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ABSTRACT

In the paper, the authors collect, discuss, and find out several connections, equivalences, closed-form formulas,
and combinatorial identities concerning partial Bell polynomials, falling factorials, rising factorials, extended
binomial coefficients, and the Stirling numbers of the first and second kinds. These results are new, interesting,
important, useful, and applicable in combinatorial number theory.
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1 Preliminaries

In this paper, we use the notation

N= {1, 2, . . . }, N− = {−1,−2, . . . }, N0 = {0, 1, 2, . . . },
Z= {0,±1,±2, . . . }, R= (−∞,∞), C= {

x+ i y : x, y ∈R, i =√−1
}
.

The partial Bell polynomials, also known as the Bell polynomials of the second kind, in
combinatorics can be denoted and defined by

Bn,k(x1, x2, . . . , xn−k+1)=
∑

1≤i≤n−k+1,
�i∈{0}∪N,∑n−k+1
i=1 i�i=n,∑n−k+1
i=1 �i=k

n!∏n−k+1
i=1 �i!

n−k+1∏
i=1

(
xi

i!

)�i

(1)
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for n ≥ k ∈N0. See Theorem A on page 134 in [1]. The partial Bell polynomials satisfy the identity

Bn,k
(
abx1, ab2x2, . . . , abn−k+1xn−k+1

)= akbn Bn,k(x1, x2, . . . , xn−k+1) (2)

for n ≥ k ∈N0. See page 135 in [1].

The double factorial of negative odd integers −(2k+ 1) is defined by

(−2k− 1)! != (−1)k

(2k− 1)! !
= (−1)k 2kk!

(2k)!
, k ∈N0.

The falling factorial 〈z〉n and the rising factorial (z)n for n ∈N0 and z ∈C can be defined by

〈z〉n =
n−1∏
k=0

(z− k)=
{

z(z− 1) · · · (z− n+ 1), n ∈N

1, n = 0
(3)

and

(z)n =
n−1∏
�=0

(z+ �)=
{

z(z+ 1) · · · (z+ n− 1), n ∈N

1, n = 0

respectively. It is easy to verify that

(−z)n = (−1)n〈z〉n (4)

and

〈−z〉n = (−1)n(z)n. (5)

See page 167 in [2] and related texts in the paper [3].

The Stirling numbers of the first kind s(n, k) for n ≥ k ∈N0 can be analytically generated (see
page 51 in [1]) by

[ln(1+ x)]k

k!
=

∞∑
n=k

s(n, k)
xn

n!
, |x|< 1

and can be explicitly computed (see Corollary 2.3 in [4]) by

|s(n+ 1, k+ 1)| = n!
n∑

�1=k

1
�1

�1−1∑
�2=k−1

1
�2

· · ·
�k−2−1∑
�k−1=2

1
�k−1

�k−1−1∑
�k=1

1
�k

for n ≥ k ∈ N. The Stirling numbers of the second kind S(n, k) for n ≥ k ∈ N0 can be analytically
generated (see page 51 in [1]) by

(ex −1)k

k!
=

∞∑
n=k

S(n, k)
xn

n!

and can be explicitly computed (see Theorem A on page 204 in [1]) by

S(n, k)=
{

(−1)k

k!

∑k
�=0(−1)�

(k
�

)
�n, n > k ∈N0;

1, n = k ∈N0.
(6)
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For more information on the Stirling numbers of the first and second kinds s(n, k) and S(n, k),
please refer to the papers [5,6] and the monographs [7,8].

The extended binomial coefficient
(z

w

)
for z, w ∈C is defined in [9] by

(
z
w

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(z+1)
�(w+1)�(z−w+1)

, z 
∈N−, w, z−w 
∈N−
0, z 
∈N−, w ∈N− or z−w ∈N−
〈z〉w
w! , z ∈N−, w ∈N0
〈z〉z−w
(z−w)! , z, w ∈N−, z−w ∈N0

0, z, w ∈N−, z−w ∈N−
∞, z ∈N−, w 
∈Z

in terms of the falling factorial 〈z〉w, which is defined by (3), and the classical Euler’s gamma
function �(z), which can be defined (see Chapter 3 in [10]) by

�(z)= lim
n→∞

n! nz∏n
k=0(z+ k)

, z ∈C \ {0,−1,−2, . . . }.

