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ABSTRACT

Cement Stabilized Loess (CSL) sample has a long history as a method of improving building foundations. In this
paper, the main physical (specific gravity, consistency limit, optimum moisture content, and maximum dry den-
sity) and mechanical properties (Unconfined Compressive Strength (UCS) and shear strength parameters) of CSL
samples with different cement content were investigated, and the change reasons were explored by mean of SEM
test. Meanwhile, quantitative analysis software Image-Pro Plus (IPP) 6.0 was used to characterize the microstruc-
tural evolution of pores in compacted loess and CSL sample. As the cement content increased, the specific gravity
and optimum water content in the CSL samples increased and the liquid limit and maximum dry density
decreased. The plastic limit exhibits an increase followed by a decrease, with the plasticity index changing in
the opposite tendency. The UCS and shear strengths of the CSL samples increased with increasing cement con-
tent, and the USC and cement content was better fitted using the Asymptotic model under the same curing time.
The growth rate of the UCS and shear strength parameters were significantly reduced at cement contents above
2%. The results of Scanning Electron Microscopy (SEM) showed that the structure of the CSL samples was denser
and had no obvious inter-aggregate pores. Meanwhile, compared to compacted loess, produced C-S-H gel and
ettringite. Quantitative analysis of compacted loess and CSL sample by IPP software. Compared to compacted
loess, the average pore diameter and average pore area of the CSL sample decreased from 12.44 μm and
229.04 μm2 to 8.72 μm and 84.68 μm2, a reduction of 29.9% and 63.0%, respectively. The pore shape tends to
flatten, but there is basically no effect on the pore angle distribution. Finally, a systematic description of the phy-
sicochemical reactions occurring during the formation of the CSL sample structure was made, and a schematic
diagram of the formation of the CSL sample structure was created.
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1 Introduction

Loess is special sediment formed during the Quaternary period under arid and semi-arid
climatic conditions [1,2]. Its deposits cover 10% of continents in the whole world, especially covering
64 × 104 km2 in China, mainly in the type region of Shanxi, Shaanxi, Gansu, and Ningxia [3–5].
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The typical loess is considered to be an aeolian deposit with an open and meta-stable structure [6]. When
water enters the loess structure, under the combined effect of the self-weight and additional pressure of
the loess, large and rapid settlements will occur, causing different degrees of deformation and even
damage, affecting the structural safety of the building [7–9]. Therefore, loess foundations often need to be
reinforced during construction in loess areas, thus reducing the impact on people’s livelihoods and
economic development [10]. Improving the compaction and strength of foundations by compaction of the
original foundation is a common method used today [11,12]. However, the specific characteristics of
loess can lead to weak cementation between the particles. It is difficult to meet the standards required by
the project by simple compaction methods. Therefore, some scholars have started to add binders to the
loess to increase the structural strength. Sodium alginate was added to loess by Zhao et al. [13] to
investigate the changes in basic physical parameters and mechanical properties, found that sodium
alginate not only changes the basic physical parameters of the loess but also improves the mechanical
properties. Iranpour et al. [14] explored the effects of four types of nanomaterials on soil structure, and
indicated that the addition of nanomaterials has a significant effect on collapsible soils. Choobbasti et al.
[15] examined the influence of nano CaCO3 and fibers as reinforcement on the behavior of the soil was
investigated and discovered that the joint use of fibers and nanoparticles resulted in a significant increase
in strength. Although many scholars’ studies have greatly improved the mechanical behavior of soils
[16–19], cement stabilized loess is widely used due to its improved mechanical properties, low
environmental impact, and high technical efficiency [20].

