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ABSTRACT

This work is focused on developing an effective method for bearing remaining useful life predictions. The method
is useful in accurately predicting the remaining useful life of bearings so that machine damage, production outage,
and human accidents caused by unexpected bearing failure can be prevented. This study uses the bearing dataset
provided by FEMTO-ST Institute, Besançon, France. This study starts with the exploration of neural networks,
based on which the biaxial vibration signals are modeled and analyzed. This paper introduces pre-processing of
bearing vibration signals, neural network model training and adjustment of training data. The model is trained
by optimizing model parameters and verifying its performance through cross-validation. The proposed model’s
superiority is also confirmed through a comparison with other traditional models. In this study, the neural network
model is trained with various types of bearing data and can successfully predict the remaining useful life. The
algorithm proposed in this study achieves a prediction accuracy of coefficient of determination as high as 0.99.
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1 Introduction

Many kinds of neural network approaches have been applied in engineering problems [1–3]. Man-
ufacturers and companies need to maintain their competitive advantage by improving the availability,
reliability, and safety, reducing the production equipment’s maintenance costs, and keeping them in
good working condition. One solution to the problem above is to adopt an appropriate maintenance
strategy. In this field, the Condition Based Maintenance (CBM) and Predictive Maintenance (PM) are
the most effective since the maintenance is optimized through failure prediction [4]. Unlike traditional
corrective maintenance, in which the maintenance is performed only when a failure occurs, the CBM
is performed based on the observed or estimated health condition of the equipment [5].

This study is focused on the effects caused by the various forces applied to the bearings.
Statistically, bearing failure accounts for approximately 45% of mechanical problems [6]. The wear
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condition of bearings varies and is influenced by dynamic cutting forces. High-speed machining
reduces processing time and thus improves productivity but accelerates the wear of spindle bearings.
More attention is required for the maintenance of bearings [7].

The use of a predictive maintenance strategy minimizes the chance of equipment failure. It also
prevents more serious damage to the equipment and operators alike. This study is focused on predictive
maintenance as well. The proposed bearing Remaining Useful Life (RUL) prediction system aims to
reduce the chance of equipment failure.

Failure prediction not only helps improve the availability and reliability of the equipment but
also reduces the maintenance costs. Failure prediction aims to predict the time before a failure
occurs through the estimation of RUL. The estimated RUL can be used to make sensible decisions
based on the future development of the industrial system. Medjaher et al. [8] proposed a data-driven
prediction method based on signal processing and regression analysis. The method uses PRONOSTIA,
an experimental platform for bearings accelerated degradation tests. Lee et al. [9] proposed a deep
learning method named Time Series Multiple Channel Convolutional Neural Network (TSMC-CNN)
for bearing RUL prediction. The time series data of bearing operations are divided into multiple
channels and fed to the convolutional neural network (Computer Numerical Control, CNN) model.
The relationship between distantly separated data points is established. The PRONOSTIA bearing
dataset is used to evaluate the performance of the proposed method. A comparison of the evaluation
results of the proposed method and other related methods is made. Ren et al. [10] proposed a new
roller bearing RUL estimation method based on Sparse Representation theory. The estimated RUL
is obtained by analyzing the relationships between all measured data. This RUL estimation is based
on the similarity of data of adjacent measurements. As it is known, the RUL estimation for industrial
machinery and its components is one of the mainstream technologies in advanced manufacturing,
which is essential for improving productivity. Given this situation, Carino et al. [11] proposed a
reliable health monitoring method for ball bearings. First of all, the proposed method uses Spearman’s
rank correlation coefficient to analyze the available temperature data and vibration signals. This step
focuses on identifying the most important relationships between features and RUL. The method is
reinforced with Support Vector Machine (SVM) so that the RUL is predicted through classification
mapping. Chen et al. [12] proposed a method. Traditional fault prediction methods can produce only
one predicted result, such as temperature, wear or RUL, at a time. In addition, they are not able to
produce highly representative features for dealing with the above-mentioned two tasks simultaneously.
They proposed a deep residual network based on multi-task learning. The method is a breakthrough
by changing the traditional way of using deep neural networks as black boxes. Two types of diagnostic
information are fed into the network, which is helpful in mining the potential links between two tasks
of fault diagnosis and generating very representative features. Many studies have been dedicated to
developing fast and easy RUL estimation methods on top of accuracy. Akuruyejo et al. [13] proposed
a new data-driven approach for bearing RUL estimation. It indicates: “Considering the nonlinear and
non-stationary bearing vibration signals, the empirical mode decomposition (EMD) method is used as
the pre-processing step for feature extraction. Then, the principal component analysis algorithm (PCA)
is used for feature reduction.” Lei et al. [14] proposed a model-based method for RUL prediction
of machinery. It indicates: “The method includes two modules, i.e., indicator construction and RUL
prediction. In the first module, a new health indicator named weighted minimum quantization error
is constructed, which fuses mutual information from multiple features and properly correlates to the
degradation processes of machinery. In the second module, model parameters are initialized using the
maximum-likelihood estimation (MLE) algorithm and RUL is predicted using a particle filtering-based
algorithm.” Electric discharge machining current causes a significant amount of damage to bearings.
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Different RUL prediction methods must be used to deal with this situation successfully. Singleton et
al. [15] indicated: “both experimental and computational approaches for RUL estimation of bearings by
taking advantage of the relationship between current discharge events and the vibration signals. A test
bed, which induces accelerated aging via applied electrical stress, is introduced to better understand the
relationships between bearing currents, vibrations and failures.”

