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ABSTRACT

Recently, Siamese-based trackers have achieved excellent performance in object tracking. However, the high speed
and deformation of objects in the movement process make tracking difficult. Therefore, we have incorporated
cascaded region-proposal-network (RPN) fusion and coordinate attention into Siamese trackers. The proposed
network framework consists of three parts: a feature-extraction sub-network, coordinate attention block, and
cascaded RPN block. We exploit the coordinate attention block, which can embed location information into channel
attention, to establish long-term spatial location dependence while maintaining channel associations. Thus, the
features of different layers are enhanced by the coordinate attention block. We then send these features separately
into the cascaded RPN for classification and regression. According to the two classification and regression results,
the final position of the target is obtained. To verify the effectiveness of the proposed method, we conducted
comprehensive experiments on the OTB100, VOT2016, UAV123, and GOT-10k datasets. Compared with other
state-of-the-art trackers, the proposed tracker achieved good performance and can run at real-time speed.
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1 Introduction

Visual object tracking is a basic but challenging task in computer vision. In recent years,
object tracking has received widespread attention due to its extensive applications, e.g., in intelligent
surveillance [1], human-computer interaction, autonomous driving [2], and other vision fields. In
reality, object tracking is the process of finding the region of interest in a current frame based
on subsequent video frames through feature matching. However, because occlusion, deformation,
background blur, and scale-change problems during movement inevitably occur [3], it is challenging
to accurately predict the scale size and position of a target.

Recently, target trackers based on a Siamese network have received significant attention because
of their excellent tracking performance and robustness. The Siamese network usually transforms the
tracking task into a similarity-matching problem. The tracking network consists of template and
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search branches. We can obtain the similarity by extracting features from these two branches and
performing cross-correlation operations of these features. The above process is actually an end-to-
end method that directly uses extracted features for calculations, but not for modeling. This idea was
introduced for the first time in 2016 in fully convolutional Siamese networks (SiamFC) [4], which
treated target tracking as a similarity problem between the template and search area. Although this
network laid the foundation of the overall framework for object tracking, it requires intensive window
sliding and has difficulty coping with changes in target scale. With the development of the Siamese
Region Proposal Network (SiamRPN) [5], a region-proposal-network (RPN) [6] structure of detec-
tion was subsequently introduced. The SiamRPN converted the similarity calculation into a cross-
correlation operation and obtained two branches, i.e., classification and regression. Classification is
used for distinguishing foreground from background, and regression is used for determining the offset
of the bounding box. However, up to this point, the backbone network of the tracker generally utilized
a shallow network, namely AlexNet [7]. The feature-extraction capability of AlexNet is not as good
as that of the deep residual network (ResNet), which greatly affects the performance of the tracker.
However, if ResNet [8] is directly used as the backbone network of the tracker, the performance of the
tracker could decrease. After conducting numerous experiments, with the emergence of the Deeper
and Wider Siamese Networks (SiamDW) [9] and SiamRPN++ [10], the influence of padding was
finally removed, and the deeper backbone network was successfully applied to Siamese tracking. This
method greatly improves the performance of the tracker.

An attention mechanism is a commonly used method in deep learning. It has powerful functions
and plug-and-play features, especially in detection segmentation and natural language processing.
Generally speaking, the attention mechanism will tell the model what information is involved in the
calculation and where it is. Among others, the squeeze-and-excitation network (SENet) [11] and dual
attention networks (DANets) [12] inspired our work. SENet uses the information between channels
to generate mappings and assigns higher weight to important information. A DANet can adaptively
combine local features and global dependencies. A location attention block weights the features at all
locations to correlate similar features with each other, while a channel attention block can integrate
the mapping of all channel relationships. This helps obtain more useful feature information for
classification and regression. Based on this, in our approach, we encode the location and channel
information together on the basis of SENet. While capturing the channel-information association,
the long-term dependence of spatial location is established.

