry, wind turbines, etc. The flow behaviour of non-Newtonian fluids is
modified under stress. Most numerous fluids used in biomedicine and industry are non-Newtonian.
Some familiar examples are blood, ink, honey, shampoos, slurries, printer, and cosmetic products.
Using the Navier-Stokes equations and their constitutive relationship, we may better understand the
rheological individuality of Newtonian fluids; on the other hand, non-Newtonian fluids have very
different flow characteristics than Newtonian fluids. Several researchers have applied 2D translational
magnetohydrodynamic (MHD) techniques to the movement of Maxwell’s convection and discovered
that these phenomena were important factors in 2D fluid flow caused by gravitational waves. To
explore the thermal and mass transfer properties in 2D transient Maxwell nanofluid flow induced
by stretching cylinder magnetic field are considered in [1].

Nanofluids are used extensively in nanoscience, including building materials, military equipment,
nano machining of nanowires and nanorods, etc. In this regard, the following studies can be
consulted [2,3]. Hayat et al. tried to figure out the flow of second-grade fluid, non-linear surface stress,
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convective heat, and keeping property of various skins with a tool designed to analyze flow convection
[4]. The properties of flow in non-linear geometries were investigated with nanofluid properties for
small region solutions [5,6]. Ahmed et al. [7] studied the MHD Magneto hydrodynamic fluid flow
through a porous medium with this high surface-to-volume colloidal hydromagnetic nanofluid analy-
sis. The effects of non-linear thermal radiation, convective conditions, and heat generation/absorption
at the boundary are investigated to determine whether synergies exist. MHD is a term that refers to
the study of electrically conducting fluid dynamics. This is accomplished by combining the Navier-
Stokes equations for fluid dynamics and Maxwell’s equations for electromagnetism. One of the
MHD’s important innovations was the recognition that magnetic fields can create currents in a fluid
conductor, which induce corresponding currents in the fluid, producing magnetic forces on the fluid.
In the presence of zero normal streams of nanoparticle speed-slip boundary conditions, the numerical
analysis of stagnation-point flow, convectional heat transmission to the tan-gent nanofluid was studied
by Vittal et al. [8]. Numerical surveys on unsteady magnetohydrodynamic MHD in permeability over a
stretched sheet with reaction boundary and suction/injection boundary have been studied by Shravani
et al. [9]. Srinivas et al. [10] investigated the effects of Soret and convective boundary conditions on
MHD pulsating flow in a horizontal channel using an analytical solution based on the perturbation
technique. Ramesh et al. [11] analyzed to determine the Maxwell fluid stagnation point in the presence
of nanoparticles and a permeable stretching sheet.

Magnetohydrodynamic fluid flow and heat transfer problems for a vicious and incompressible
dusty fluid conductor over an unstable stretch panel are solved using numerical analysis by Manju-
natha et al. [12]. The effect of heat generation and absorption on tangent hyperbolic nanofluid at the
stagnation point over a stretching cylinder was studied by Salahuddin et al. [13]. The unpredictability
of MHD free convection flow was investigated by Ahmmed et al. [14]. In the presence of radiation,
a nanofluid flows through an exponentially accelerated inclined plate embedded in a porous material
with variable thermal conductivity. The work presented in [15] investigates the Newtonian heating
properties of a viscous nanomaterial in a permeable stretched flow. In [16], Mondal et al. presented
a model for the Maxwell nanofluid’s unstable flow through a permeable, convective border shrinking
plate and heat transfer.