Machine learning is an important field of study as of now. It is commonly used in a variety
of applications, such as medical diagnosis [16]. Accurate diagnosis of a disease is crucial because
it improves the effectiveness of disease prevention and treatments. In addition, a machine learning
model can also be used to analyze the molecular structure of the viruses, which helps us deal with the
global spread of COVID-19 [17]. Machine learning can help us predict and prevent natural disasters
as well. For example, machine learning can be applied to model droughts [18] and to provide early
warning of natural disasters. Machine learning has been used for bearing RUL prediction in recent
years as well. Zheng [19] proposed a method to obtain the horizontal vibration signals of a bearing
by using a continuous wavelet transform spectrogram and using an exponential degradation mode to
predict bearing RUL. Nair et al. [20]. proposed a hybrid model to predict bearing RUL. The perspective
of tuning the parameters of the physics-based equations with data from Finite Element Simulations
and interpolating for the remaining values gives us a broad look over the correlation between the
parameters. In addition, Wang et al. [21]. proposed a bearing RUL prediction method that combines
exponential degradation models and Fréchet distance and relatively good prediction performance is
achieved. This study uses various neural network architectures to deal with the bearings with different
cutting forces. The goal is to develop a model capable of easy and fast bearing condition prediction in
different conditions and to offer benefits to the industry.

This paper proposes an integral data processing and neural network architecture that other deep
learning neural networks can reference. This study offers a faster yet integral data processing approach.
Most of the data used to train the proposed neural network model are matched by the model. This
model offers a training method from a wider perspective.

In this study, the acting force on the bearing is a constantly changing factor in the manufacturing
process. Since the wear condition is determined by the force applied onto the bearing, the bearing RUL
is different in each case. Various types of data are used to train the model proposed in this study, which
helps improve the bearing RUL prediction performance under different acting forces. Since this model
requires only a small amount of data for training, less time is spent on preparing the training data. The
model proposed in this study requires less time in data preparation and achieves faster model training.
The same model can accommodate different types of acting forces and thus can be easily used for
more bearing RUL predictions.

2 System Architecture

This study uses the National Aeronautics and Space Administration (NASA) dataset for model
training. The dataset is composed of machining time, X -axis and Y -axis vibration signals measured by
accelerometers, and temperature data. However, the temperature data are missing in some data entries
and are not used in this study. Bearing RUL is the output label. Cross-validation is used to evaluate
the performance, i.e., prediction accuracy and usefulness, of the model. The model is modified based
on whether it matches with data and diagnostic errors. Flow chart of the prediction model as shown
in Fig. 1.
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Figure 1: Conceptual representation of prediction model

This study uses NASA Prognostics Center of Excellence-Data Repository, (PCoE) dataset [22,23].
Prognostics Data Repository is a collection of datasets donated by many universities or companies.
This study uses the bearing dataset provided by FEMTO-Science & Technologies (FEMTO-ST),
Besançon, France. The data come from the test platform, which uses AC Motor to drive the spindle
and simulate the rotation of the spindle that causes bearing wear. Accelerometers, force sensors and
temperature sensors are used to measure vibration signals, temperature and forces exerted on the
bearings. The test platform is shown in Fig. 2.