In SiamRPN tracking, only the deep-level information of the backbone network is used, which is
the fifth-level feature. The deep-level feature contains a large amount of semantic information but lacks
appearance information. The original tracking network simply extracts features through the backbone
network for classification and regression. These features are not strong enough to deal with complex
environmental disturbances or to perform identification well enough to locate fast-moving objects in,
for example, a drone scene. Our aim is to enhance the feature representation through an attention
mechanism and then fuse the tracking results of the different layers of features to be able to accurately
locate the target location. Thus, on the basis of upgrading the backbone network to ResNet, we have
added an RPN block to the third layer to handle the appearance information of the object. Then, the
extracted features are fused to obtain robust features that contain both rich appearance information
and sufficient semantic information. The fused features are used for improving the performance of
succeeding classification and regression. In addition, SENet only considers the information between
channels but ignores the location information that plays an important role in generating the spatial
selective response map. We further introduced a coordinated attention (CA) [13] method that embeds
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position information into channel attention. After this, part of the coded features is sent to the RPN
block, where the feature information can be better utilized.

To summarize, the overall contributions of this paper are as follows:

(1) While maintaining channel associations, we introduce a CA mechanism that embeds location
information into channel information to establish long-term spatial location dependence.

(2) We propose a cascaded RPN fusion structure that contains two RPN blocks to process the
features of different layers. Weighted fusion is then performed based on the results of the two
classifications and regressions to obtain the accurate position of the target.

(3) Without adjusting the parameters too much, the proposed method exhibits good performance
on the OTB100, VOT2016, UAV123 and GOT-10k datasets, and achieve the best performance
on UAV123. This dataset comprises objects that were all photographed by drones and that
exhibit fast-moving speed and large-scale changes. This result shows that the proposed tracker
can deal with this kind of problem well.

The structure of our paper can be expressed as follows. First, we give a general description of
related work in Section 2. We give the detailed description of our proposed method in Section 3.
We give the experimental environment and detailed experimental settings in Section 4. We conduct
comprehensive experiments of our proposed method and state-of-art methods on datasets in Section 5.
Section 6 gives the summary and prospect of this work.

2 Related Work

In this section, we mainly review the relevant literature, the tracking frameworks commonly used
in recent years, and content related to our work.

2.1 Siamese Tracking
In recent years, tracking algorithms based on Siamese networks [4–5,9,10,14] have attracted

considerable attention because of their excellent accuracy and efficiency. It is undisputed that SiamFC
[4] is considered the beginning of end-to-end tracking. The entire tracking network is composed of
template and search branches. The tracking problem is often transformed into a similarity-matching
problem. By performing cross-correlation operations on the features extracted by the two branches,
the approximate location of the target is obtained. Because this method requires intensive window
sliding, it has difficulty coping with the size change of the target. The RPN block was introduced into
the SiamRPN [5] by RCNN, who discussed the use in detection. The RPN [6] block sets the anchor
frame ratio of five scales in advance, generally 1/3, 1/2, 1, 2, and 3. Next, k anchor boxes are generated
at each position to predict where the object may exist. To better train the model, a distractor-aware
Siamese network (DaSiamRPN) [15] classified the samples roughly into positive and negative samples.
When the degree of overlap between the ground truth and bounding box of the sample is greater than
a certain threshold, we define it as a positive sample; otherwise, it is defined as a negative sample.
Moreover, another situation arises in which the degree of overlap is high, but the object and target are
not in the same category. Such samples are defined as hard negative samples. A hard negative sample
is difficult to remove, but is particularly important for the robustness of the training model.

Although the SiamRPN method greatly improves tracking performance, the backbone of the
network still uses the shallow AlexNet, and the feature-extraction ability is not strong. SiamDW,
SiamRPN++, and SiamMask [16] remove the effect of padding in different ways and introduce several
important deep networks, such as MobileNet [17] and ResNet [8], to Siamese tracking. In particular,
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SiamDW spends a significant amount of space to determine the influence of field, output size, stride
length, and the presence or absence of padding and provides the optimal values of these influencing
factors. This is especially important for understanding and applying deep backbone networks as
feature extractors. In addition, the output features of the convolutional layer are related to the
perceptual field. The perceptual field of a neuron is the size of the pixel point of the feature map output
from each layer of the convolutional neural network corresponding to the region on the original image
[10]. As the number of convolutional layers increases, the receptive field of neurons also gradually
increases, and the output layer at this time contains deeper semantic features [15,18,19]. This is good
for challenging tracking. The shallow features, although they experience less convolution, contain
more localized and detailed information, e.g., appearance color as well as location information.