Nanofluids are suspensions of solid particles whose diameters range from 1 to 100 nm. Nanoflu-
ids, including base fluids and nanoparticles, are taken as a subclass for heat transfer fluids. In
nanofluids, the nanoparticles are generally made up of nano metals, for instance (carbon, graphite) or
metals like Al2O3, (Al, Cu) oxides, nitrides (AlN, SiN). Nanofluids are adequately viscous, steady
enough against wetting, dispersing, and bear spreading characteristics on solid surfaces, even for
modest nanoparticle fixation. These are used to increase the thermo-physical characteristic like
heat transfer, viscosity, thermal diffusivity, and base fluid conductivity such as ethylene glycol,
propylene glycol, water, etc. With a low concentration (1–5) percent, the thermal conductivity of
solid nanoparticles is increased by about 40 percent. It has several applications in engineering and
biotechnology, like cancer therapy and the cooling process in industries. These become the two-phase
system due to solid and liquid. Many articles have been published to study nanofluids’ increased heat
transfer capabilities [17–23]. Mustafa et al. [24] discussed thermophoretic Brownian motion and the
magnetic field’s consequences on the mixed convective flow of magneto-nanofluid that is hurdled by an
extendable vertical surface. Hayat looked at the impact of chemical reactions in magnetohydrodynamic
flow through a non-linear radially stretching surface. The author concluded that the Nusselt number
depends on the power-law index and increases the power-law index function.

Atif et al. [25] presented the idea of magnetohydrodynamic micro polar Carreau nanofluid
and reported that thermal profile escalates for larger values of the Brownian motion parameter.
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Dogonchi et al. [26] considered thermal flux and thermal radiation consequences and MHD nanofluid
heating over a stretching sheet Joule Heating. Cattaneo Christov’s heat flux model investigates heat
transfer characteristics. Finally, Reddy et al. [27] explored a similar solution in the existence of Ther-
mophoresis and Brownian parameters for hydromagnetic movement of a nanofluid over a slandering
stretching sheet. Dogonchi et al. [28] recently investigated the effect of radiation on the heat transfer
of nanofluid flow using permeable media. He observed an increment in the velocity and reduction
in the temperature profile by enhancing the Reynolds number and expansion ratio. It was stated that
the heat transfer rate increases directly by escalating the values of mixed convection parameters. The
effects of thermal radiation on nanofluid flow have also been discussed by Sheikholeslami et al. [29,30].
The characteristics of heat transfer and fluid flow, taking into account the nanofluids, were studied
in detail by several researchers [31–34]. Recent papers have given several investigations in convective
transport using nanofluids in external flow and boundary layer flow [35–38].

Many researchers put their valuable investigations on the Maxwell nanofluids’ flow and their
further types using different sheets [39–43]. Bilal et al. [44] examined the continual heat and mass
transfer features generated by an inclined-cylinder diffusion, heat fluids, convective heating effects, and
joule heating effects. Lu et al. [45] studied entropic generation with the effect of magnetic dissipation
and transpiration in the dissipative flow of nanofluids. The primary objective of [46] is to investigate
the Brownian motion and heat-forging effects on micropolar nanofluid flow on a non-linear inclined
stretch sheet while accounting for the effects of Soret and Dufour. In the presence of a non-uniform
heat source/sink, the Carreau nanoparticle thin film’s thermodynamics is being studied by Khan
et al. [47]. In this study, in the presence of suction, heat radiation, and a heat source/sink, Jamaludin
et al. [48] numerically investigated the stagnant convection mixture-point flow nanofluid over a vertical
stretching/shrinking sheet. Bagherzadeh et al. [49] investigated the effect of a magnetic field on the
hot injection of dispersed nanoparticles into a microchannel via a micro cross. According to Jalali
et al. [50], oil nanofluid jet injection into a rectangular microchannel was studied for heat transfer.
Hajatzadeh Pordanjani et al. [51] examined the effect of free convection in the cavity of the thermal
field and thermal radiation of the thermal transfer and entropy generation of nanofluid.