On page 206 in [1] and on page 165 in [7], there are two relations

〈z〉n =
n∑

�=0

s(n,�)z�, z ∈C, n ∈N0 (7)

and

n!
(

z
n

)
=

n∑
�=0

s(n,�)z�, n ∈N0, z ∈C. (8)

The falling factorial 〈z〉n and the rising factorial (z)n can be represented by

〈z〉n = n!
(

z
n

)
= �(z+ 1)

�(z− n+ 1)
and (z)n = (−1)nn!

(−z
n

)
= �(z+ n)

�(z)

for z ∈C and n ∈N0.

In this paper, we will collect, discuss, and find out several connections, equivalences, closed-
form formulas, and combinatorial identities concerning partial Bell polynomials Bn,k, falling
factorials 〈z〉n, rising factorials (z)n, extended binomial coefficients

(z
w

)
, and the Stirling numbers

of the first and second kinds s(n, k) and S(n, k).

2 Equivalences

Among the Stirling numbers of the first and second kinds s(n, k) and S(n, k), the falling fac-
torial 〈α�〉n, and extended binomial coefficient

(
α�
n

)
, there are the following beautiful equivalences.

Theorem 2.1. For n ≥ k ∈N0 and α ∈C, we have

n∑
�=k

s(n,�)α�S(�, k)= (−1)k

k!

k∑
�=0

(−1)�
(

k
�

)
〈α�〉n (9)
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and

n∑
�=k

s(n,�)α�S(�, k)= (−1)k n!
k!

k∑
�=0

(−1)�
(

k
�

)(
α�

n

)
. (10)

Proof. In Remark 3.1 of [11], the formula

Bn,k

(
1, 1− λ, (1− λ)(1− 2λ), . . . ,

n−k∏
�=0

(1− �λ)

)
= (−1)k

k!

k∑
�=0

(−1)�
(

k
�

) n−1∏
q=0

(�− qλ) (11)

for n ≥ k ∈N0 and λ ∈C was concluded. An equivalence of the formula (11) is

Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1)=
(−1)k

k!

k∑
�=0

(−1)�
(

k
�

)
〈α�〉n (12)

for n ≥ k ∈N0 and α ∈C, which was proved in Theorems 2.1 and 4.1 of [2].

The formulas (11) and (12) can be rewritten respectively as

Bn,k

(
1, 1− λ, (1− λ)(1− 2λ), . . . ,

n−k∏
�=0

(1− �λ)

)
=

{
(−1)k λnn!

k!

∑k
�=0(−1)�

(k
�

)(
�/λ
n

)
, λ 
= 0

S(n, k), λ= 0

and

Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1)= (−1)k n!
k!

k∑
�=0

(−1)�
(

k
�

)(
α�

n

)
(13)

for n ≥ k ∈N0 and α,λ ∈C, as done in Remark 7 of [12].

Considering the formulas (6), (7), and (8) in the formulas (12) or (13), we can derive

Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1)=
n∑

j=k

s(n, j)αjS(j, k) (14)

for n ≥ k ∈N0 and α ∈C.

Combining (12), (13), and (14) results in

Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1)=
(−1)k

k!

k∑
�=0

(−1)�
(

k
�

)
〈α�〉n

= (−1)k n!
k!

k∑
�=0

(−1)�
(

k
�

)(
α�

n

)

=
n∑

�=k

s(n,�)α�S(�, k)

(15)
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for n ≥ k ∈ N0 and α ∈ C. The equivalences in (9) and (10) are thus proved. The proof of
Theorem 2.1 is complete.

3 Simpler Closed-Form Formulas

When taking α =±1,±2, 1
2 in (9) and (10) respectively, we can derive several simpler closed-

form combinatorial identities.

Theorem 3.1. For n ≥ k ∈N0, we have

n∑
j=k

s(n, j)1jS(j, k)=
(

0
n− k

)
, (16)

n∑
j=k

s(n, j)2jS(j, k)= n!
k!

(
k

n− k

)
22k−n, (17)

n∑
j=k

s(n, j)
(

1
2

)j

S(j, k)= (−1)n+k [2(n− k)− 1]! !
2n

(
2n− k− 1
2(n− k)

)
, (18)

n∑
j=k

s(n, j)(−1)jS(j, k)= (−1)n n!
k!

