
Progression of Exosome-Mediated Chemotherapy Resistance in Cancer

Haojie Zhang1, Xiaohong Wang2,*, Yue Yu2 and Zhenlin Yang3,*

1Binzhou Medical University, Yantai, 264003, China
2Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, 256603, China
3Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, 256603, China
*Corresponding Authors: Xiaohong Wang. Email: wangxiaohong0607@126.com; Zhenlin Yang. Email: ikb0607@163.com

Received: 22 December 2021 Accepted: 12 April 2022

ABSTRACT

Chemotherapy plays an important role in controlling cancer progression, but the long-term use of chemothera-
peutic agents can lead to drug resistance and eventually treatment failure. Therefore, elucidation of the mechan-
ism of drug resistance is the key to solve the problem of chemotherapy resistance. In recent years, exosomes
derived from tumor cells have received extensive attention from researchers. In this paper, we reviewed the role
and mechanism of exosome-mediated tumor drug resistance in recent years, summarized the related studies of
exosome and chemotherapy drug resistance, and focused on several different ways by which exosomes participate
in tumor drug resistance. It includes the transporters of non-coding RNAs (ncRNAs), active proteins, stromal
cell-derived exosomes and exosomes that directly mediate the efflux of drug molecules. Our review suggests that
exosomes can play a role in the treatment of tumor drug resistance by inhibiting the secretion of exosomes, pro-
viding a new idea for the prevention and treatment of tumor chemotherapy drug resistance.
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1 Introduction

Chemotherapy is one of the main treatments for controlling tumor progression [1–3]. However, the long-
term application of chemotherapeutic agents usually results in chemotherapy drug resistance of tumor cells,
and eventually treatment failure and disease progression [4–6]. Therefore, elucidating the mechanisms of
action for chemotherapy drug resistance is essential for effective cancer prevention, evaluation, or
reversal of resistance to chemotherapy. Tumor cell-derived exosomes (TDEs) have been shown to play a
role as cargo carriers which mediate the transfer of chemoresistance information between cells.

Extracellular vehicles (EVs) usually refer to vesicles with a lipid bilayer membrane structure that are
secreted by cells or shed from the cell membrane. EVs can be classified into exosomes, microvesicles,
and apoptotic bodies according to their biogenesis, size, markers and contents. The diameter of exosomes
(40–100 nm) is smaller compared to microvesicles (100–1000 nm) and apoptotic bodies (1–4 μm) [7,8].
Exosomes were first discovered by researchers during the transition from reticulocytes to mature red
blood cells [9]. At early stage, exosomes were referred to as “garbage bags” to remove unwanted proteins
from the body. Various cell types including lymphocytes, epithelial cells, immune cells, mesenchymal
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stem cells, nerve cells, and tumor cells can secrete exosomes. Exosomes can be found in body fluids (e.g.,
blood, saliva, and urine) and enter the circulatory system to reach distant sites, thereby producing remote
control effects [10–13]. When exosomes are observed under a transmission electron microscope, they
usually appear as “dish-shaped” or “cup-shaped” vesicles with a lipid bimolecular membrane structure
[14]. There are a variety of specific proteins on the surface, such as transmembrane proteins CD9, CD63,
CD81, CD82, fusion proteins (Flotillin, annexin), and heat shock proteins (Hsc70). Among these
proteins, the four transmembrane proteins have been recognized as markers of exosomes to distinguish it
from other vesicles [15,16]. Genetic cargo, protein and non-coding RNAs (ncRNAs), carried by
exosomes have important biological significance in the development and progression of tumors and drug
resistance [17–20].

Exosomes originate from the endolysosomal system which forms early endosomes during endocytosis.
Exosomes are formed by cell membrane invagination to form endosomes, then form multivesicular bodies,
and finally exosomes are formed in cell multivesicular bodies and are released into the extracellular
environment through fusion with cell membranes [21]. Functional molecules such as DNA, ncRNA,
mRNA, and protein enter into early endosomes and develop into late endosomes that are rich in
intracavity vesicles, namely extracellular vesicles [22–28]. These small spherical vesicles between
40–100 nm in diameter are secreted by various cells types and carry a variety of biologically active small
molecules to participate in cell-cell information transmission and the regulation of a variety of malignant
biological behaviors of tumor cells in tumor chemotherapy resistance, invasion and metastasis, and
immune escape [29–35]. Tumor-derived exosomes (TDE) can enhance or induce drug resistance in
sensitive cells through the delivery of ncRNA, proteins, and other biological molecules [29,36–42]. When
this transport system is activated, the internal chemotherapeutic drug molecules and their metabolites can
be transported to the endosome by MDR-ABC. The endosome further aggregates to form MVBs. MVBs
fuse with the cell membrane and release exosomes. The drug will be excreted from the intracellular to the
extracellular, causing tumor cells to develop drug resistance [43–46]. This article reviews the role and
mechanism of tumor resistance mediated by exosomes, and aims to provide new ideas for the prevention
and treatment of tumor chemotherapy resistance.