The flow of an incompressible viscous fluid across a flat deformable sheet with a velocity pro-
portional to the distance from the stagnation point is studied in [52]. The work in [53] investigated the
steady two-dimensional stagnation point flow of an incompressible micropolar fluid over a stretching
sheet when the sheet is extended in its own plane. The flow of an incompressible micropolar fluid over
a non-linear stretching surface is investigated in two dimensions [54]. For boundary layer flow over
nonlinearly extending sheets, an analytical solution has been provided by the shooting approach in [55].
Variable transverse magnetic field, viscous dissipation, thermal radiation, and a nonlinearly flowing
free stream were all considered in the flow analysis. The effect of viscous dissipation has also been
considered in [56] for Williamson nanofluid under the effects of multiple slips and Joule heating. The
resulting system of ordinary differential equations has been tackled with the shooting method based on
the Runge-Kutta-Fehlberg method. Local skin friction coefficients, local heat transfer rates, and mass
transfer rates are shown in the tables below. According to [57], a shooting strategy based on the 4th-
order Runge-Kutta Gill method was used to solve a set of non-linear ordinary differential equations
generated by viscous dissipation. Hybrid nanoparticles’ influence on velocity and temperature profiles
has been given in [58] over a stretching sheet. The non-linear thermal radiation in the energy equation
has been considered despite linearized thermal radiations. The differential transform method has been
employed to solve the set of ordinary differential equations that arise in the MHD Williamson fluid
with chemical reaction [59]. It was observed that Williamson’s fluid parameter and magnetic strength
produce a thicker boundary layer for velocity. Another analytical research based on the homotopy



CMES, 2022, vol.133, no.2 307

analysis method was presented for the two-dimensional steady, incompressible flow of the Oldroyd-8
constant [60]. The homotopy analysis method is based on homotopy that contains a parameter for
controlling the convergence of solution series. The method finds the solution of linear and non-linear
ordinary and partial differential equations in components form. The study of entropy optimization of
MHD coupe stress nanofluid slip flow and heat & mass transfer on entropy generation has been given
in [61,62]. Recent research on boundary layer fluid flow problems is available in [63–66].

The study comprises an extension of the previously constructed model for MHD boundary layer
flow. The effects of Maxwell fluid and velocity slip are considered with the existing model. The
previous study has consisted of an analytical approach, but in this study, a numerical method based on
the Runge-Kutta method and Newton Raphson method. The combination of these methods is called
the shooting method, which can find missing initial conditions.

The strategy of this paper is as follows:

We examine classical definitions and a history of unstable boundary layer flow 2-D MHD in
Section 2. In Section 3, numerical results are presented using different numerical techniques. Results
and discussion are presented in Section 4. Section 5 sums up the findings.

2 Governing Equations

The presented model aimed to investigate a 2-D MHD unsteady boundary layer flow considering
the Maxwell nanofluid by considering the fluid flow over a porous stretching surface. Moreover, the
impacts of thermal emission and magnetic fields are considered. The 2-D Cartesian coordinate system
is taken so that x-axis is taken along the flow and y-axis is taken normal to the sheet. To stretch the
sheet in a fixed region, along the x-axis two spontaneous forces are applied, opposite in direction but
equal in magnitude. At time t = 0, the fluid flow is steady. However, for a time t > 0, it will become
unsteady. An incompressible and laminar flow is bounded in the section specified as y > 0. The sheet

is stretched towards the x-axis with velocity Uw (x, t) = ax
1 − λt

, here the stretching rate is denoted by a

where λ is a positive constant with axiom λt < 1. Ue (x, t) = bx
1 − λt

is the velocity of the ambient fluid.

There will be no slip between nanoparticles and base fluid for thermal equilibrium. But for electrically
conducting fluid J̄ ∗ B̄ (Lorentz force) is acting on the fluid here, the transverse magnetic field is

denoted by �B = (0, B, 0). The simplified Lorentz force is −σB2
0 (u − Ue), B = B0√

1 − λt
is the magnetic

field perpendicular to the sheet. According to [63], the induced magnetic field is discarded due to the
small magnetic Reynolds number. Also, neglect the induced electrical field due to the polarization of
charge, and there does not exist external electric field. The geometry of the problem is given in Fig. 1.
The constitutive PDEs for continuity, momentum, energy, and concentration are given below:

∂u
∂x

+ ∂v
∂y

= 0 (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −λ1

⎛
⎜⎜⎝

u2
∂2u
∂x2

+ v2
∂2u
∂y2

+2uvu
∂2u

∂x∂y

⎞
⎟⎟⎠ + ∂Ue

∂t
+ Ue

∂Ue

∂x
+ vf

∂2u
∂y2

− σB2
0 (u − Ue)