(
n− 1
k− 1

)
, (19)

and

n∑
j=k

s(n, j)(−2)jS(j, k)= (−1)n+k n!
k!

k∑
�=0

(−1)�
(

k
�

)(
n+ 2�− 1

n

)
. (20)

Proof. By the definition (1), we can easily deduce that, for n ≥ k ∈N0,

Bn,k(1, 0, . . . , 0)= Bn,k(〈1〉1, 〈1〉2, . . . , 〈1〉n−k+1)=
n∑

j=k

s(n, j)1jS(j, k)=
(

0
n− k

)
, (21)

where we used the relation (15). See also pages 167–168 in [2]. The identity (16), which recovers
the first one in (28) below, is thus proved.

In Theorem 5.1 of [13] and in Section 3 of [14], the formula

Bn,k(x, 1, 0, . . . , 0)= 1
2n−k

n!
k!

(
k

n− k

)
x2k−n (22)

was established for n ≥ k ∈ N0, where we assumed
(0

0

) = 1 and
(p

q

) = 0 for q > p ∈ N0. Making use

of the identity (2), we can derive from the formula (22) that

Bn,k(2, 2, 0, . . . , 0)= Bn,k(〈2〉1, 〈2〉2, . . . , 〈2〉n−k+1)=
n∑

j=k

s(n, j)2jS(j, k)= n!
k!

(
k

n− k

)
22k−n (23)

for n ≥ k ∈N0. The identity (17) is thus verified.
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In the proof of Theorem 3.2 in [2], it was obtained that

Bn,k

(〈
1
2

〉
1
,
〈

1
2

〉
2
, . . . ,

〈
1
2

〉
n−k+1

)
=

n∑
j=k

s(n, j)
(

1
2

)j

S(j, k)

= (−1)n+k [2(n− k)− 1]! !
2n

(
2n− k− 1
2(n− k)

) (24)

for n ≥ k ∈N0. The identity (18) is thus proved.

Replacing α by −α in (14) and utilizing (5) give

Bn,k((α)1, (α)2, . . . , (α)n−k+1)= (−1)n
n∑

j=k

s(n, j)(−α)jS(j, k) (25)

for n ≥ k ∈N0 and α ∈C. Taking α =−1
2 in the formula (25) and making use of the identity

Bn,k((−1)! ! , 1! ! , 3! ! , . . . , [2(n− k)− 1]! ! )= [2(n− k)− 1]! !
(

2n− k− 1
2(n− k)

)

in Section 1.5 of [15] and in Theorem 1.2 of [16], we derive

Bn,k

((
−1

2

)
1
,
(
−1

2

)
2
, . . . ,

(
−1

2

)
n−k+1

)
= (−1)k

2n Bn,k((−1)! ! , 1! ! , 3! ! , . . . , [2(n− k)− 1]! ! )

= (−1)n
n∑

j=k

s(n, j)
(

1
2

)j

S(j, k)

= (−1)k

2n [2(n− k)− 1]! !
(

2n− k− 1
2(n− k)

)

for n ≥ k ∈N0. The identity (18) is proved again.

Employing the relation (25) and using the identities

Bn,k(1! , 2! , 3! , . . . , (n− k+ 1)! )= n!
k!

(
n− 1
k− 1

)

and

Bn,k(2! , 3! , . . . , (n− k+ 2)! )= n!
k!

k∑
�=0

(−1)k−�

(
k
�

)(
n+ 2�− 1

n

)
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in Sections 1.3 and 1.9 of [15] and in Lemma 6 of [17], we acquire

Bn,k((1)1, (1)2, . . . , (1)n−k+1)= Bn,k(1! , 2! , . . . , (n− k+ 1)! )

= (−1)n
n∑

j=k

s(n, j)(−1)jS(j, k)

= n!
k!

(
n− 1
k− 1

)
(26)

and

Bn,k((2)1, (2)2, . . . , (2)n−k+1)= Bn,k(2! , 3! , . . . , (n− k)! )

= (−1)n
n∑

j=k

s(n, j)(−2)jS(j, k)

= n!
k!

k∑
�=0

(−1)k−�

(
k
�

)(
n+ 2�− 1

n

)
.

(27)

The identities (19) and (20) are thus derived. The proof of Theorem 3.1 is complete.

Remark 3.1. We can regard those identities from (17) to (20) in Theorem 3.1 as generalizations of
the orthogonality relations

n∑
j=0

s(n, j)S(j, k)=
n∑

j=0

S(n, j)s(j, k)=
(

0
n− k

)
, n ≥ k ∈N0 (28)

listed on page 171 in [7].