Since 2020, anchor-free frameworks have become popular in object tracking. Anchor-free, as the
name implies, does not use an anchor box to obtain the possible location of the target. The previous
method is to generate k anchor boxes at each pixel to capture the possible position and size of the
target. The current idea is to generate a possible position of the target with each pixel as the center.
Because these anchor boxes are not applied in the entire tracking process, the number of parameters
and the amount of calculation in the calculation process are greatly reduced. SiamCAR [18], SiamBAN
[19], and SiamFC++ [20] are typical representatives of this idea. Anchor-free is a new trend in object
tracking.

Most of the mainstream Siamese tracking algorithms mentioned above are not updated online.
Compared with some methods that perform online update correlation filtering, or combine Siamese
tracking with correlation filtering, Siamese tracking has difficulty dealing with the problem of
background updates. Some studies report algorithms that have done a good job in this regard, and
not only consider the correlation between the previous and next frames, but also dynamically update
the template [21–24]. The CFNet [25] adopts the SiamFC framework and introduces related filtering
into Siamese tracking, which improves accuracy. These are all effective methods of improving tracking
accuracy.

2.2 Convolutional Features Fusing
In convolutional neural networks, the convolutional features contained in different levels of

networks are different. Generally speaking, a shallow network contains more appearance information
of the target, and the deep network contains more semantic information after layered feature
extraction [10,26–28]. Semantic information is robust to significant appearance changes but cannot
accurately locate the target due to the coarse spatial resolution of semantic information. However,
shallow features can be used for more precise positioning.

Therefore, a copious amount of work has been directed to fusing features of different layers. For
example, in C-RPN [27,29], the extracted features of different layers are first input to the feature-fusion
module, and then, the fused features are processed in subsequent steps. Several methods [30,31] exist
that combine manual and deep features, and they have achieved good performance. We call the above
approaches “early fusion,” in which different characteristics are fused.

Another method is to fuse the results of each processing, which we call “late fusion.” Some two-
stage networks, such as SPM [29], first perform coarse matching and then fine matching and obtain
the final target position based on the results of the two matches. Some similar methods, such as FPN
[30,32,33], first use their respective features to make predictions and then provide the final result based
on the results of multiple predictions.
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2.3 Attention Mechanism
Attention mechanisms have been widely studied and applied in visual tasks in the past few years

[11–12,34] because they are simple, powerful, and plug-and-play. An attention block can be simply
regarded as a computing unit to enhance feature-representation ability. A typical attention mechanism
is SENet [11].

SENet converts the feature tensor into a single feature vector by simply squeezing each two-
dimensional feature map and then effectively builds the dependency between channels. However,
SENet only measures the importance of each channel by modeling the channel relationship, ignoring
the location information used to generate spatial selectivity.

Another commonly used attention mechanism is a non-local information statistical attention
mechanism called a simplified non-local (SNL) block [34]. Because the convolutional network must
capture long-term dependence by gathering global statistics, the network will be deep and the learning
efficiency very low. Non-locality is used to obtain the autocorrelation of features through mapping
and dot-multiplication operations on features. However, the non-local method involves a very large
amount of calculation and may not run normally when memory is limited.

3 Methods

We now introduce the proposed network model. First, we use the CA block to embed the position
information into the channel attention to enhance the feature representation. The CA block can use
location information to establish long-term spatial location dependence while maintaining channel
associations (see Section 3.3). Subsequently, the features of different layers are enhanced by the CA
block and input to the cascaded RPN block. By fusing the results of the two classifications and
regressions, the accurate position of the target in the current frame is obtained.

3.1 Overview
We roughly divide the entire tracking process into three parts: the feature extraction sub-network

that extracts features of different layers, the coordinate attention block that enhances the feature
representation, and the cascaded RPN multiple classifications and regressions used to accurately target
the location.