Significant studies have been carried out to understand the effect of cement on the mechanical behavior
of soil. Zhang et al. [21] identified that the main factor in the increase in shear strength of cement stabilized
loess was the improvement in cohesion after remolding and that the sensitivity of the cohesion to the structure
was much higher than the friction angle. Ghadakpour et al. [22] demonstrated that the stress-strain behavior
of the specimens tended to the expected behavior of overconsolidated soils as the percentage of cement was
increased. Dynamic elastic modulus, dynamic deformation, and damping ratio of cement stabilized loess
were obtained by Wang et al. [23] and displayed that the dynamic properties of cement stabilized loess
were better as the cement ratio increased and no optimum cement proportion. The mechanical properties
of cement stabilized loess decrease as the number of freeze-thaw (FT) cycles increased [24,25].
Therefore, the addition of cement has a significant effect on the mechanical properties of the loess. The
changes in the mechanical properties of CSL samples and their underlying mechanisms are more
complex. To clarify these changes and mechanisms, a series of mechanical tests and microstructural
scanning are required to investigate the response of the mechanical properties of CSL samples to the
microstructural evolution.

With the development of observation and image processing techniques, scanning electron microscopy
(SEM), digital microscopy, and X-ray computed tomography (CT) are widely used to obtain complex
information on the internal structure of soils [26–28]. Among them, SEM testing is preferred by scholars
due to its advantages of simple sample preparation, high resolution, and wide testing range [29].
However, SEM tests can only provide a few images as results and for qualitative analysis, which is not
satisfactory for scientific research criteria. To gain more accurate quantitative parameters of the loess
microstructure, image processing of SEM results using IPP software is required [30,31]. IPP software is
an image analysis software developed by Media Cybernetics, USA, which combines acquisition,
processing, and analysis functions to ensure the identification and extraction of microstructural
information from images. Sun et al. [32] used IPP software to quantify the CSL samples and found that
the unconfined compressive strength of CSL samples increased significantly as the fractal dimension of
the pore area decreased. However, the study did not analyze the pores size of the CSL samples. The
variation in pore size of CSL samples was explored by Liu et al. [33], but no statements were made about
the evolution of pore shape and angle. Although the microstructural parameters of CSL sample pores
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have been studied by some scholars, a systematic analysis of the size, shape, and angle of the pore
microstructure is still not sufficient.

Based on the above considerations, in this paper, the main physical and mechanical properties of CSL
samples with different cement content were investigated, and the microstructural parameters of the pores are
then analyzed quantitatively based on the SEM results to obtain the evolution pattern of the microstructural
parameters. The innovative contribution of this study is the systematic analysis of the microstructural
parameters of the CSL samples and the explanation of the causes of the structural strength formation of
CSL samples in connection with the physicochemical reactions occurring between cement and loess
particles.

2 Materials and Methodology

2.1 Raw Materials
The investigated samples were loess from the new district of Yan’an City, China, with a depth of 6.0–

7.5 m below the natural surface, and can be classified as Malan loess. Fig. 1 shows the surface morphology of
the sampling site. The tested loess samples were light brown silty soil with low plasticity. The main physical
properties of the loess were determined through the ASTM [34] standard tests and listed in Table 1. The
Portland cement was from Shaanxi, China, and the chemical composition of cement was determined by
X-ray diffraction and listed in Table 2.

Figure 1: The major occurrence of Loess Plateau in Shaanxi Province and sampling location at the
excavation site

Table 1: Main physical properties

Sample
measurements

In situ density
(g/cm3)

Natural water
content (%)

Specific
gravity

Plastic limit
(ωP/%)

Liquid limit
(ωL/%)

Plasticity
index (Ip)

Loess 1.35 12.35 2.697 14.46 29.32 14.59
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2.2 Sample Preparation and Test Procedure
For the cement stabilized loess (CSL) samples, the cement (blended ratios at 2%, 4%, 6%, and 8%), and

the preparation method was as follows. The loess and cement were crushed until all aggregates were
destroyed. The obtained materials were passed through a 0.075 mm sieve and then oven-dried at 105°C
for eight hours. Then, the cement, loess, and deionized water were measured by mass according to the
predesignated mix ratios. The loess was mixed with lime thoroughly. After that, the amount of deionized
water was gradually added to the samples using a spray bottle until the water content was up to the target
content. During the addition of water, keep stirring so that the mixture is uniformity. Then strictly sealed
with plastic film and placed into a humidity chamber for water homogenization for about 2 days at room
temperature. In order to better explained the reason for the change of properties of CSL samples. A blank
experiment was also set on loess without adding cement.