Figure 2: Conceptual representation of the test platform

The acting force in this paper is defined as the radial force exerted on the bearings. The
instantaneous value of acting force is measured. The data of the bearing, the axis that the bearing
rotates around and the rotation speed of the torque applied to the bearing are all collected at the
frequency of 100 Hz. However, the bearing RUL is defined by the bearing wear, which is determined
based on the vibration signals measured by the accelerometers. The bearing vibration signals are
measured with two accelerometers positioned perpendicular to each other. One is placed vertically
and the other is placed along the horizontal axis. Both accelerometers are placed on the outer ring of
the bearing. The sampling rate of the accelerometers is set to 25.6 kHz.

The dataset consists of 17 sets of complete bearing life data. Fig. 3 shows the vibration signals
from a part of the bearing data. To simplify the matter, the data in the dataset are divided into three
groups depending on the force exerted on the bearings, namely 4000 N, 4200 N and 5000 N. They are
shown in Figs. 3–5. The lengths of vibration signals are so different, which poses a huge challenge for
training. Data variation and integrity have a great impact on the training process of a neural network
and the results. To achieve better results of training, one of the three bearing datasets is chosen as
training data and the rest as test data. The goal is to test if the trained model is capable of accurately
predicting the bearing RUL. The dataset is divided into groups, as shown in Table 1.
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Figure 3: The vibration signals with 4000 N of force acting on the bearing

Figure 4: The vibration signals with 4200 N of force acting on the bearing

Due to the complicated structure and large size, the sensor data need to be pre-processed. There
are at most seven million sensor data entries for one entire bearing life data. The large size of data
may have adverse effects on modeling. In addition, the data collected for each bearing are not exactly
the same. The bearing data that are too different may cause problems for modeling. A simple pre-
processing of sensor data of bearings is hence necessary. The goal is to ensure the data integrity for
modeling.

Therefore, the data need to be pre-processed before modeling. Bearing vibration signals are
dynamic and complicated. Many approaches for feature extraction for bearing vibration signals have
been used [4,24]. Not a single approach has an advantage over the others. This paper introduces three
steps for data pre-processing, i.e., data selection and splitting, standard deviation, and normalization.
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Figure 5: The vibration signals with 5000 N of force acting on the bearing

Table 1: Datasets of bearing

Operating condition

4,000 N 4,200 N 5,000 N

Bearing1_1 Bearing2_1 Bearing3_1
Bearing1_2 Bearing2_2 Bearing3_2
Bearing1_3 Bearing2_3 Bearing3_3
Bearing1_4 Bearing2_4
Bearing1_5 Bearing2_5
Bearing1_6 Bearing2_6
Bearing1_7 Bearing2_7

2.1 Data Selection and Splitting
The most important variable of the data in the dataset is the force exerted on the bearing. However,

a clear distinction still exists among the sensor data measured with the same condition of force. The
largest difference between bearing RULs with the same variable is as high as 19,310 s, which may lead
to deviant behavior of the model. The first 15,000 s of that data of the bearing with greater than 25,000 s
of RUL are discarded. Also, the first 10,000 s of that data of the bearing with greater than 20,000 s
of RUL are discarded. There are only 1,720 and 3,520 s of sensor data collected from Bearing3_3 and
Bearing2_7, respectively. Due to the significant difference in data size, the Bearing2_7 data are not
used for RUL prediction model training. The detailed information is shown in Table 2.
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Table 2: Experimental conditions

Case Force Operating life (s)

Bearing1_1 4000 N 28020
Bearing1_2 4000 N 8710
Bearing1_3 4000 N 18020
Bearing1_4 4000 N 11390
Bearing1_5 4000 N 23020
Bearing1_6 4000 N 23020
Bearing1_7 4000 N 15020
Bearing2_1 4200 N 9110
Bearing2_2 4200 N 7970
Bearing2_3 4200 N 12020
Bearing2_4 4200 N 6120
Bearing2_5 4200 N 20020
Bearing2_6 4200 N 5720
Bearing2_7 4200 N 1720
Bearing3_1 5000 N 5150
Bearing3_2 5000 N 16370
Bearing3_3 5000 N 3520

2.2 Standard Deviation
The bearing data sizes differ greatly from each other. The bearing RUL prediction is based on

the variation trend of vibration signals. In this study, a mean is calculated for every 10 s of data.
Two different methods, i.e., Standard Deviation (SD) and mean deviation (Root Mean Square, RMS)
[25] are often used for data processing. Mean deviation reflects the averaged difference between tag
value and arithmetic mean within an interval. It is best used on normally distributed data. Standard
deviation measures the spread of a set of data. The features of vibration signals are represented as
the degree of the spread. This study chooses standard deviation other than mean deviation as a data
processing method because it produces better model training results. The standard deviation and mean
deviation are calculated as shown in Eqs. (1) and (2).