Fig. 1 shows the entire tracking process. We used ResNet-50 [8] as our backbone network. ResNet-
50 has stronger feature-extraction capabilities than AlexNet [7], and can better mine the hidden
information in an image. The feature-extraction part can extract the features of template Z and search
area X. Most trackers simply feed deeper features with more semantic information into the RPN
block. We believe this is insufficient to make full use of the extracted feature information. Therefore,
we first merge the feature of the third and fourth layers through the add operation to fully obtain
the appearance information of the target. Second, we put the fused information into the coordinate
attention blocks. A CA block can enhance the feature representation, which is more conducive to
tracking. Third, we send the fused feature to the first RPN block to initially obtain the approximate
position of the target. In addition, we also carry out the above-mentioned process for the features of
the fifth layer. Finally, the results of the two classifications and regressions are weighted and fused to
obtain a more accurate position of the target in the current frame.
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Figure 1: Illustration of our network.ϕi(Z) and ϕi(X) represent the features of the template and search
area extracted from each layer. The feature extraction network uses ResNet-50. CA represents the
coordinate attention block and RPN the region proposal network block. + is an add operation. F is
expressed as a weighted fusion of the two results. CLS and Reg represent the results of classification
and regression, respectively

3.2 Cascaded RPN Fusion
In SiamRPN, only the features of the last layer extracted are used. High-level features have

stronger semantic information, which has great advantages in challenging scenes such as motion blur
and huge deformation. However, the low resolution of high-level features leads to poor perception
of details, while the shallow features, mainly containing some low-level information, e.g., appearance
and position information, are all necessary for positioning but contain less semantic information and
a large amount of noise.

Therefore, we designed a cascaded RPN structure to use the features of different layers and then
performed weighted fusion on the classification and regression results of each RPN. Combining the
classification and regression results of these two processes, a more accurate position of the target in
the current frame is obtained. The process of weighted fusion for each result is represented by F in
Fig. 1. The weight of the classification branch is 1.0 and that of the regression branch is 1.2. To better
use the appearance features before inputting to the RPN block, we use the add operation to simply
merge the features of the third and fourth layers.

The RPN structure used is shown in Fig. 2. For each template Z, the extracted features are denoted
by ϕ(Z) and are used for classification and regression. The classification branch is denoted by ϕ(Z)cls

and the regression branch by ϕ(Z)reg for subsequent calculations. The corresponding search area X
also extracts the feature ϕ(X), and the classification and regression branches are denoted by ϕ(X)cls

and ϕ(X)reg, respectively. Conv is a 1 × 1 transformation used to change the number of channels of the
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feature. We performed a depthwise correlation (DW_corr) operation on the features extracted from
these two branches to obtain the classification score and regression offset of each anchor box.

Figure 2: Schematic of RPN structure. The block consists of template and classification branches.
denotes DW_corr operation. Finally, the foreground and background classification and regression

offsets L, T, R, and B of the object are obtained

The add operation is a parallel strategy that combines the two aforementioned feature vectors
into a complex vector. This operation does not change the dimension of the features but increases the
information of each dimension. This is beneficial to final image classification. The process of feature
fusion is expressed as follows:

φ34(Z) = add(ϕ3(Z), ϕ4(Z)), (1)

φ34(X) = add(ϕ3(X), ϕ4(X)), (2)

where Z is the template, X is the search area,ϕi(Z) is the extracted feature of the ith (i = 3, 4) layer
template, and φ34(Z) is the feature after the third and fourth layers are fused. The fused features are
sent to the first RPN block for preliminary classification and regression. The first RPN block mainly
deals with the appearance features of the target, and the second RPN block mainly deals with the
semantic features of the target. We can obtain the target’s position through these two regression steps,
even of objects with extreme shapes. We have

{ci} = DW_corr([φl(Z)]cls, [φl(X)]cls), (3)

{ri} = DW_corr([φl(Z)]reg, [φl(X)]reg), (4)

where ci is a two-dimensional vector representing the classification result of the ith anchor box, that is,
positive and negative samples. ri is a four-dimensional vector that represents the offset of the anchor
box compared to the ground-truth bounding box. DW_corr is different from ordinary convolution, as
each convolution kernel is only responsible for the calculation of one channel. Through channel-by-
channel calculation, more abundant features are obtained for classification and regression.

Correspondingly, we can obtain the loss of the entire cascaded block as follows:

LRPN({ci}, {ri}) =
∑

i

Lcls(ci, c∗
i ) + λ

∑
i

c∗
i Lloc(ri, r∗

i ), (5)
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where i refers to the anchor box with index i. ci is the predicted value of the tracker, c∗
i is the

classification label, and λ is the weight of the regression part. In this formula, we use Softmax loss
for classification and smooth L1 loss for regression.