The specific gravity of the samples was tested by the density bottle method [35]. The consistency
limit was defined by a liquid and plastic limit combined test [36]. The compaction test was carried out
under the Unified Soil Classification System [37]. In order to obtain the mechanical properties of the CSL
specimens, the samples with different cement contents were static pressed into cylindrical steel molds of
Φ 39.1 mm × h 80 mm and Φ 61.8 mm × h 20 mm, respectively, based on the experimental results of
the compaction test (optimum water content and compaction coefficient of 95%). They were labeled and
placed in a vacuum glass dryer with a diameter of 500 mm and a height of 250 mm. After all, samples
were fabricated, the specimens were removed from the molds and were cured in a humid room with a
temperature of 25 ± 2°C and relative humidity above 95%, for 7 days, 14 days, and 28 days, respectively.
The UCS test was conducted by ASTM D [38]. The samples were placed on an unconfined compressive
strength tester with a maximum load capacity of 2.5 kN and compressed at a constant rate of 0.1 mm/min.
A strain-controlled direct shear apparatus was used to apply four different vertical pressures to CSL samples
[39]. The vertical pressures were 50, 100, 150, 200 kPa, and the shear rate was 0.8∼1.2 mm/min to reduce
the loss of soil samples within 3∼5 min. At each pressure level, the shear strength of the sample reached
the peak strength, and for those samples without significant peaks, a strain-hardening stress-strain curve
corresponding to a strength of 4 mm was observed. To reduce test error, three samples were prepared for
each blended ratio of the above tests, and the average value of the three specimens was used for data analysis.

The cubic sticks measuring approximately 1 cm × 1 cm × 2 cm (length × width × height) were trimmed
from the central portion of the CSL sample prior to microstructural testing. Before scanning, the soil sticks
were slightly broken at a height of approximately 1 cm and the new surface was used to examine the
microstructure of the sample. Then, without disturbing the fracture surface, the stick halves were glued to
the shooting pad with an electron-conductive tape and the platinum (Pt) coating was sputtered in a
sputtering ion apparatus. An MLA 630F SEM was applied to record the microstructure photos of all
samples. In order to quantify the microstructural evolution, this study used IPP software for image
processing. There has been a lot of literatures providing an introduction on IPP software (see, e.g., the

Table 2: Cement chemical compositions

Cement

CaO 65.3

MgO 0.9

Al2O3 4.3

Fe2O3 5.3

SiO2 22.9

SO3 1.3
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works of Xu et al. [31], Liu et al. [33], amongst others). In this study the pore size, area, shape, and angle
were analyzed, where the size, area, and angle can be obtained directly from the software, and the shape
was represented by the short diameter to long diameter ratio. The value of the short diameter to long
diameter ratio (C) varies between 0 and 1. It can be obtained by Eq. (1).

C ¼ B

L
(1)

where L is the long axis length of the pore and B is the short axis width of the pore. A large value of C
indicated that length was like the width of the loess pore, and the sharp of loess pore tended to be round
or square in-plane, while a small value C illustrated a great gap between length and width and the loess
pore inclined to the rectangular or oval shape [40].

3 Results and Discussions

3.1 Specific Gravity
The specific gravity of soil is one of the basic physical properties and is the main indicator for calculating

pore ratios and evaluating soil types. Fig. 2 shows the variation of the specific gravity of the CSL samples
with the amount of cement blended. The specific gravity of the CSL samples increases from the initial values
(Table 1) by 0.48%, 0.74%, 1.04%, and 1.26%, with cement additions of 2%, 4%, 6%, and 8%, respectively.
The specific gravity of the CSL sample increases with the amount of cement blended. However, the
magnitude of change is not significant. The specific gravity depends on the structure of the loess, its
mineral composition, and organic matter content. The specific gravity decreases as the organic matter
content increases and increases as the mineral content increases [32]. Due to the rich mineral content of
the cement, the proportion of mineral components increases when mixed into the loess, resulting in an
increase in the specific gravity of CSL samples. The specific gravity of the loess particles is directly
related to the type of elements contained in the soil, and only part of the improved loess reacts
chemically with the cement particles to produce new substances [33]. In addition, a significant part of the
loess particles does not participate in the reaction, and the reaction only occurs between the particles of
ion exchange, chemistry, and other reactions, no new elements are generated, so the specific gravity of
the soil particles does not change greatly [41]. The results of this test were also confirmed by
Ghadakpour et al. [22], who found that the specific gravity of the cement was greater than loess, thus
causing the specific gravity of the CSL samples to increase as the cement content increased.