Theorem 3.2. For n ∈N0 and α ∈C, we have

n∑
k=0

(−1)kk! Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1)=
n∑

k=0

k∑
�=0

(−1)�
(

k
�

)
〈α�〉n

= n!
n∑

k=0

k∑
�=0

(−1)�
(

k
�

)(
α�

n

)

=
n∑

k=0

(−1)kk!
n∑

j=k

s(n, j)αjS(j, k)

= 〈−α〉n

(29)



788 CMES, 2022, vol.132, no.3

and

n∑
k=0

(−1)kk! Bn,k((α)1, (α)2, . . . , (α)n−k+1)=
n∑

k=0

k∑
�=0

(−1)�
(

k
�

)
(α�)n

= (−1)nn!
n∑

k=0

k∑
�=0

(−1)�
(

k
�

)(−α�

n

)

= (−1)n
n∑

k=0

(−1)kk!
n∑

j=k

s(n, j)(−α)jS(j, k)

= (−α)n.

(30)

Proof. Combining (12) and (14) yields

(−1)kk!
n∑

j=k

s(n, j)αjS(j, k)=
k∑

�=0

(−1)�
(

k
�

)
〈α�〉n, n ≥ k ∈N0.

Accordingly, similar to arguments in Lemma 2.2 of [18], we acquire

n∑
k=0

(−1)kk!
n∑

j=k

s(n, j)αjS(j, k)=
n∑

k=0

k∑
�=0

(−1)�
(

k
�

)
〈α�〉n

=
n∑

�=1

(−1)�

[
n∑

k=�

(
k
�

)]
〈α�〉n

=
n∑

�=1

(−1)�
(

n+ 1
�+ 1

) n∑
m=0

s(n, m)(α�)m

=
n∑

m=0

s(n, m)αm
n∑

�=1

(−1)�
(

n+ 1
�+ 1

)
�m

=
n∑

m=0

s(n, m)(−α)m

= 〈−α〉n

for n ∈N, where we used the relation

n∑
k=�

(
k
�

)
=

(
n+ 1
�+ 1

)
, �, n ∈N, (31)
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which is a special case x = 0 and r = � of the identity

n∑
k=0

(
k+ x

r

)
=

(
n+ x+ 1

r+ 1

)
−

(
x

r+ 1

)

in the formula (1.48) on pages 27–28 of [8], we used the relation (7) twice, and we used the
equality

n∑
�=1

(−1)�
(

n+ 1
�+ 1

)
�m =

m∑
�=1

(−1)�
(

n+ 1
�+ 1

)
�m = (−1)m, m, n ∈N, (32)

which is a special case r = 1 and p = m of the identity

rp−r+1∑
k=0

(−1)k
(

rp+ 1
k

)(
rp− k

r

)p

= 1

in the formula (X.5) on page 132 of [8]. Further applying relations in (15), we conclude those
relations in (29).

Replacing α by −α in (29), using the identities (4), (5), and (2) in sequence, and simplifying
lead to (30). The proof of Theorem 3.2 is thus complete.

Remark 3.2. The last equality in (29) can be rewritten as

n∑
k=0

(−1)kk!
n∑

j=k

s(n, j)αjS(j, k)=
n∑

j=0

s(n, j)αj
j∑

k=0

S(j, k)[(−1)kk! ] = 〈−α〉n. (33)

Theorem 12.1 on page 171 of [7] reads that, if bα and ak are a collection of constants
independent of n, then

an =
n∑

α=0

S(n,α)bα if and only if bn =
n∑

k=0

s(n, k)ak.

Applying Theorem 12.1 on page 171 in [7] to the second equality in (33), we find

n∑
k=0

S(n, k)〈−α〉k = αn
n∑

j=0

S(n, j)[(−1)jj! ].

Considering the explicit formula (6) and utilizing (31) and (32), we arrive at

n∑
k=0

S(n, k)[(−1)kk! ] =
n∑

k=1

k∑
�=1

(−1)�
(

k
�

)
�n =

n∑
�=1

(−1)��n
n∑

k=�

(
k
�

)
=

n∑
�=1

(−1)��n
(

n+ 1
�+ 1

)
= (−1)n

for n ∈N. Therefore, we obtain

n∑
k=0

S(n, k)〈−α〉k = (−α)n, n ∈N0, α ∈C,
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which is a recovery of the well-known relation

n∑
k=0

S(n, k)〈α〉k = αn, n ∈N0, α ∈C

in the equation (1.27) on page 19 of [10].