RMS =
√∑N

i=1 x2
i

N
(1)

SD =
√√√√ 1

N

N∑
i=1

(xi − μ)2 (2)

where N denotes the total amount of data; xi denotes the value of i-th item; μ denotes the mean. The
feature extraction is performed on every 2,560 sets of vibration signals. The vibration signals are added
with other parameters and normalized to form the final training dataset.
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2.3 Characteristic Normalization
Feature normalization [26] is a scaling technique in which feature data are rescaled so that they end

up falling within a specified range. If the feature data spread over a larger range, the predicted values
tend to be higher and the prediction accuracy drops, which can be seen in Table 2. The difference
in individual bearing RULs may have influences on the weights. Feature normalization has many
advantages, such as making the weights more evenly distributed, avoiding overtraining caused by using
the same type of data and improving the bearing RUL prediction accuracy of the model. In this study,
the feature data are normalized between 0 and 1. The goal is to make calculating the errors easier.
Data normalization is performed as shown below:

xnormalize = x − xmin

xmax − xmin

∈ [0, 1] (3)

where xnormalize denotes the target value and x, xmin, xmax denote original value, minimum value and
maximum value of the data, respectively.

3 The Proposed Method

This section introduces the architecture of neural networks. Neural networks are programs
designed to mimic the operations of biological neural systems. The goal is to give computers human
intelligence so that they are able to behave like humans. In the experiments of this study, a neural
network is used as the prediction model. The Multilayer Perceptron (MLP) [27] architecture is shown
in Fig. 6 below. The basic architecture is modified and further improved, as shown in Fig. 7. For
the architecture proposed in this study, the tensors are connected to more layers. This improvement
drastically alleviates the gradient vanishing issue. This architecture is similar to the algorithm in the
literature [28]. In this paper, the DenseNets uses skip-connections to complete its computing process
[29]. The addition of layers makes shortcut pathways possible for two reasons. This method can
improve training stability and alleviate the Yadav et al. [30] indicated: “Vanishing gradient problem. In
such methods, each of the neural network’s weights receives an update proportional to the partial derivative
of the error function with respect to the current weight in each iteration of training.” This study uses this
method to build a Dense-Structured Network (DSN) model. The sensor data are fed into this neural
network model and build a bearing RUL prediction model. Cross-validation is also used to evaluate
the performance of the neural network as follows. All datasets are categorized into three groups based
on the forces exerted in the bearings (i.e., 4000 N, 4200 N, and 5000 N). One dataset from each group
is randomly chosen as training data and the rest are used as output parameters. Repeat this process
until all combinations of datasets are used, as shown in Fig. 8. The goal of using this approach is to
build a neural network model capable of accurate prediction with a limited amount of data. Cross-
validation is also used to verify the accuracy of the model. This approach is used to build a neural
network model capable of accurate prediction with a limited amount of data. Cross-validation is also
used to verify the prediction accuracy of the model. In the first three layers, Rectified Linear Units
(ReLU) [31] are used.

The DSN model proposed in this study has four fully connected layers in the first half. Each
layer is composed of multiple neurons. The effectiveness of training can be improved by adding more
neurons. In this study, each of the first three layers contains 50 neurons and the fourth one has 10.
After many times of training, this model is found to have the best prediction performance. Each layer
has 50, 50, 50 and 10 nodes, respectively. The results are fed into the Sigmoid function as output.



CMES, 2022, vol.133, no.1 141

Figure 6: Multilayer perceptron architecture

Figure 7: Dense-structured network architecture

Figure 8: Conceptual representation of cross-validation

The model proposed in this study uses fully connected layers of neural network to train the
model parameters. The goal is to model the complex bearing wear phenomenon through training.
However, the gradient vanishing problem often occurs when training with the model that consists
of fully connected layers. The weights in the front layers of the neural networks sometimes do not
get updated and the weights near the input layer are updated at a very small rate. However, this paper
emphasizes that the proposed prediction model can deal with multiple acting forces, which means large
variation of data to the input layer. This model takes a shortcut by skipping the neural network layer
and using the data to train the next layer in order to avoid the vanishing gradient problem. Therefore,
the model proposed in this study is particularly useful in the bearing RUL prediction when there are
multiple acting forces. This architecture improves the effectiveness of the model training when a large
variation exists in the training data.
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The activation function of each layer in the proposed DSN model are listed in the Table 3. Mean
square error is chosen as the loss function of DSN to minimize error between prediction and true
values. We adopt Adam optimizer as the optimizer due to its self-adaptive characteristic. The training
batch size is set to 50, and the total epochs are 500 to guarantee convergence.