Figure 2: Variation of specific gravity with cement content
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3.2 Consistency Limit
The Liquid Limit (LL) and Plastic Limit (PL) are the consistency limit for variations in the physical state

of the loess and mainly reflect the degree of interaction between loess particles and water. Loess is highly
water-sensitive, and the measurement of the LL, PL, and plasticity index of loess can effectively
determine the degree of water binding and stability of the loess under different water content conditions,
thus indirectly reflecting the engineering properties of the loess [42]. The plasticity index is one of the
most important physical indicators of clay, which integrally reflects the material composition of clay and
is widely used in the classification and evaluation of soils [43]. Furthermore, the plasticity index also can
reflect the influence of soil mineral composition and particle size. As the cement content increases, the
LL decreases, the PL shows an increase followed by a decrease, and the plastic limit index decreases
followed by an increase (Fig. 3). When cement is added to the loess, strong interaction between the loess
and the cement particles occurs, which will form cementations material and fill the macropores in the
loess. Metelková et al. [44] found that the liquid limit increases with the number of macropores. Thus,
the liquid limit decreases as the cement content increases. The plastic limit of the loess is proportional to
the size of the aggregates [45]. The production of cementing material acts as a connection between the
aggregates, resulting in larger aggregate sizes in the CSL samples. However, when the cement content is
increased further, the reaction between the particles cannot proceed further and this leads to a slight
decrease in the plastic limit. The addition of cement still has a filling effect on the pores and the liquid
limit still shows a decreasing trend. In general, the greater the plastic limit of the soil, the stronger is the
pressure resistance and poorer is the permeability of the soil [13]. Therefore, the addition of cement has a
beneficial effect on the compression strength of the loess. Kang et al. [46] have similar findings on the
liquid and plastic limits of CSL samples. Zhi et al. [47] also tested the consistency limit of 1:9 and
1:6 CSL samples, and found that as the cement content increased the liquid limit decreased and the
plastic limit increased.

3.3 Compacted Test
Fig. 4 presents the correlation between dry density and water content, and the compaction coefficient of

95% of the maximum dry density can be obtained. As the cement percentage increased from 0% to 8%, the
maximum dry density of the CSL samples decreased from the initial values (cement content 0%) by 1.85%,
3.70%, 4.59%, and 7.40%, respectively. while an increase of about 0.66%, 2.19%, 2.68%, and 4.37% is
obtained for the optimum water content. Compared to the compaction curve of the compacted loess

Figure 3: Relationship between consistency limit and cement content
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(cement content 0%), the peak area of the compaction curve of the CSL sample is gentler than the compacted
loess, which displays that the dry density of the CSL sample is less sensitive to water content than compacted
loess [48]. These changes may be related to pozzolanic reactions in relation to the associated clay material
[49]. Optimal water content also increases with increasing content if the loess is improved with other
stabilizers [50,51]. Meanwhile, Ghadakpour et al. [22] obtained similar trends to this study for the
maximum dry density and optimum water content of the CSL samples.

3.4 Unconfined Compression Test
The UCS is the maximum axial stress that a specimen can be subjected to without any lateral restriction