4 Several Combinatorial Identities

In items (3.163) and (3.164) on pages 91–92 of [8], we find two identities

n∑
k=0

(
n
k

)(
k/2
�

)
= n

�

(
n− �− 1

�− 1

)
2n−2�

and
n∑

k=0

(−1)k
(

n
k

)(
k/2
�

)
= (−1)�2n−2�

[(
2�− n− 1

�− 1

)
−

(
2�− n− 1

�

)]
.

Lemma 2.2 in [18] reads that

k∑
�=0

(−1)�
(

k
�

)(
�/2
n

)
=

{
0, k > n ∈N0;

(−1)nk! [2(n−k)−1]!!
(2n)!!

(2n−k−1
2(n−k)

)
, n ≥ k ∈N0.

(34)

We can also find some discussions and alternative proofs for these three identities at the sites
https://math.stackexchange.com/q/1098257 and https://math.stackexchange.com/q/4235171.

Theorem 4.1. For n, k ∈N0, the identities

k∑
�=0

(−1)�
(

k
�

)(
�

n

)
=

{
0, k > n ∈N0;
(−1)k k!

n!

( 0
n−k

)
, n ≥ k ∈N0,

(35)

k∑
�=0

(−1)�
(

k
�

)(
2�

n

)
=

{
0, k > n ∈N0;
(−1)k

( k
n−k

)
22k−n, n ≥ k ∈N0,

(36)

k∑
�=0

(−1)�
(

k
�

)(−�

n

)
=

{
0, k > n ∈N0;
(−1)n+k

(n−1
k−1

)
, n ≥ k ∈N0,

(37)

k∑
�=0

(−1)�
(

k
�

)(−2�

n

)
=

{
0, k > n ∈N0;
(−1)n ∑k

�=0(−1)�
(k
�

)(n+2�−1
n

)
, n ≥ k ∈N0,

(38)

and the identity (34) are valid.

Proof. For the case n ≥ k ∈N0, these identities follow from Theorem 3.1, the equivalence (10),
and simplifying.

https://math.stackexchange.com/q/1098257
https://math.stackexchange.com/q/4235171
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For the case k > n ∈ N0, making use of the relation 8 and utilizing the explicit formula (6),
we acquire

k∑
�=0

(−1)�
(

k
�

)(
α�

n

)
= 1

n!

k∑
�=0

(−1)�
(

k
�

)[
n!

(
α�

n

)]

= 1
n!

k∑
�=0

(−1)�
(

k
�

) n∑
q=0

s(n, q)(α�)q

= 1
n!

n∑
q=0

s(n, q)αq
k∑

�=0

(−1)�
(

k
�

)
�q

= (−1)k k!
n!

n∑
q=0

s(n, q)αqS(q, k)

for all k, n ∈N0 and α ∈C, where 00 was regarded as 1. Therefore, it is clear that

k∑
�=0

(−1)�
(

k
�

)(
α�

n

)
= 0, k > n ∈N0, α ∈C.

The proof of Theorem 4.1 is complete.

Remark 4.1. The identity (35) can be simplified as

k∑
�=0

(−1)�
(

k
�

)(
�

n

)
=

{
0, k 
= n
(−1)k, n = k

for n, k ∈N0.

The identities (36), (37), and (39) in Theorem 4.1 are probably new.

Theorem 4.2. For n ∈N0, we have

n∑
k=0

(−1)kk!
(

0
n− k

)
= (−1)nn! , (39)

n∑
k=0

(−1)k
(

k
n− k

)
22k = (−1)n2n(n+ 1), (40)

n∑
k=0

(−1)k
(

n− 1
k− 1

)
=

⎧⎪⎨
⎪⎩

1, n = 0;
−1, n = 1;
0, n ≥ 2,

(41)
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n∑
k=0

(−1)k
(

n+ 2k− 1
n

)(
n+ 1
k+ 1

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, n = 0;
−2, n = 1;
1, n = 2;
0, n ≥ 3,

(42)

n∑
�=0

(−1)�
(

�/2
n

)(
n+ 1
�+ 1

)
= (−1)n (2n− 1)! !