ρf

(2)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
(

α + 16σ ∗T 3
∞

3k∗ρcp

)
∂2T
∂y2

+ τ

[
DB

∂C
∂y

∂T
∂y

+
(

DT

T∞

)(
∂T
∂y

)2
]

(3)
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∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= DB

∂2C
∂y2

+ DT

T∞

∂2T
∂y2

(4)

Figure 1: Geometry of the problem

In Eq. (3), a linearized Rosseland radiative flux is considered whose linearized form is given by:

qr = −4σ ∗

3k∗
∂T 4

∂y
= −16σ ∗T 3

∞
3k∗

∂T
∂y

where τ = (ρc)f

(ρc)p

. At the boundary, the conditions for the model, as mentioned earlier, are as follows:

u = Uw + γ1

∂u
∂y

, v = vw, T = Tw, C = Cw at y = 0

u → Ue, T → T∞, C → C∞ when y → ∞

⎫⎬
⎭ (5)

where γ1 is the slip coefficient while the velocity of suction/injection is denoted by vw = v0√
1 − λt

. At

the boundary, assume the sheet’s temperature and nanoparticles volume fraction as [34]:

Tw (x, t) = T∞ + ax2

2vf (1 − λt)2 T0, Cw (x, t) = C∞ + ax2

2vf (1 − λt)2 C0 (6)

Here T0 is a positive reference temperature, and C0 is positive reference nanoparticles volume
fraction such that Tw > T0 > 0 and Cw > C0 > 0, these expressions are valid only if 0 < (1 − λt).
Now, non-dimensional variables are defined as [34]:

η =
√

a
vf (1 − λt)

y, ψ =
√

avf

(1 − λt)
xf (η)

T (x, y, t) = T∞ + ax2

2vf (1 − λt)2 θ (η) , C (x, y, t) = C∞ + ax2

2vf (1 − λt)2 φ (η)

⎫⎪⎪⎬
⎪⎪⎭ (7)

The components of velocity are defined as [34]:

u = ax
1 − λt

f ′ (η) , v = −
√

avf

1 − λt
f (η)
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Here differentiation with respect to η is denoted by prime. Now using Eqs. (6) and (7) into
dimensional Eqs. (2) to (4), the following non-dimensional system of ODEs can be obtained:

f ′′′ + β
(
2ff ′f ′′ − f 2f ′′′) + ff ′′ − f ′2 − δ

(
f ′ + ηf ′′

2

)
+ M2 (ε − f ′) + δε + ε2 = 0 (8)

1
Pr

(1 + R) θ ′′ + f θ ′ − 2f ′θ − δ

(
2θ + ηθ ′

2

)
+ Ntθ

′2 + Nbθ
′φ ′ = 0 (9)

φ ′′ + Sc (f φ ′ − 2f ′φ) − Scδ
(η

2
φ ′ + 2φ

)
+ Nt

Nb
θ ′′ = 0 (10)

Eqs. (3)–(4) & (9)–(10) are same given in [34]. The transformed non-dimensional boundary
conditions are:

f (0) = fw, f ′ (0) = 1 + γ f ′′ (0) , θ (0) = 1, φ (0) = 1
f ′ → ε, θ → 0, φ → 0, when η → ∞

}
(11)

where parameters are given below:

δ = λ

a
, ε = b

a
, Pr = vf

α
, β = λ1a

1 − λt
, R = 16T 3

∞σ ∗

3kk∗ , Nb = τDB (Cw − C∞)

vf

,

Nt = τDB (Tw − T∞)

T∞vf

, Sc = vf

DB

, M =
√

σ

aρf

B0, fw = v0√
aνf

Dimensional skin friction coefficient (without the effect of Maxwell fluid), local Nusselt and
Sherwood numbers are as under:

Cf = μ

ρf U 2
w

(
∂u
∂y

)
y=0

(12)

Nu = − x
k (Tw − T∞ )

[
k

(
∂T
∂y

)
+ 16σ ∗T 3

∞
3k∗

(
∂T
∂y

)]
(13)

Sh = − x
Cw − C∞

∂C
∂y

(14)

The non-dimensional forms of Eqs. (12) to (14) can be expressed as:

Cfr = √
RexCf = f ′′ (0) (15)