2 Tumor Drug Resistance Mediated by Exosomes

2.1 Exosomes Participate in the Regulation of Tumor Microenvironment
The tumor microenvironment (TME) is the local pathological environment where tumor occur, develop

and metastasize. The TME is mainly composed of tumor cells, immune cells, endothelial cells, fibroblasts,
inflammatory cells and extracellular matrix [18,19]. Exosomes mainly participate in the material
transportation and information exchange between tumor and non-tumor cells through three ways: 1)
Phagocytosis of target cells and receptor-mediated endocytosis. 2) Antigen presentation and receptor-
ligand interaction. 3) Direct membrane fusion with target cell. A large number of studies have shown that
as a mediator of intercellular communication, exosomes shuttle within the TME and are absorbed by
surrounding cancer cells or stromal cells, and can transmit information by releasing their contents to
cause tumor cell proliferation, invasion and metastasis, and chemotherapy drug resistance [47,48].

Signal transduction via soluble signaling molecules (cytokines, growth factors, or hormones) by all
multicellular organisms occurs through membrane adhesion molecules, gap junctions and nanotubes to
maintain necessary homeostasis conditions. Exosomes can change the tumor phenotype through signal
transduction between tumor cells or tumor-related stromal cells. TDEs carry a variety of stimulating and
inhibiting biomolecules (mRNA, ncRNA, protein) to provide a signaling network for the tumor
microenvironment in vivo and in vitro. These biomolecules regulate cell signaling pathways and influence
biological functions [20]. For example, the Ca2+ influx induced by TDEs play an important role in the
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function of T-regs, and thus, the regulation of T-reg inhibitors by TDE are carried out through a cell signal-
dependent mechanism, without the need for recipient cells to internalize exosomes [49].

After 30 years of extensive research, it has been confirmed that transcription regulators can activate other
signaling pathways during cell development and progression, such as Notch, Hedgehog (HH) family secreted
proteins, Wingless/WNT, epidermal growth factor (EGF) and fibroblasts growth factor (FGF) [50].
Pikkarainen et al. [51] found that WNT signaling and Mac-2BP expression in HEK293 cells were
significantly up-regulated under the induction of exosomes. In addition, further studies showed that the
four domains of the Mac-2BP protein bind to the C-terminal domain of WNT. In vitro studies have
shown that after human mesenchymal stem cells (MSC) and breast cancer cells MCF-7 are co-cultured
with exosomes, the WNT signaling pathway in the cells is up-regulated [52]. Similarly, Lin et al. [53]
found that after co-cultivating THP-1 cells, exosomes activate cell signaling pathways by producing
IL-1β, TNF-α and IL-6, thereby suppressing the immune system and enhancing resistance to cancer
treatment.

2.2 Exosomes Participate in the Regulation of Tumor Local Immune Microenvironment
There are many immune cells in the local immune TME, such as T lymphocytes, B lymphocytes,

macrophages, dendritic cells, mast cells, natural killer cells, and neutrophils. Among them, in
tumorigenesis, invasion, metastasis and drug resistance of T lymphocytes and tumor-associated
macrophages (TAMs) play a very critical role. Exosomes play a very important role in anti-tumor
immunity and immune escape between tumor cells and immune cells, and the flow of information
[50,54,55]. Evasion of immune surveillance is a crucial step to gain metastatic outgrowth. Many findings
revealed that exosomes, using multiple mechanisms, can help cancer cells to exert immunomodulatory
activities [56]. Exosomes released by murine mammary carcinoma cells TS/A or 4T1 induced cancer
growth in a mouse model, inhibiting natural killer (NK) cell cytotoxic activity ex vivo and in vivo [57].
Recently, an elegant work of Dhouha and coworkers demonstrated that PDL1-expressing exosomes can
inhibit antitumour immune responses [58]. Cancer cells may exploit exosomes to confer transcriptome
reprogramming that leads to cancer-associated pathologies such as angiogenesis, immune evasion/
modulation, cell fate alteration and metastasis [59].