(2n)! !
, (43)

n∑
k=0

k! [2(n− k)− 1]! !
(

2n− k− 1
2(n− k)

)
= (2n− 1)! ! , (44)

and
n∑

k=1

(
2n− k− 1

n− 1

)
k(k+ 1)2k = n22n. (45)

Proof. From (29), we conclude that

n∑
k=0

(−1)kk! Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1)= 〈−α〉n. (46)

for n ∈N0 and α ∈C.

Substituting (21) into (46) gives

n∑
k=0

(−1)kk!
(

0
n− k

)
= 〈−1〉n = (−1)nn! .

The identity (39) is thus proved.

Substituting (23) into (46) results in

n∑
k=0

(−1)k
(

k
n− k

)
22k = 2n〈−2〉n

n!
= (−1)n2n(n+ 1).

The identity (40) is verified.

Utilizing the relations (2) and (5), we can reformulate the identity (26) as

Bn,k(〈−1〉1, 〈−1〉2, . . . , 〈−1〉n−k+1)= (−1)n n!
k!

(
n− 1
k− 1

)
.

Substituting this equality into (46) arrives at

n∑
k=0

(−1)k
(

n− 1
k− 1

)
= (−1)n 〈1〉n

n!
=

⎧⎪⎨
⎪⎩

1, n = 0;
−1, n = 1;
0, n ≥ 2.

The formula (41) follows.
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Utilizing the relations (2) and (5), we can reformulate the identity (27) as

Bn,k(〈−2〉1, 〈−2〉2, . . . , 〈−2〉n−k+1)= (−1)n n!
k!

k∑
�=0

(−1)k−�

(
k
�

)(
n+ 2�− 1

n

)
.

Substituting this equality into (46) and employing (31) reveal

(−1)n 〈2〉n

n!
=

n∑
k=0

k∑
�=0

(−1)�
(

k
�

)(
n+ 2�− 1

n

)

=
n∑

�=0

(−1)�
(

n+ 2�− 1
n

) n∑
k=�

(
k
�

)

=
n∑

�=0

(−1)�
(

n+ 2�− 1
n

)(
n+ 1
�+ 1

)

and

(−1)n 〈2〉n

n!
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, n = 0;
−2, n = 1;
1, n = 2;
0, n ≥ 3.

The fourth equality (42) in Theorem 4.2 is thus proved.

Employing (31), we can rearrange the identity (43) as

(−1)n (2n− 1)! !
(2n)! !

=
n∑

�=0

(−1)�
(

�/2
n

) n∑
k=�

(
k
�

)
=

n∑
�=0

(−1)�
(

�/2
n

)(
n+ 1
�+ 1

)
.

The equality (43) is deduced.

In Theorem 3.2 of [2], on page 5 in [15], and in Theorem 4.2 of [19], there is the equality

k∑
�=0

(−1)�
(

k
�

)〈
�

2

〉
n
= (−1)nk!

[2(n− k)− 1]! !
2n

(
2n− k− 1
2(n− k)

)

for n ≥ k ≥ 0. Hence, we obtain

(−1)n

2n

n∑
k=0

k! [2(n− k)− 1]! !
(

2n− k− 1
2(n− k)

)
=

n∑
k=0

k∑
�=0

(−1)�
(

k
�

)〈
�

2

〉
n

=
n∑

�=0

(−1)�

[
n∑

k=�

(
k
�

)]〈
�

2

〉
n
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=
n∑

�=0

(−1)�
(

n+ 1
�+ 1

) n∑
m=0

s(n, m)

(
�

2

)m

=
n∑

m=0

s(n, m)

2m

n∑
�=0

(−1)�
(

n+ 1
�+ 1

)
�m

=
n∑

m=0

s(n, m)

(
−1

2

)m

=
〈
−1

2

〉
n

= (−1)n (2n− 1)! !
2n

for n ∈N, where we assumed 00 = 1 and used (7), (31), and (32). Hence, we acquire (44) and

n∑
k=0

k∑
�=0

(−1)�
(

k
�

)〈
�

2

〉
n
= (−1)n (2n− 1)! !

2n .

Combining the last one with the relation

n∑
k=0

k∑
�=0

(−1)�
(

k
�

)〈
�

2

〉
n
= n!

n∑
k=0

k∑
�=0

(−1)�
(

k
�

)(
�/2
n

)
,

which is obtained by applying α = 1
2 to the second equality in (29), yields the identity (43) again.

Substituting (24) into (46) leads to

n∑
k=0

(−1)kk! (−1)n+k [2(n− k)− 1]! !
2n

(
2n− k− 1
2(n− k)

)
=

〈
−1

2

〉
n
= (2n− 1)! !