Nur = Nu√
Rex

= − (1 + R) θ ′ (0) (16)

Shr = Sh√
Rex

= −φ ′ (0) (17)

Here the Reynolds number is:

Rex = x
Uw

vf

(18)
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3 Numerical Treatment

The present section is related to the implementation of the shooting method. A system of higher-
order ODEs is converted into first-order ODEs along with the boundary conditions. The shooting
method is based on applying the Runge-Kutta method to discretize the set of ordinary differential
equations. The Newton Raphson method is employed to find missing initial conditions. Since the
Runge-Kutta method is applied to first-order differential equations, the equations are reduced into
first-order differential equations.

Following notations are used for converting Eqs. (8)–(10) into first-order ODEs:

f = g1, f ′ = g2, f ′′ = g3, θ = g4, θ ′ = g5, φ = g6, φ ′ = g7

Now using the above notations, we convert Eqs. (8)–(10) into a system of first-order ODEs along
with their given and assumed boundary conditions:

g
′
1 = g2; g1 (0) = fw

g
′
2 = g3; g2 (0) = s1

g
′
3 = 1

1 − βg2
1

[
−2βg1g2g3 − g1g3 + g2

2 + δ
(

g2 + η

2
g3

)
−M (ε − g2) − δε − ε2

]
; g3 (0) = s2

g
′
4 = g5; g4 (0) = 1

g
′
5 = Pr

1 + R

[
−g1g5 + 2g2g4 + λ

a

(
2g4 + η

2
g5

)
−Ntg2

5 − Nbg5g7

]
; g5 (0) = s3

g
′
6 = g7; g6 (0) = 1

g
′
7 = −Sc (g1g7 − 2g2g6) + Scδ

(η

2
g7 + 2g6

)
− Nt

Nb

g
′
5; g7 (0) = s4

The approximate solution of the above first-order ODEs is obtained by incorporating the RK-4
method and an iterative method. The chosen domain for the problem is [0, η∞]. Here η∞ is a finite real
number such that variation for solution in η > η∞ is ignorable. Newton’s iterative scheme is used to
solve the algebraic equations, which is given as follows:

si,n+1 = si,n −
(
gj (η∞)

)
si=si,n

− ε

∂

∂si

(
gj (η∞)

)
si=si,n

where i = 1, 2, 3 & j = 3, 5, 7. If we meet the criterion:∣∣∣(gj (η∞)
)

si=si,n
− ε

∣∣∣ > ε0

Then we will stop the computational processes; otherwise, we continue using the Newton iterative
scheme to refine the initial guess. Here ε0 is a very small positive number.
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4 Result and Discussion

We thoroughly discuss approximated results of Skin-friction, Nusselt number, and Sherwood num-
ber through graphs. Calculations were carried out to influence different non-dimensional parameters
like M, Nb, Nt, Sc and R through the shooting method. Moreover, the impact of these parameters on
concentration, temperature, and velocity profiles is also considered via graphs.

Fig. 2 is defined for various values of M against the non-dimensional velocity profile. We observed
that the non-dimensional velocity profile escalates with the escalation of magnetic parameter M. Also,
the velocity profile was found to be a decline for suction. Fig. 3 is plotted in the existence of injection.
To delineate the impact of parameter M on non-dimensional velocity, the velocity profile seems to
decline for the rising values of M. It appears to decline for the escalating values of M.

Figure 2: Effect of magnetic parameter M on f ′ (η)

Figure 3: Effect of magnetic parameter M on the velocity profile using Pr = 1.2, ε = 0.1, Nb = Nt =
0.2, Sc = 01, R = 0.5, δ = 0.1, β = 0.2

The effect of δ for various values on non-dimensional velocity profiles is displayed in Figs. 4
to 5. With the rise in unsteady parameter δ, the non-dimensional velocity deescalates and escalates,
respectively, for suction and injection. Figs. 6 and 7 are plotted for the dimensionless velocity
against the different values of Maxwell parameter β for suction/injection. The figures reflect that the
dimensionless velocity profile deescalates and escalates for suction and injection with the Maxwell
parameter β.
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Figure 4: Effect of unsteady parameter δ on the velocity profile using Pr = 1.2, ε = 0.1, Nb = Nt =
0.2, Sc = 01, R = M = 0.5