Table 3: Parameter setting of the proposed model

Parameters Value

Activation function of the hidden
layer

Rectified Linear Unit (ReLU)

Activation function of the output
layer

Sigmoid

Loss function Mean Square Error
Optimizer Adam Optimizer
Batch size 50
Epochs 500

Decision Tree (DT) [32] is machine learning algorithm used to solve classification problems.
The decision for which node to branch into is made based on the attribute. The decisions are made
repeatedly until an outcome is obtained, as shown in Fig. 9. The method is an extended supervised
learning algorithm based on the binary branching theory. The rules of the decision trees are obtained
through the training process. Decision tree is a quite simple machine learning algorithm. The method
is extremely intuitive and is widely used. The model proposed in this paper keeps adding new nodes
during the training process until the classification results of the final node contain less than two sample
parameters.

Figure 9: Conceptual representation of decision tree

Random Forest, as shown in Fig. 10, is basically a collection of decision trees. A more powerful
model is built by integrating multiple learners (i.e., decision trees) and randomly distributed training
data. Like a decision tree, Random Forest is a machine learning algorithm suitable for solving
classification problems. They share similar decision models for solving regression and classification
problems. Random Forest classifies samples by taking a majority vote on the outcomes of a collection
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of decision trees and solves regression problems by calculating the mean of all decision tree outputs.
Therefore, Random Forest is capable of analyzing nonlinear data effectively and outperforms the
multiple linear regression method. No assumption of the type of a given model is needed. Compared
with decision trees, Random Forest has better prediction accuracy and prevents overfitting. More
nodes are added continuously to the model during the training process until the classification result of
the final node has fewer than two sample parameters. In general, it achieves a better regression effect
than the regression tree does.

Figure 10: Conceptual representation of random forest

Support Vector Regression (SVR) is an important branch of application of Support Vector
Machine (SVM), as shown in Fig. 11. SVM model aims to construct a hyperplane that distinctly
classifies the data points for prediction or classification purposes. The model in this paper uses
SVR, which is conceptually similar to SVM. It is capable of solving continuous regression prediction
problems by minimizing the distances between data points to the regression line. This model has
outstanding performance in classifying nonlinear data and images. SVR gains its robustness by
adopting ε-insensitive function, penalty factor C and variables ξi, ξi

∗. It is often used to solve nonlinear
regression prediction and time series prediction problems. The prediction parameter C in this paper
is set to 5. The higher the penalty factor, the bigger the penalty from incorrect classification, and vice
versa. Radial Basis Function (RBF) kernel is a popular kernel function used in various kernelized
learning algorithms. ε is 0.1.

Figure 11: Conceptual representation of support vector machine
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4 The Experimental Results

In this study, the results from different algorithms are verified with the Cross-validation method.
Cross-validation is a statistical verification method used to evaluate the prediction performance of a
model. The performance and accuracy of a model are evaluated by the use of mathematical equations.
The validation method uses the relationships between predicted values and actual values to assess the
predicted errors. In this study, three indicators are used to evaluate the model’s prediction accuracy
and matching ability.

4.1 Performance Indicators
Mean Absolute Error (MAE) is the ratio of predicted value to the actual value, which is calculated

as follows;

MAE =
∑n

i=1

∣∣yi − ŷi

∣∣
n

(4)

where n denotes the total amount of data; yi denotes the actual remaining life; ŷi denotes the actual
remaining life. The reason for using MAE as the indicator of prediction performance is to find the
difference between actual data and predicted data and compare them. The evaluation is performed on
each set of data.

As shown below, root-mean-square error (RMSE) is mainly used to test the variation between
actual and predicted values.

RMSE =
√√√√1

n

n∑
i=1

(
yi − ŷi

)2
(5)

In (5), n denotes the total amount of data; yi denotes actual remaining life; ŷi denotes predicted
remaining life. This method is mainly used to evaluate the model’s prediction performance and
represent it in numerical form.

Coefficient of determination (R2 Score) is a statistical measurement that represents the proportion
of the variation in the dependent variable. It is a convenient, intuitive measurement used to test the
goodness of fit between actual and model-predicted values.