and is widely used because of its ease of testing and its ability to quickly reflect the strength characteristics of
the specimen. Fig. 5a shows the UCS increases with increasing cement content and curing times. The
unconfined compression strength of CSL samples increases non-linearly with increasing cement content
at different curing times [21]. For CSL samples with a content of 8%, the unconfined compression
strength reach 873.5, 1146.7, and 1993.3 kPa at 7 days, 14 days, and 28 days of curing, respectively,
which is approximately 3.7, 4.9, and 8.5 times higher than initial values (cement content 0%), indicating
a significant increase in compression strength. The curve of UCS and cement content can be fitted using
the equation, y = a − b × cx, and the obtained fitted curve of UCS and the corresponding fitted parameters
are indicated in Fig. 5b and Table 3, respectively. It can be noticed that the Asymptotic model fits well
between the USC and the cement content, all of which are above 0.98. As the cement content increases,
the UCS gradually increases, but the growth rate gradually decreases. When the cement content is greater
than 2%, the growth rate of UCS decreases significantly. This is because the rapid carbonation of cement
with water and carbonates in the loess when the cement content is low (<2%), results in flocculation of
the soil particles and an increase in the contact surface between larger particles, thus increasing the
bonding and compression strength of the loess structure [20]. This result is consistent with the research
results of Cui et al. [52] and Liu et al. [33].

Figure 4: Cement improved effect on the compaction test results
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3.5 Shear Strength Parameters
The purpose of the direct shear test is to determine the values of the shear strength parameter. Fig. 6

shows the change in cohesion and internal friction angle of CSL after 7 days of curing time. The
variations of cohesion exhibited a continuously increasing trend with an increase in cement content. The
contribution of cement to cohesion and the internal friction angle is significant. As the cement percentage
increase from 0% to 8%, the cohesion of the CSL samples increase from the initial values (cement
content 0%) by 171.9%, 182.2%, 206.5%, and 223.4%, respectively. Meanwhile, an increase of about
78.6%, 86.6%, 97.1%, and 104.7% is obtained for the internal friction angle. It is because the hydration
reaction of the stabilizer, the hydration products increase, which makes the average particle diameter
increase, and the contact area between the particles increases, and then the cohesion increases [53].
Meanwhile, as the pozzolanic reaction proceeds of CSL samples further, gels material is generated which
adheres to the surface of the particles, thus changing the surface roughness and arrangement of the
particles, which increases the internal friction angle between the particles [54]. As the cement content
increases, the rate of increase in cohesion and internal friction angle decreases. The most significant
increase in cohesion and internal friction angle occurs when the cement content increases from 0% to 2%.
When the cement content is greater than 2%, the growth rate gradually slows down, and the results
correspond to the UCS. Interestingly, these findings do not only apply to loess, Ghadakpour et al. [22]
tested the shear strength parameters of clay and loess with the addition of cement and both discovered
this result.

Figure 5: (a) Variation of UCS with cement content; (b) Fitting curve of UCS

Table 3: The fitting equation for UCS to cement content

Curing time/day Fitting equation R2

7 qu = 1101.5 − 865.1 × 0.66c 0.986

14 qu = 1356.4 − 1118.8 × 0.90c 0.988

28 qu = 2554.9 − 2319.3 × 0.84c 0.997
Note: qu is USC; c is the cement content.
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3.6 Microstructure of CSL Samples

3.6.1 Morphological of CSL Samples
The fabric resulting from compacted loess (cement content 0%) and CSL samples (cement content 8%

and curing time 28 days) are investigated with SEM observations, which exhibit differential aggregations of
loess particles (Fig. 7). Fig. 7a illustrates the morphology of the compacted loess surface. Close examination
of the images in Fig. 7a reveals that clay and silt particles are often correlated together to form aggregates
[55]. Moreover, the arrangement between the structures is relatively loose with obvious inter-aggregate
pores. Fig. 7b shows the surface morphology of the CSL sample. Fig. 7c is a magnified view of the box
in Fig. 7b. Compared to compacted loess, the surface of the CSL sample is more irregular than
compacted loess [33]. And due to the addition of cement, physical and chemical reactions with the loess
produced C-S-H gel and ettringites. Ettringites crosslink to form a framework and C-S-H gels form a
network to wrap the loess particles and other materials [56]. Both hydration products enhance the
strength of the loess samples.