2.3 The Role and Mechanism of Exosomes in the Occurrence of Tumor Resistance
Researchers discovered that this non-spherical membrane structure of vesicles contains many

proteins, lipids, and nucleic acids from parental cells [60,61]. The database shows that more than
1,639 RNAs, 764 microRNA, 4,653 protein, and 194 lipid types can be detected in exosomes from
various eukaryotic cells. In the past few years, there has been new evidence that exosomes are
involved in the occurrence and development of tumors through the transfer of nucleic acids and
proteins between cells [62]. And a line of evidence suggested that the content of exosomes released
from tumor cells in biological samples may be associated with the clinical outcomes of cancer
patients [63].

Exosomes mediate cell-to-cell communication by transferring mRNAs, miRNAs, DNAs and proteins
causing extrinsic therapy resistance. Exosomes mediate cell-to-cell communication by transferring
mRNAs, miRNAs, DNAs and proteins causing extrinsic therapy resistance. They transfer therapy
resistance by anti-apoptotic signaling, increased DNA-repair or delivering ABC transporters to drug
sensitive cells, see Fig. 1 below.
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2.3.1 Exosomes Derived from Tumor Cells Participate in Drug Resistance by Transporting ncRNAs
The heterogeneity of tumor cells themself lead to differences of sensitivity of chemotherapy drugs

According to this trait, tumor cells can be divided into drug-resistant cells and sensitive cells [64]. For
example, exosomes secreted by drug-resistant tumor cells can release proteins and ncRNA (miRNA,
lnc RNA) to sensitive cells, thereby acquiring drug resistance [2,65–68].

Non-coding RNA (ncRNA) is a type of small RNA that that does not encode protein. However, they are
involved in the process of protein translation. ncRNA can be divided into short-chain (<200 nucleotides)
non-coding RNA (sncRNA) such as tRNA and miRNA and long-non-coding RNA (lncRNA > 200
nucleotides) [69]. A large number of studies have shown that ncRNA plays an important role in the
chemotherapy resistance of tumors, especially miRNA and lncRNA [70,71].

Liu et al. [72] confirmed that exosomes can target PDCD4 and PTEN in oral squamous cell carcinoma
(OSCC) by releasing miR-21 to deliver cisplatin resistance. By using a nude mouse subcutaneous
Xenotransplantation model, they injected cisplatin and exosomes derived from oral squamous carcinoma
cisplatin-resistant cells HSC-3-R and parental OSCC cells HSC-3 into mice. The exosomes derived from
HSC-3-R cell exosomes promoted tumor growth and enhance the resistance of cisplatin [72].
Accumulating studies have found that exosomes can transfer a variety of miRNAs to make cancer
sensitive cells resistant to a variety of drugs in many cancers (Table 1).

Figure 1: The role of exosomes in drug resistance of tumor

Table 1: Exosomes derived from tumor cells participate in drug resistance by transporting ncRNAs

Exosomal markers Tumor Drug resistance References

miR-21 Oral squamous carcinoma
cisplatin-resistant cells

Enhance cisplatin resistance [72]

miR-155
miR-17, miR-30,
miR-100, miR-222

Pancreatic ductal cancer
Breast cancer sensitive

Reduce gemcitabine resistance
Enhance the resistance of
docetaxel and adriamycin

[73]
[74]

miR-433 Ovarian cancer Promote paclitaxel resistance [75]

lncARSR Renal cell carcinoma Relieve resistant to sunitinib [76]

lncRNA PART1 Esophageal squamous cell
carcinoma

Enhance gefitinib resistance [77]

(Continued)
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In addition, lncRNA also plays an important role in tumor resistance. In advanced renal cell carcinoma
(renal cell carcinoma, RCC), Wang et al. [76] found that exosomes derived from drug-resistant cells can
impart sunitinib resistance to sensitive cells by delivering lncARSR, and its mechanism is competitively
inhibited with lncARSR. After miR-34/miR-449 promoted the expression of c-Met and AXL, the
AXL/c-MET inhibitors or targeted lncARSR treatment of sunitinib-resistant RCC can effectively relieve
RCC tumor cells are resistant to sunitinib [76]. LncRNAs are involved in chemotherapy resistance and
transfers its resistance to recipient cells in various cancers, including renal cell carcinoma, bladder cancer,
breast cancer (Table 1).

2.3.2 Exosomes Derived from Tumor Cells Participate in Drug Resistance by Transporting Active Proteins
TDEs can transfer proteins to recipient cells, so that tumor-sensitive cells can acquire drug resistance.