R2 = 1 −
∑n

i

(
yi − ŷi

)2∑n

i (yi − y)
2 (6)

where n denotes the total amount of data; yi denotes actual remaining life; ŷi denotes predicted
remaining life; y denotes the mean of remaining life. The goal of this method is to evaluate how well-
fitting a regression model is.

4.2 Prediction Results
The experiment results show that the DSN machine learning model proposed in this paper

achieves the performance of MAE of 252.98, RMSE of 410 and R2 Score of 0.99, as shown in Fig. 12.
The largest difference of MAEs is as high as 1297.91. Compared with other machine learning methods,
such as support vector machine (SVM), Random Forest (RF), Decision Tree (DT), Adaptive boosting
learning (Adaboost) and Multilayer perceptron (MLP), the model has better prediction capabilities,
as shown in Figs. 13–15. The figures show that, compared with other models, DSN prediction results
have the bluest dots (i.e., low prediction error) and the least orange dots (i.e., large prediction error).
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SVR is the model with the second-best prediction results. The prediction errors of the models are
shown in Table 4.

Figure 12: DSN prediction results: (a) comparison of actual and predicted values, (b) residual plot

Figure 13: DT prediction results: (a) comparison of actual and predicted values, (b) residual plot

In this study, a comparison is made between the models based on Decision Tree, Random Forest
and Support Vector Regression. These algorithms are not new but still commonly used. They are
relative iconic algorithms in the field of machine learning, so that the comparison results are credible.

The experiment results show that the DT model delivers relatively fairly good prediction perfor-
mance in the early stage. However, it produces high prediction discrepancies and even makes erroneous
predictions occasionally in the middle stage of RUL. Compared to the DT model, the RF model
delivers similar prediction performance. Both perform better in the early stage of RUL. However, the
prediction accuracy drops in certain cases, in which the predicted RUL cannot be obtained. The results
show that the SVR model is not suitable for training in this study. Although the DSN training model
proposed in this study produces a certain degree of RUL prediction discrepancies in a couple of cases,
it, of all models, delivers the best prediction results. The curve of predicted values has the best match
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with actual values. Therefore, it is known that the DSN prediction model is very suitable for bearing
RUL prediction.

Figure 14: RF prediction results: (a) comparison of actual and predicted values, (b) residual plot

Figure 15: SVR prediction results: (a) comparison of actual and predicted values, (b) residual plot

Table 4: The comparisons of the models

Model MAE RMSE R2score

SVR 1349.92 1752.37 0.83
Decision Tree 1214.58 1924.37 0.79
Random Forest 1550.89 2140.06 0.74
DSN 252.98 410 0.99

In this paper, a comparison of the training time of several algorithms is also made. It takes less
than 0.5 s to train the RF model, and about 0.005 s to train the DT and SVR models. The DSN model
proposed in this study requires about 3.5 s for training. The model proposed in this study requires a
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longer time for training but achieves much higher training accuracy than other algorithms. This study
aims to develop a machine learning model that can be used on smaller amounts but various types of
data and still achieves better bearing RUL prediction accuracy in different conditions.

5 Conclusion

In this study, the bearing vibration signals and RUL data are pre-processed. Then the DSN neural
network model proposed in this study is used to predict the bearing RUL. A training method different
from a traditional MLP is used this time to solve the gradient vanishing problem, improve the training
stability and increase the robustness of the neural network model. A comparison is also made with the
aforementioned neural network models to demonstrate that the model matches this dataset. Although
built with a small amount of data, the model proposed in this study still matches most of the other
datasets. The model is built fast and achieves the goal of high accuracy of predicting bearing RUL.
Subsequent actions can be determined immediately and taken based on the prediction results to ensure
the safety of machinery and humans and further improve production efficiency and safety.
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Appendix

The comparison of prediction results of bearing remaining life using various algorithms is shown
in Fig. A1, where the green line represents the prediction results of DSN. The green line matches the red
line (i.e., actual values) better. The model always has higher prediction accuracy in different conditions
of acting forces and bearing RULs. Of all algorithms, DSN has the best performance based on R2

score. Therefore, DSN is more efficient in predicting the bearing RUL. Most of the prediction results
are omitted because of space limitations. Only the RUL prediction results with the training data that
combine Bearing1_1, Bearing2_1 and Bearing3_1 data (the rest is test data) are included.
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Figure A1: (Continued)
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Figure A1: Prediction results of bearing remaining life using various algorithms
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