Figure 5: Effect of unsteady parameter δ on the velocity profile using Pr = 1.2, ε = 0.1, Nb = Nt =
0.2, Sc = 01, R = M = 0.5

Figure 6: Effect of maxwell parameter β on the velocity profile using Pr = 1.2, ε = 0.1, Nb = Nt =
0.2, Sc = 01, R = M = 0.5, δ = 0.1
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Figure 7: Effect of maxwell parameter β on the velocity profile using Pr = 1.2, ε = 0.1, Nb = Nt =
0.2, Sc = 01, R = M = 0.5, δ = 0.1

Figs. 8 and 9 are framed to delineate the effect of parameters fW and M on non-dimensional
temperature distribution θ (η). Fig. 8 exhibits that the temperature distribution escalates with the
escalation in various values in the magnetic parameter and the suction parameter fW . Similar behaviour
has been observed for injection in Fig. 9. The dimensionless temperature profile is enhanced due to
the transverse magnetic field M because the flow field is reduced due to magnetic parameter M in
both cases.

Figure 8: Effect of magnetic parameter M on the velocity profile using Pr = 1.2, ε = 0.1, Nb = Nt =
0.2, Sc = 01, R = 0.5, δ = 0.1, β = 0.2

Figure 9: Effect of magnetic parameter M on the temperature profile using Pr = 1.2, ε = 0.1, Nb =
Nt = 0.2, Sc = 01, R = 0.5, δ = 0.1, β = 0.2
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Fig. 10 demonstrates the impact of the parameters R and δ on the non-dimensional temperature
profile. It is clear from Fig. 10 that a large estimation of the parameter δ deescalates the non-
dimensional temperature for the inner thermal boundary layer. Resultantly, the thermal boundary
layer thickness is decreased. Moreover, an increment in R escalates the heat flux from the sheet, which
upraises the temperature, and consequently, the non-dimensional temperature profile is enhanced
with the increment in R. Whereas Fig. 10 describes the impact of parameters Nt and Nb on the non-
dimensional temperature. As a consequence of the particles’ random motion, the particles’ collision
rate increases. Resultantly, the kinetic energy of the particles enhances. This is transformed into heat
energy. Hence with an enhancement in the Brownian motion parameter Nb, the non-dimensional
temperature escalates.

Figure 10: Effect of unsteady parameter δ on the temperature profile using Pr = 1.2, ε = 0.1, Nb =
Nt = 0.2, Sc = 01, M = 0.5, fw = 0.5, β = 0.2

Similarly, the temperature profile θ (η ) seems to incline with Nt Inclination because the gradient
of temperature generates a force. This is because heated fluid shifted away from the surface, which
increases the thermophoresis parameter Nt. Consequently, the boundary layer temperature seems to
be enhanced, as delineated in Fig. 11.

Figure 11: Effect of thermophoresis parameter Nt on temperature profile using Pr = 1.2, ε = 0.1, δ =
R = 0.1, Sc = 01, M = 0.5, fw = 0.2, β = 0.2

Fig. 12 delineates the concentration profile with the variation of thermophoretic parameter Nt and
Brownian motion parameter Nb. The concentration profile grows by enhancing thermophoretic and
Brownian motion parameters Nt & Nb. Similarly, Fig. 13 reveals the impact of the thermophoretic
parameter and Brownian motion parameter Nt and Nb on concentration profile. It seems to be a
concentration profile upraises by enhancing the values of both parameters. Because increasing the