3.3 Coordinate Attention
The attention mechanism is well-known because it is helpful for most visual tasks. The most classic

one is SE attention [11]. SE attention uses a simple squeeze for each two-dimensional feature map to
effectively construct the interdependence between channels. Generally speaking, the SE block contains
two parts, i.e., squeeze and excitation. The squeeze operation is used to obtain global information, and
excitation is used to obtain the correlation between channels. Given the input feature X, the cth channel
can be expressed as

Zc = 1
H × W

H∑
i=1

W∑
j=1

Xc(i, j). (6)

The C channel can be expressed as Zc through a squeeze, which is the output related to the
C channel. In Eq. (6), the input feature X comes from different layer features extracted from the
backbone network. W and H are the width and height, respectively, of the input feature. This process
corresponds to the “Global Avg Pool” operation in Fig. 3a.

Feature X

Global Avg Pool

Fully Connected

Non-linear

Fully Connected

Sigmod

Re-weight 

Input

C×H×W

C×1×1

(C/r)×1×1

(C/r)×1×1

C×1×1

C×1×1

C×H×W

Output

Feature X

X Avg Pool Y Avg Pool

Concat + Conv

Non-linear + Split

Conv Conv

Sigmoid Sigmoid

Re-weight

C×H×W

C×H×1 C×1×W

(C/r)×1×(w+h)

(C/r)×1×(w+h)

C×H×1

C×H×1

C×1×W

C×1×W

C×H×W

Output

(a)SE block (b)CA block

Input

Figure 3: (a) SE block and (b) CA block. “X Avg Pool” and “Y Avg Pool” represent pooling operations
in horizontal and vertical directions. “Concat” represents the connection of features and is sent to 1 × 1
convolution. “Split” will decompose the features obtained in the previous step. Then, “Split” is sent
into the convolution to change the number of channels, which is activated as the weight of the CA
block and added to the input feature

To obtain the correlation between channels, the information after the squeeze must be activated.
The excitation process can be expressed as

Ẑ = T2(RELU(T1(Z)), (7)

where two linear transformations are performed on the obtained squeeze results through the full
connections T1 and T2 to capture the importance of each channel. Ẑ is the result after excitation.
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The channel dependence is obtained after processing the transformation as follows:

X̂ = X · Sigmod(Ẑ), (8)

where X refers to the input feature and the · operation to the channel-wise multiplication. Eq. (8) is
reflected in the last step of the SE block. Therefore, the enhanced feature X can be obtained in SENet.

However, the SE block only considers the importance of the channel and ignores the position
information. The position information is very important for generating spatial selective attention
response maps. Therefore, we introduce coordinate attention [13], which obtains channel and location
information. While maintaining channel associations, the CA block embeds location information into
CA and uses location information to establish long-term spatial location dependence. This process is
mainly divided into two steps: coordinate information embedding and coordinate generation.

Because global pooling compresses global information into channel descriptions, it is difficult to
save location information. To obtain new remote spatial interactions with precise locations, we process
both horizontal and vertical global pooling through two one-dimensional global pooling operations.
Then, two independent directional perception feature maps are generated. Next, we encode these
two direction-information-containing feature maps and generate two attention maps to capture the
dependence of each spatial direction. In this way, the position information will be retained in the
attention map.

Given the input X , we performed two spatial decompositions, encoding each channel along the
horizontal and vertical coordinates. The output of the cth channel with height h is written as

Zh
c(h) = 1

W

∑
0≤i≤W

Xc(h, j). (9)

The similar output of channel c with width w is written as

Zw
c (w) = 1

H

∑
0≤i≤H

Xc(j, w). (10)

Eqs. (9) and (10) represent the X Avg pool and Y Avg pool in Fig. 3b, respectively. The above two
transformations decompose two spatial directions separately to obtain a pair of directional perception
feature maps. This conversion enables attention to capture long-term dependence along a certain
spatial direction and precise information along another spatial direction, which is helpful for target
positioning. Through the above formula decomposition, the global receptive field can be obtained and
accurate position information can be encoded.