Researchers in a colon cancer study found that after co-cultivating exosomes secreted by the
drug-resistant cell line RKO and colon cancer sensitive cell line Coca-2, the drug resistance of Coca-2
increased. Further research found that the mechanism may be due to exosomes derived from the
drug-resistant cell line RKO can down-regulate PTEN proteins and increase the level of phosphorylated
Akt, thereby inducing Cetuzumab resistance in Coca-2 cells [85]. Lv et al. [86] found that compared with
breast cancer sensitive cells MCF-7/S, breast cancer drug-resistant cell lines MCF-7/DOC derived
exosomes contain high levels of P-glycoprotein (P-gp). Exosomes derived from these drug-resistant cells
MCF-7/DOC can transmit docetaxel resistance to sensitive cells MCF-7/S by delivering P-gp. Ning et al.
[87] found that breast cancer drug-resistant cells highly express UCH-L1 protein and release these
proteins into the TME through exosomes, thereby transferring chemotherapy resistance to recipient cells.
Subsequently, researchers further confirmed that the mechanism of its transmission of drug resistance may
be that the highly expressed UCH-L1 activates the MAPK/ERK signaling pathway to up-regulate the
expression of P-gp, thereby enhancing breast cancer drug resistance [88].

2.3.3 Exosomes Derived from Stromal Cells Participate in Drug Resistance
Not only can tumor cells exchange information through exosomes, but exosomes released by stromal

cells can also mediate drug resistance in tumor cells by delivering drug-resistant active molecules. Studies
have found that in pancreatic ductal adenocarcinoma (PDAC), the sensitivity of exosome-release-deficient
mice to gemcitabine is significantly higher than that of wild-type mice. In addition, it was confirmed that
macrophage-derived exosomes (MDE) can induce PDAC mice to be resistant to gemcitabine by
transporting miR-365 [42]. Lobb et al. [89] have shown that exosomes derived from mesenchymal and
oncogene-transformed lung cells can transport ZEB1 mRNA to tumor recipient cells, thereby transporting
chemoresistance and mesenchymal phenotypes to tumor cells. Exosomes secreted by TAMs can deliver
cell signaling molecule miR-21 to gastric cancer tumor cells, thereby enhancing the resistance of gastric
cancer to cisplatin. In addition, miR-21 inhibits cell apoptosis and promotes the activation of PI3 K/AKT

Table 1 (continued)

Exosomal markers Tumor Drug resistance References

Lnc-VLDLR Hepatocellular carcinoma Relieve resistant to sorafenib [78,79]

lncRNA ROR Hepatocellular carcinoma Reduce sorafenib or adriamycin
resistance

[80]

lncRNA RP11838N2.4 Non-small cell lung cancer Promote erlotinib resistance [81]

lncRNA UCA1 Bladder cancer Enhance cisplatin resistance [82]

lncRNA UCA1 Bladder cancer Promote tamoxifen resistance [83]

lncRNA AX747207 Bladder cancer Promote tamoxifen resistance [84]
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signaling pathway by down-regulating PTEN in gastric cancer [90]. Ji et al. [37,91] found that exosomes rich
in human mesenchymal stem cells (MSC) can activate calcium/calmodulin-dependent protein kinase
(CaMK) and Raf/MEK/ERK pathways, thereby antagonizing 5-fluorouracil-induced tumor cells apoptosis
and further enhance the multi-drug resistance (MDR) protein in tumor cells, thereby promoting resistance
of gastric cancer cells to 5-fluorouracil. Chi et al. [92] found that the expression level of miR-21 in
exosomes derived from cancer-associated adipocytes (CAAs) and fibroblasts (CAFs) was higher than that
in exosomes derived from ovarian cancer cells. In-depth studies have shown that miR-21 can transfer
from CAAs or CAFs to ovarian cancer cells, thereby inhibiting the apoptosis of ovarian cancer cells and
directly binding to its target molecule APAF1 to trigger drug resistance. The above data indicate in the
microenvironment of omental tumors, exosomes released from adjacent stromal cells of the tumor can
change the malignant biological behavior of metastatic ovarian cancer cells by transporting and inhibiting
miR-21 in exosomes. Metastasis is another new way to treat highly metastatic and highly recurring
ovarian cancer. Researchers from Wang et al. [93] found that the antagonism of PGE2/EP4 can induce
exosome-mediated clearance of tumor stem cells, and this effect can weaken the resistance of MSCs to
tumor chemotherapy drugs and enhance the sensitivity of tumor chemotherapy.