CMES, 2022, vol.133, no.2 315

Brownian motion parameter leads to the displacement of nanoparticles from the plate to its surround-
ings, the concentration profile is elevated. Fig. 14 clarifies the impact of velocity slip parameter γ on the
velocity profile. It seems to be velocity deescalates by decaying the values of the slip velocity parameter
γ . Since upraising, the values of the slip parameter upraises the coefficient of shear stress at the plate,
which results from resistance in the fluid motion near the plate. So, the velocity of the adjacent layers
of the fluid decays. Fig. 15 reveals the impact of the Schmidt number Sc on concentration profile.
The concentration profile deescalates by enhancing Schmidt’s number Sc because growth in the values
of the Schmidt number Sc either grows the kinematic viscosity of different base fluids or decays the
mass diffusivity. For the first case of growing viscosity, the fluid’s velocity deescalates, responsible
for deescalating the concentration profile for the second case of decaying mass diffusivity. Smaller
values of mass diffusivity deescalate the concentration profile due to Fick’s law. Fig. 16 exposes the
impact of magnetic parameter M and unsteady parameter δ on local Nusselt numbers. The local
Nusselt number decays by raising the values of magnetic parameter M because the rising strength
of the magnetic field resists the flow’s velocity. This results in decay in convective heat transfer, so
the local Nusselt number decreases. Also, the local Nusselt number grows by enhancing the values
of the unsteady parameter. Fig. 17 delineates the impact of the Schmidt number Sc and Brownian
motion parameter Nb on local Sherwood number. The local Sherwood number upraises by enhancing
the Schmidt number and Brownian motion parameter values. The growth in Schmidt number leads
to decay in mass diffusion rate, so the local Sherwood number is enhanced. Also, an increase in
the Brownian motion parameter leads to growth in random movements of particles, and therefore
convective mass transfer escalates, and thus local Sherwood number increases. Fig. 18 demonstrates
the impact of thermal radiation parameter R and thermophoretic parameter Nt on local Nusselt
number. The local Nusselt number rises by enhancing the values of the radiation parameter. The reason
behind the growth of local Nusselt number is the escalation of conductive heat transfer due to incoming
radiations when radiation parameter increases. The local Nusselt number decays by increasing the
values of the thermophoretic parameter Nt. The growth in the thermophoretic parameter leads to
higher thermophoretic force. Consequently, convective heat transfer decreases due to the increment
of moving particles from the vicinity of the plate to its surroundings. Fig. 19 delineates the impact of
magnetic parameter M and suction/injection parameters on the Skin friction coefficient. In Fig. 18,
the Skin friction coefficient escalates by raising the values of the magnetic parameter for both suction
and injection cases. This escalation in skin friction coefficient is the consequence of growth in Lorentz
force due to an increase of magnetic parameter, which resists the velocity of the flow. So the wall
friction increases, and therefore shear stress at the wall grows.

Figure 12: Effect of brownian motion parameter Nb on concentration profile using Pr = 1.2, ε = δ =
0.1, R = 0.1, Sc = 01, M = fw = 0.5, β = −0.5
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Figure 13: Effect of thermophoresis parameter Nt on concentration profile using Pr = 1.2, ε =
0.1, Sc = 01, R = 0.5, δ = 0.1, β = 0.2

Figure 14: Effect of velocity slip parameter γ on the velocity profile using Pr = 1.2, ε = 0.1, Nb =
Nt = 0.2, Sc = 01, R = M = 0.5, δ = 0.1

Figure 15: Effect of Schmidt number Sc on the concentration profile using Pr = 1.2, ε = 0.1, Nb =
Nt = 0.2, Sc = 01, R = M = 0.5, δ = 0.1
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Figure 16: Effect of unsteady parameter δ & magnetic parameter M on local Nusselt number using
Pr = 1.2, ε = 0.1, Nb = Nt = 0.2, R = Sc = 1, β = −0.5

Figure 17: Effect of Schmidt number Sc & brownian motion parameter Nb on local Sherwood number
using Pr = 1.2, ε = δ = 0.1, M = fw = R = 0.5, β = −0.7

Figure 18: Effect of radiation parameter R & thermophoresis parameter Nt on local Nusselt number
using Pr = 1.2, ε = δ = 0.1, Sc = 01, M = fw = 0.5, β = 0.5, γ = 0.01
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Figure 19: Effect of magnetic parameter M on skin friction coefficient using ε = 0.1, β = 0.5

Figs. 20–22 show the surface plot and streamlines for velocity profile without using Maxwell fluid
when the bottom wall’s velocity moves in the right and left directions. The negative sign in the captions
of these figures shows that the wall is moving in the negative x-axis direction. These figures are obtained
using software that uses the finite element method to solve differential equations. One side in these
figures shows an inlet, and two sides are outlets.