2n

which is a recovery of the formula (44).

For k ∈N, let sk and Sk be two sequences independent of n such that n ≥ k ∈N. Theorem 4.4
on page 528 in [20] reads that

sn =
n∑

k=1

(
k

n− k

)
Sk if and only if (−1)nnSn =

n∑
k=1

(
2n− k− 1

n− 1

)
(−1)kksk. (47)

Letting Sn = (−1)n22n and sn = (−1)n2n(n + 1), considering (40), applying the inversion
theorem expressed by (47), and simplifying figure out the identity (45).

Remark 4.2. The formula (44) is also alternatively established in the proof of Theorem 3.2
in [18] and in Remark 5.3 of [21].

Remark 4.3. The identity (34) established in Lemma 2.2 of [18] and recovered in Theorem 4.1,
the identity (36) in Theorem 4.1, and the formula (43) in Theorem 4.2 were announced at
https://math.stackexchange.com/a/4268339 and https://math.stackexchange.com/a/4268341 online.

https://math.stackexchange.com/a/4268339
https://math.stackexchange.com/a/4268341
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Remark 4.4. In Remark 3.4 of [18], applying the inversion theorem expressed by (47), we
obtained

n∑
k=1

(−1)k
(

k
n− k

)(
2k− 1

k

)
= (−1)n2n−1, n ∈N

and
n∑

k=1

(−1)k
(

2n− k− 1
n− 1

)
2(k+1)/2k sin

3(k+ 1)π

4
= 2nn, n ∈N.

5 Several Problems and Numerical Demonstrations

Can one find out simpler closed-form formulas like those in Theorem 3.1 for the quantities

n∑
j=k

S(n, j)(−1)js(j, k),
n∑

j=k

S(n, j)(±2)js(j, k),
n∑

j=k

S(n, j)
(
±1

2

)j

s(j, k)

for n ≥ k ∈N0?

By the methods used in this paper, can one find out more combinatorial identities like those
in Theorems (4.1) and 4.2?

In general, can one find explicit and closed-form formulas of the quantities

Bn,k(〈α〉1, 〈α〉2, . . . , 〈α〉n−k+1),
k∑

�=0

(−1)�
(

k
�

)
〈α�〉n,

k∑
�=0

(−1)�
(

k
�

)(
α�

n

)
,

n∑
�=k

s(n,�)α�S(�, k),
n∑

�=k

S(n,�)α�s(�, k)

for some special values α ∈C \ {
0,±1,±2,±1

2

}
?

For better understanding the above problems, by the Wolfram Mathematica 12, we numerically
compute the quantity

Q(k, n;α)=
n∑

�=k

S(n,�)α�s(�, k)

for 0 ≤ k ≤ n ≤ 9 and list their values as

Q(0, 0;α)= 1, Q(0, n;α)= 0, 1 ≤ n ≤ 9;

Q(1, 1;α)= α, Q(1, 2;α)=−(α− 1)α, Q(1, 3;α)= (α− 1)α(2α− 1),

Q(1, 4;α)=−(α− 1)α
(
6α2 − 6α+ 1

)
, Q(1, 5;α)= (α− 1)α(2α− 1)

(
12α2 − 12α+ 1

)
,

Q(1, 6;α)=−(α− 1)α
(
120α4 − 240α3 + 150α2 − 30α+ 1

)
,

Q(1, 7;α)= (α− 1)α(2α− 1)
(
360α4 − 720α3 + 420α2 − 60α+ 1

)
,

Q(1, 8;α)=−(α− 1)α
(
5040α6 − 15120α5 + 16800α4 − 8400α3 + 1806α2 − 126α+ 1

)
,
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Q(1, 9;α)= (α− 1)α(2α− 1)
(
20160α6 − 60480α5 + 65520α4 − 30240α3 + 5292α2 − 252α+ 1

)
;

Q(2, 2;α)= α2, Q(2, 3;α)=−3(α− 1)α2, Q(2, 4;α)= (α− 1)α2(11α− 7),

Q(2, 5;α)=−5(α− 1)α2(
10α2 − 12α+ 3

)
, Q(2, 6;α)= (α− 1)α2(

274α3 − 476α2 + 239α− 31
)
,

Q(2, 7;α)=−7(α− 1)α2(
252α4 − 570α3 + 430α2 − 120α+ 9

)
,

Q(2, 8;α)= (α− 1)α2(
13068α5 − 36324α4 + 36560α3 − 15940α2 + 2771α− 127

)
,

Q(2, 9;α)=−3(α− 1)α2(
36528α6 − 120288α5 + 151368α4 − 90300α3 + 25550α2 − 2940α+ 85