To make full use of the expression information, CA generation transformation is performed. This
process is similar to the activation part of the SE block. When changing, the correlation of the channel
information should be preserved as much as possible. In addition, the captured position information
should be fully utilized to facilitate determine the location of the region of interest. We call this process
CA generation.

First, we connect the horizontal and vertical decomposition features and then send them to a
1 × 1 convolution, which is expressed as

f = RELU(conv([zh, zw])), (11)

with the square brackets [,] representing the Concat operation along the spatial dimension; conv is
the 1 × 1 convolution mentioned above. Non-linear operations generally use the rectified linear unit
(RELU) function, f ∈ R

(C/r)×(H+W). It is the intermediate feature information that is encoded along the
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horizontal and vertical directions. r is a reduction factor that controls the size of the SE block. Then,
the intermediate feature f is decomposed along the spatial dimension directions, f h ∈ R

(C/r)×(H+W) and
f w ∈ R

(C/r)×(H+W). After performing a 1 × 1 transformation on f to obtain the same dimension as the
input X , the attention weight in two directions is then obtained by the activation function:

gh
c = Sigmod(Conv(f h)), (12)

gw
c = Sigmod(Conv(f w)), (13)

Conv represents a 1 × 1 transformation used to change the number of channels. The obtained
result is applied to the input as the weight of the attention block, and the output is obtained. Eq. (14)
is reflected in the last step of the CA block,

yc(i, j) = xc(i, j) × gh
c(i) × gw

c (j). (14)

Finally, the difference between the SE and CA blocks is compared, as shown in Fig. 3.

4 Experimental Setup

The method method was implemented in Python with Pytorch on three RTX2080Ti processors;
the operating system was Ubuntu 16 with 32 Gb of memory. The backbone network was the modified
ResNet-50. Instead of starting training from scratch, the backbone network was initialized with the
ImageNet [35] pre-trained weights, and the parameters of the first two layers were frozen. During
training and testing, we used an image with a size of 127 pixels as a template and an image with
a size of 255 pixels as the search area. The training set included ImageNet VID, ImageNet DET,
YOUTUBEBE [36], and COCO [37]. In the training process, the batch size was set to 28, the optimizer
used the stochastic gradient descent (SGD) method, and the initial learning rate was 0.005. In the
last 10 batches, we unfroze the last three layers of the network and loaded the backbone network for
training. Including the loading of the above four datasets for training, the entire training process lasted
approximately 48 h. After training, comprehensive experiments were carried out on the VOT2016 [38],
OTB100 [39], UAV123 [40], and GOT-10k [41] datasets. The process of testing the training model on
each dataset and then comparing the results obtained with the existing algorithm took approximately
10 h. In addition, for the sake of fairness, the experiment on GOT-10k was tested at the address
provided on its official website. We compared roughly 10 trackers on each dataset, but the available
trackers were not tested on every dataset, and not all of them provided tracking results. Therefore,
we chose some of the better typical tracker results for comparison as much as possible, which contain
both correlation-filter-based and deep-learning-based trackers. The results of the comparison between
OTB100 and UAV123 were also plotted.

5 Results and Discussion
5.1 Evaluation Results on OTB100

OTB100 is a widely used public dataset containing 100 challenging videos with significant changes.
These challenges come from the following aspects, mainly including background clutter, lighting
changes, scale changes, motion blur, occlusion, and rotation and deformation. Among them, OTB100
contains the OTB50 dataset, which is more comprehensive. During the test, we used success and
precision plots to evaluate different trackers in a one-time evaluation of OPE. The centroid distance
between the prediction and real boxes was calculated in OTB100, and the percentage of the total
sequences with a distance less than a certain threshold was counted. The threshold value was then
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plotted as the horizontal coordinate and the corresponding precision as the vertical coordinate for the
precision plot. The same success plot calculates the intersection ratio of the predicted plot to the real
frame area and counts the percentage of video sequences with an intersection ratio area greater than
a certain threshold to the total sequences. However, the precision plot cannot reflect the change of
target scale and size.