Figure 20: Surface plot and streamlines using Uw = 0.0001 & Uw = −0.0001

Figure 21: Surface plot and streamlines using Uw = −0.01 & Uw = 0.01
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Figure 22: Surface plot and streamlines using Uw = −1 & Uw = 1

The comparison and validation of the current study with earlier studies for determining the
numerical values of the skin friction coefficient are shown in Table 1. The current methodology
employs the Runge-Kutta method in conjunction with an iterative method.

Table 1: Numerical values of −f ′′ (η) using M = γ = δ = fw = 0

ε Mahparta et al. [52] Nazar et al. [53] Hayat el al. [54] Mabood et al. [34] Present

0.1 0.9694 0.9694 0.96938 0.96938 0.97069
0.2 0.9181 0.9181 0.91810 0.91811 0.91938
0.5 0.6673 0.6673 0.66732 0.66726 0.66828
1 - 0.0000 0.0000 0.0000 0.00000
2 −2.0175 −2.0175 −2.01750 −2.01750 −2.02250
3 −4.7293 −4.7296 −4.72928 −4.72928 −4.74429

The present investigation can be useful physically to generate some experimental estimates. When
the impacts of various types of fluid on solid surfaces are investigated, the effects of various parameters
can be valuable in avoiding time-consuming experiments. The primary benefit of conducting a
theoretical investigation is that it saves time compared to conducting experiments.

Table 2 shows the approximate ranges of some physical parameters. For practical use, any value
from these ranges can be chosen. The numerical values of parameters that can be used for any practical
purpose can be chosen from this Table 2. Some ranges in Table 2 depends on the length of the domain.
The solution can be obtained in some smaller domains.

Table 2: Approximate numerical ranges for some parameters using Nt = 0.01, Nb = 0.01,
M = 0.01, δ = 0.0, 1 and ε = 0.01

Pr Sc β γ fw R

0.01 0.01 0.01 0.01 0.1 0.01
325
0.01 339

(Continued)
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Table 2 (continued)

Pr Sc β γ fw R

0.01
0.01 95

0.01 ∞
0.01 9

∞

5 Conclusions

An existing mathematical model has been modified by considering Maxwell fluid and velocity slip
boundary conditions. Moreover, the radiation and magnetic field in the unsteady flow are examined.
Additionally, the effects of suction and insertion on fluid flow have been investigated. The concerning
dimensional equations for the model, such as energy, momentum, and concentration equations, have
been converted into non-dimensional ODEs by employing similarity transformations. In addition to
this, outcomes of the variety of substantial parameters under observation on non-dimensional velocity,
temperature, and concentration profiles have been delineated graphically. Summarizing all results and
arguments, it is concluded that:

• The velocity profile decelerated with the escalation in M, whereas the temperature profile
showed an opposite trend with suction/injection.

• Temperature, velocity, and concentration side views were seemed to decline for rising values of
the unsteady parameter

• With the escalation in Maxwell, the parameter β velocity profile tended to decrease for both
suction and injection.

• Temperature profiles escalated with the escalation in Thermophoresis, and the Brownian
motion parameter, Whereas, Concentration profiles seemed to decelerate for the Brownian
parameter. Still, profiles showed the opposite trend for the Thermophoretic parameter.

• Due to the magnetic parameter, M skin friction seemed to increase, whereas the heat transfer
rate seemed to decrease monotonically; moreover, the heat transfer rate and skin friction
inclined for the unsteady parameter δ.

• However, the heat transfer rate was escalated with an escalation in radiation parameter R. It
reduced for rising values of the thermophoretic parameter.

With the escalation in Schmidt number Sc, mass transfer rate accelerated. Also, the mass transfer
rate seemed to increase for the Brownian parameter Nb, whereas it decreased for the thermophoretic
parameter Nt. Adding new effects to the model and studying the impact of various parameters on
velocity, temperature, and concentration profiles analytically or numerically are possibilities in the
future.
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