2.3.4 Exosomes Directly Mediate the Efflux of Drug Molecules
Exosomes encapsulate anti-cancer drugs in tumor cells and mediate the efflux of drug molecules,

thereby reducing the treatment of anti-tumor drugs. Shedden et al. [94] tracked the anti-tumor drug
doxorubicin via fluorescent pulse tracking and found that tumor cells can shed the drug by shedding
vesicles (exosomes). At the same time, studies have found that many transporters such as multidrug
resistance related protein 1 (MRP-1), P-gp, and ATP transport protein (ABCA3), breast cancer resistance
protein (BCRP) and other proteins, this type of protein has the same transmembrane domain, also known
as MDR-ABC transporter protein.

3 The Role of Exosomes in the Treatment of Tumor Resistance

Exosomes play an important role in the treatment of tumor resistance. Exosomes derived from tumor
cells and stromal cells can transmit drug resistance, which reduces the efficacy of chemotherapy.
Therefore, the drug resistance of tumor cells can be reversed by inhibiting the secretion of exosomes or
using nanoparticles to deliver anti-miRNA and changing the composition of exosomes to improve the
therapeutic effect. Studies have shown that rapamycin and U18666A can inhibit the release of exosomes
by interfering with the synthesis of MVBs and the participation of cholesterol in the formation of cell
membranes, respectively, thereby increasing the sensitivity of B lymphoma to rituximab [95]. At the same
time, there are reports that exosomes can act as nanoparticles to encapsulate miRNA-214 and deliver it to
cisplatin-resistant gastric cancer cells to reverse the resistance of gastric cancer to cisplatin [96]. Some
researchers have also found that β-elemeneact on the target genes of drug-resistant breast cancer cell
lines, thereby affecting the content of related drug-resistant miRNAs rich in exosomes, and thereby
reducing the amount of external drug resistance transmission efficiency [97]. In addition, it has been
reported that exosomal miR-567 is associated with inhibition of autophagy related 5 (ATG5) protein and
reversal of resistance to trastuzumab in breast cancer [98]. Recently, a drug nanocarrier for targeted
chemotherapy of liver cancer has been developed [99]. This novel strategy utilized homotypic
HepG2 cell membrane as cloak and polylactic acid glycolic acid (PLGA) nanoparticles as core to prepare
nano-carrier hepm PLGA, which is then to be used as carrier of doxorubicin. Their study has shown high
release efficiency and significant therapeutic effect in vivo and in vitro for this strategy, highlighting the
the promising role of this strategy for drug-resistant HCC. In 2021, it has been reported that iRGD-
modified (iRGD: a 9-amino acid cyclic peptide) exosomes with siCPT1A, which is a key enzyme in the
process of fatty acid oxidation (FAO), could specifically transport siCPT1A into colorectal cancer cells to
suppress FAO. Given the crucial role of FAO in drug resistance of colorectal cancer cells, iRGD-modified
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exosomes can significantly suppress the expression of CPT1A in colorectal cancer cells and therefore
reversed the resistance to oxaliplatin resistance by inhibiting FAO [100]. Moreover, Lima et al. [101]
have suggested that accumulation of CCL2-modified exosomes will lead to the change in the immune
environment of affected organs, thereby mediating the chemoresistance the chancer cells. Based on these
above results, it is reasonable to believe application of exosomes can be considered as a novel strategy to
overcome chemoresistance in cancer cells.

4 Prospects and Challenges

Exosomes are a communication tool for transporting substances and transmitting information between
cells, and they play an important role in the progression of TME. Exosomes and their contents (miRNAs,
lncRNAs, and proteins) are closely related to the occurrence of tumor resistance. They activate signal
pathways in cells by fusion with target cells, antigen presentation, and receptor-ligand interactions.
However, the physiological and pathological roles of exosomes in the TME need to be further explored.

The number and heterogeneity of exosomes in body fluids may be their shortcomings as biomarkers, that
may lead to false negatives or positives in tumor diagnosis. To overcome these obstacles, the precise
regulatory mechanism of exosomes in tumor progression needed to be well understood in assisting with
cancer diagnosis and cancer prognosis. It is expected that in the near future, exosomes can be used as
liquid biopsy and non-invasive biomarkers for early detection of tumors. In addition, exosomes as drug
carriers to treat tumors will also become an effective treatment strategy. The review of exosomes-
mediated tumor chemotherapy resistance provides insight to reveal the molecular mechanism of tumor
resistance and motivation for the search for drug resistance markers and new treatment methods for tumors.
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