)
;

Q(3, 3;α)= α3, Q(3, 4;α)=−6(α− 1)α3, Q(3, 5;α)= 5(α− 1)α3(7α− 5),

Q(3, 6;α)=−15(α− 1)α3(
15α2 − 20α+ 6

)
,

Q(3, 7;α)= 7(α− 1)α3(
232α3 − 443α2 + 257α− 43

)
,

Q(3, 8;α)=−14(α− 1)α3(
938α4 − 2310α3 + 1965α2 − 660α+ 69

)
,

Q(3, 9;α)= (α− 1)α3(
118124α5 − 354628α4 + 395660α3 − 199690α2 + 43595α− 3025

)
;

Q(4, 4;α)= α4, Q(4, 5;α)=−10(α− 1)α4, Q(4, 6;α)= 5(α− 1)α4(17α− 13),

Q(4, 7;α)=−35(α− 1)α4(
21α2 − 30α+ 10

)
,

Q(4, 8;α)= 7(α− 1)α4(
967α3 − 1973α2 + 1257α− 243

)
,

Q(4, 9;α)=−42(α− 1)α4(
1602α4 − 4200α3 + 3885α2 − 1470α+ 185

)
;

Q(5, 5;α)= α5, Q(5, 6;α)=−15(α− 1)α5, Q(5, 7;α)= 35(α− 1)α5(5α− 4),

Q(5, 8;α)=−70(α− 1)α5(
28α2 − 42α+ 15

)
,

Q(5, 9;α)= 21(α− 1)α5(
1069α3 − 2291α2 + 1559α− 331

)
;

Q(6, 6;α)= α6, Q(6, 7;α)=−21(α− 1)α6, Q(6, 8;α)= 14(α− 1)α6(23α− 19),

Q(6, 9;α)=−126(α− 1)α6(
36α2 − 56α+ 21

)
;

Q(7, 7;α)= α7, Q(7, 8;α)=−28(α− 1)α7, Q(7, 9;α)= 42(α− 1)α7(13α− 11);

Q(8, 8;α)= α8, Q(8, 9;α)=−36(α− 1)α8, Q(9, 9;α)= α9.

If fixing k = 4, 5 and n = 7, 8 and regarding α as a real variable on the interval [−9, 9], then
the graphs plotted by the Wolfram Mathematica 12 are showed in Figs. 1 and 2.
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Figure 1: The graphs of Q(4, 7;α) and Q(4, 8;α) for α ∈ [−9, 9]

Figure 2: The graphs of Q(5, 7;α) and Q(5, 8;α) for α ∈ [−9, 9]

6 Conclusions

In this paper, we collected, discussed, and found out significant connections, equivalences,
closed-form formulas, and combinatorial identities concerning partial Bell polynomials Bn,k, falling
factorials 〈z〉n, rising factorials (z)n, extended binomial coefficients

(z
w

)
, and the Stirling numbers of

the first and second kinds s(n, k) and S(n, k). These results are new, interesting, important, useful,
and applicable in combinatorial number theory and other areas, as done in the papers [22–27] and
closely related references therein.
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26. Wang, Y., Dağlı, M. C., Liu, X. M., Qi, F. (2021). Explicit, determinantal, and recurrent formulas of
generalized eulerian polynomials. Axioms, 10(1), 37. DOI 10.3390/axioms10010037.

27. Xie, C., He, Y. (2021). New expressions for sums of products of the Catalan numbers. Axioms, 10(4), 330.
DOI 10.3390/axioms10040330.

http://dx.doi.org/10.3390/axioms10010029
http://dx.doi.org/10.1002/mma.7702
http://dx.doi.org/10.5556/j.tkjm.53.2022.3743
http://dx.doi.org/10.3390/sym11060782
http://dx.doi.org/10.3390/axioms10010037
http://dx.doi.org/10.3390/axioms10040330

	Preliminaries
	Equivalences
	Simpler Closed-Form Formulas
	Several Combinatorial Identities
	Several Problems and Numerical Demonstrations
	Conclusions