3.6.2 Pore Size Distribution
Fig. 8 provides an insight into the area variation of the different pore types. Compared to compacted

loess, the pore area of CSL samples is significantly reduced. According to the literature [57,58], the pores
in all loess samples were classified into four different grades based on the diameters, with micropores
ranging from 0 to 2 μm, small pores from 2 to 8 μm, mesopores from 8 to 32 μm and macropores greater
than 32 μm. Table 4 demonstrates the proportion of the number of different pore sizes to the total number
of pore sizes for the compacted loess and CSL sample. In both compacted loess and CSL samples, small
pores and mesopores make up the major component of the number of total pores, accounting for
approximately 90%, and this is similar to the results for Liu et al. [33]. After the addition of cement, the
proportion of micro and small pores in the sample increases, and the proportion of mesopores and
macropores decreases. At the same time, the average pore diameter and average pore area decrease from
12.44 and 229.04 to 8.72 and 84.68 μm2, a reduction of 29.9% and 63.0%, respectively. It shows the
physicochemical reactions will occur after adding cement, and the loess structure will be changed.

Figure 6: Relationship between shear strength parameters and cement content
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Figure 7: SEM images of compacted loess and CSL samples (a: compacted loess; b: CSL sample;
c: magnified view of box in b)

Figure 8: Pore size distribution (a: compacted loess; b: CSL sample)

Table 4: The proportion of total area occupied by different pore sizes

Sample ≤2 μm (%) 2–8 μm (%) 8–32 μm (%) ≥32 μm (%) Average pore
size (μm)

Average pore
area (μm2)

Compacted loess 5.79 48.30 37.23 7.34 12.44 229.04

CSL sample 7.34 57.07 34.24 1.36 8.72 84.68
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3.6.3 Pore Shape Distribution
The pore shape distribution in the compacted loess and CSL samples is illustrated in Fig. 9. The pore

shape of both the compacted loess and CSL samples is taken to a maximum in the range of 0.4 to 0.6.
When the short diameter to long diameter ratio is less than 0.6, the ratio of compacted loess pores is
smaller than that of the CSL samples, while the short diameter to long diameter ratio is larger than 0.6,
the result is the opposite. Therefore, the addition of cement tends to flatten the pores, thus enhancing
the structural strength of the loess. The short diameter to long diameter ratio of cement loess was also
tested by Sun et al. [32], and provided similar results to this study. However, these results do not
suitable for all stabilizers, as Wang et al. [59] and Liu et al. [60] analyzed the pore shape factors for
lignin and microbial stabilized loess respectively, and found that the variation in pore shape was not
consistent with this study.

3.6.4 Pore Angle Distribution
The pore angle distribution, an indicator to characterize the orientation of the pores, is introduced into

this study to evaluate the orientation microstructure of the loess [39,61]. It is the angle between the long axis
of the pore in the plane and the x-axis, and by the magnitude of the angle, it reflects the ordering of the pores
in space [62,63]. As can be seen from Fig. 10, the angle distribution of pores is relatively average for both the
compacted loess and CSL sample, with no significant sudden changes. When pore angles between 20° and
40°, the compacted loess is significantly higher than the CSL samples, while at pore angles of 140° to 160°
the proportion of CSL samples is greater than that of the compacted loess. The distribution of the other pore
angles in the compacted loess and CSL samples is essentially the same in proportion. Therefore, the pore
angle is not significantly changed by the addition of cement. This result is consistent with the research
results of Yi et al. [41].

Figure 9: Pore shape distribution
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3.7 Mechanism of Cement Stabilization
Cement is a water-hardened inorganic cementitious material that hardens in air or water. The formation

of the CSL samples is mainly due to the cementation of the calcium and aluminum hydrates with each other,
which lowers the liquid limit and changes the soil structure, increasing the shear strength. CSL samples have
both physical and chemical reactions in the formation process, the main effects include ion exchange,
pozzolanic reaction, carbonation, cementation, and crystallization. It can be expressed by the following
chemical reaction equation [64,65]:

CaSiO2 þ H2O ! CaOSiO2 � yH2Oþ CaðOHÞ2 (2)

CO2 þ H2O ! H2CO3 (3)

CaðOHÞ2 þ H2CO3 ! CaCO3 þ H2O (4)

CaSiO3 þ H2CO3 ! CaCO3 þ SiO2 þ H2O (5)