In this test set, we compared DaSiamRPN [15], Eco_HC [42], SiamRPN [5], BACF [43], Staple
[44], and SiamFC [4]. It can be seen in Fig. 4 that the proposed tracker achieves satisfactory
performance on OTB100, which is close to the effect of DaSiamRPN. The proposed tracker attains
a score of 0.654 in the success plot and 0.875 in the precision plot. It is 1.1% higher than ECO-HC
in the success plot and 1.9% higher than ECO-HC in the precision plot. Compared with SiamRPN,
the proposed tracker’s score increases by approximately 1.7% in the success plot and by 2.4% in the
precision plot. Because we retain the position information and spatial dependence in the coordinate
attention, the proposed tracker achieves a favorable effect under the challenge of fast motion and
scale transformation. It can be seen in Fig. 5 that, in the fast-motion challenge, the proposed tracker
achieves a good score of 0.856, which is 3.6% higher than that of DaSiamRPN.

Figure 4: Success and precision plots on OTB100

Figure 5: (Continued)
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Figure 5: Comparisons on OTB100 with challenging attributes: illumination variation, scale variation,
fast motion, and in-plane rotation. Proposed tracker achieves the best performance for these aspects
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5.2 Evaluation Results on VOT2016
VOT2016 is a dataset that has been used more and more popular in recent years. It contains 60

public sequences with different challenge factors. The sequence of the VOT2016 dataset is the same
as the sequence of the VOT2015 dataset. However, the ground-truth boxes of VOT2016 are more
accurate than the ground-truth boxes of the VOT2015 dataset. In VOT2016, we used the officially
given evaluation indicators Expected Average Overlap (EAO), accuracy, and robustness to compare
different trackers. When the overlap degree between the prediction box and the ground truth box is
zero, we think that the tracker fails. In OTB100, only the initial frame of the video is used to initialize
the tracker, and whenever the target is lost, subsequent frames will not be tracked. Moreover, whenever
the target is followed and lost in the VOT2016 dataset, five frames are spaced, and the model is re-
initialized. Robustness is used to measure the failure rate of the tracker and accuracy to calculate the
overlap rate between the predicted and real boxes. EAO is a composite metric that takes into account
the accuracy and robustness and is commonly used to rank trackers.

Listed in Table 1 are common trackers used in recent years, such as ROAM and SPM. Despite the
great difficulties, the proposed tracker still achieves good scores on VOT2016, i.e., an accuracy of 0.638,
robustness of 0.238, and an EAO of 0.414. Among all trackers, the proposed tracker achieved the best
accuracy among those listed, and the third-highest EAO. We believe this result is closely related to our
fusion of appearance and semantic features. Compared with SiamRPN, which achieves an accuracy
of 0.56, robustness of 0.26, and an EAO of 0.344, the performance in these measures is improved by
7.8%, 2.2%, and 7%, respectively, which is a great improvement. Compared with C-RPN’s EAO, that
of the proposed tracker has increased by approximately 5%. We then compared the proposed tracker
with DaSiamRPN and found that the proposed tracker increased by 2.8% in accuracy and by 0.3% in
EAO, but that the failure rate increased by 1.8%.

Table 1: Comparisons on VOT-2016. The three best results are highlighted in red, green, and blue

Tracker ROAM
[45]

SPM
[28]

DaSiam
RPN [15]

ASRCF
[46]

C-RPN
[27]

Siam
RPN [5]

UDT
[47]

TADT
[48]

SiamFC
[4]

OURS

Accuracy 0.599 0.620 0.610 0.563 0.594 0.56 0.530 0.550 0.53 0.638
Robustness 0.174 0.210 0.220 0.187 - - - - 0.46 0.238
EAO 0.441 0.434 0.411 0.391 0.363 0.344 0.301 0.299 0.235 0.414

5.3 Evaluation Results on UAV123
UAV123 is an aerial test dataset released in 2016 containing 123 video sequences obtained from

low-altitude aerial photography, with an average sequence length of 915 frames. All sequences in
the video are fully annotated with upright bounding boxes. The targets in this dataset mainly have
challenges such as fast motion, large scale changes, long videos, and out-of-view targets. These all
bring great challenges to tracking; so, the difficulty in testing this dataset is higher than that in testing
the other datasets. We compare SiamCAR [18], SiamRPN [5], BACF [43], Staple [44], and SRDCF
[49] all mainstream trackers, with the proposed tracker. As can be seen in Fig. 6, the proposed tracker
achieved a success-plot score of 0.615 and a precision-plot score of 0.815. Compared with SiamCAR,
the proposed tracker obtains a similar result in success plot and a decrease of 0.8% in precision plot.
Compared with SiamRPN, it exhibits increases of 5.8% in success plot and of 4.7% in precision plot.
The objects in the UAV123 dataset tend to exhibit fast motion and are small targets, and the proposed
tracker is very good at dealing with such challenges. Because it adds coordinate attention, which retains