After cement and loess are mixed uniformly and deionized water is added, physicochemical reactions
such as ion exchange, pozzolanic reaction, and carbonization and crystallization will take place in CSL
samples. The ion exchange decreases the electric potential in the double electric layer, thins the diffusion
layer, and increases the van der Waals forces between the soil particles. The pozzolanic reaction will
produce gel substances, and the carbonization of cement will convert to calcium carbonate [66]. The
crystallization reaction is the change of Ca(OH)2 from an amorphous state to a crystalline state. During
the structure formation of CSL samples, the Ca2+ and OH− are ionized from cement after hydration
reaction. The hydration of cement is a thermodynamic reaction and provides an alkaline environment for
the formation of the CSL sample structure, accompanied by the generation of heat of hydration, which
facilitates the reaction [54]. Ca2+ reacts with active SiO2 and Al2O3 in the CSL sample in pozzolanic
reaction to form ettringite and C-S-H gels (Fig. 7c) [67]. They have a connecting effect of loess structure
and will fill the pores between the particles, a result that has been verified in Section 3.6.2. This is due to
the presence of large amounts of Ca(OH)2 and Ca2+ and OH− in the gel substances, and exchange with
the metal ions adsorbed on the surface of the loess particles, causing the loess particles to form larger
aggregates, which combine to form a chain-like structure of CSL sample particles, thus reducing the
volume of inter-aggregates pores and making loess structure denser, thus increasing the strength. As the
hydration reaction continues, Ca(OH)2 gradually increases and reacts with the CO2 in the air to produce
CaCO3, which enhances the cementation strength between the loess structures. With the cementation
strength increasing, a traction is generated on the aggregates, which not only causes a change in the

Figure 10: Pore angle distribution
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length of the long diameter but also in the short diameter to long diameter ratio of the pore. The results of
Section 3.6.3 reveal that with the addition of cement the short diameter to long diameter ratio of pores
increases in the range 0–0.4 and decrease in the range 0.6–1.0, so demonstrating that the generation of
traction tends to flatten off the pore shape. This also has an enhancing effect on the strength of the loess
structure, as the loess is mainly affected by the pores that have larger values of the short diameter to long
diameter ratio during the process of compression [33]. The pozzolanic reaction of cement produces
ettringite and C-S-H gels, which have an enhancing effect on the strength of the loess structure and cause
traction between the particles to change the size and shape of the pores, working together with Ca(OH)2
to build the framework for CSL samples [59]. A description of the physicochemical reactions that occur
in the loess after the addition of cement using PowerPoint software is shown in Fig. 11.

4 Conclusions

In this study, the main physical and mechanical properties of CSL samples with different cement content
were investigated, and the change reasons were explored by the mean SEM test. The conclusions were
summarized as follows:

1. With the addition of cement, the main physical properties of the CSL samples were changed. The
specific gravity and optimum water content increased and the liquid limit and maximum dry
density decreased. However, the plastic limit showed an increase followed by a decrease, and the
plasticity index decreased followed by an increase. The reasons for the changes are all related to
the physicochemical reactions between the cement and the loess particles.

2. The UCS and shear strengths of the CSL samples increased with increasing cement content. For the
same curing time, the USC and cement content was better fitted using the Asymptotic model. The
UCS and shear strength parameters grew faster when the cement content was less than 2%,
however, the growth rate decreased when the cement content was larger than 2%. Therefore, a
cement content of 2% was a great choice for the construction process provided that the
construction requirements were satisfied.

3. The results of SEM showed that the structure of the CSL samples was denser and had no obvious
inter-aggregate pores. Meanwhile, compared to compacted loess, produced C-S-H gel and ettringite.

Figure 11: A schematic diagram of the formation of the CSL sample structure
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4. IPP software was used for quantitative analysis to compacted loess and CSL samples pores.
Compared to compacted loess, the CSL sample showed an increase in the proportion of micro
and small pores and a decrease in the proportion of mesopores and macropores. The pore shape
had a tendency to flatten, but there was basically no effect on the pore angle distribution.

5. In the process of structure formation of CSL samples, the pozzolanic reaction of the cement produces
ettringite and C-S-H gels, which had an enhancing effect on the structural strength of the loess, and
the traction between the particles changed the size and shape of the pores, which together with Ca
(OH)2 built the framework of the CSL sample.
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