922 CMES, 2022, vol.132, no.3

the position and spatial information of the object, the proposed tracker has a better effect in dealing
with this problem. The effect of the OTB100 dataset in single-challenge fast motion also demonstrates
this point.

Figure 6: Comparison of the proposed tracker with state-of-the-art trackers on the UAV123 dataset
on success and precision plots

5.4 Evaluation Results on GOT-10k
GOT-10k is a general dataset issued by the Chinese Academy of Sciences for object tracking in

the field. It contains more than 10,000 videos and 560 categories, which are divided into training and
testing datasets. The objects are real objects moving in the wild. To compare these deep trackers more
fairly, GOT-10k stipulates that all trackers are trained using the same dataset. One must train the
model on a given training dataset and then submit the model for testing on the official website. After
uploading the model, the website automatically provides the tracking result. The evaluation indicator
of this dataset is the average overlap (AO) and the success rate (SR). AO represents the average degree
of overlap between the predicted and ground-truth bounding boxes. SR represents the proportion of
frames that are successfully tracked, and SR0.5 and SR0.7 represent the proportions of frames with
overlap ratios of successfully tracked frames exceeding 0.5 and 0.7, respectively. Frames per second
(FPS) is used to measure the speed of the tracker.

Of the trackers listed in Table 2, the SR0.5 and SR0.75 of the proposed tracker both achieved the
highest values. Its AO improved by nearly 2% compared to that of SiamRPN_R18, and it achieved a
result approximately 5% higher than that of THOR. The proposed tracker’s increases in SR0.75 were
the most, 3.8% higher than the second-place tracker, SPM. Because the proposed tracker joins the CA
block and requires additional calculations, the speed will decrease. However, the FPS of the proposed
tracker still reached 39.27, surpassing most Siamese trackers, and it can run in real time.
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Table 2: Comparisons on GOT-10k. The best three results are highlighted in red, green, and blue

Tracker AO SR0.5 SR0.75 FPS Hardware Language

BACF [43] 0.260 0.262 0.101 14.44 CPU Matlab
CFNet [25] 0.293 0.265 0.087 35.62 Titan X Matlab
MDnet [50] 0.299 0.303 0.099 1.52 Titan X Python
ECO [42] 0.316 0.309 0.111 2.62 CPU Matlab
CCOT [51] 0.325 0.328 0.107 0.68 CPU Matlab
SiamFC [4] 0.374 0.404 0.144 25.81 Titan X Matlab
THOR [52] 0.447 0.538 0.204 1.00 RTX 2070 Python
SiamRPN_R18 0.483 0.581 0.270 97.55 Titan X Python
SPM [28] 0.513 0.593 0.359 72.30 Titan Xp Python
OURS 0.502 0.597 0.394 39.27 RTX 2080Ti Python

5.5 Ablation Studies
To illustrate the effectiveness of the proposed innovations, we conducted a series of experiments

on UAV123, and the results are shown in Table 3.

Table 3: Ablation studies of the proposed tracker on UAV123

Method Success Δs Precision Δp

Baseline 0.581 - 0.767 -
Baseline + RPN 0.597 +1.6% 0.783 +1.6%
Baseline + CA 0.605 +2.4% 0.804 +3.7%
Baseline + CA + RPN 0.615 +3.4% 0.815 +4.8%
Note: RPN and CA represent the RPN block and the CA block, respectively. Δs and Δp represent
increases in success and precision, respectively.

Our baseline used the SiamRPN tracker upgraded from the backbone network to ResNet. This
shows the performance of adding an RPN block and CA and adding both. RPN represents the RPN
block added in the shallow position layer and CA the CA block. The structure of cascade RPN is
formed by adding the RPN, and the results of the two regressions are fused. Compared with the
baseline, it can be seen that adding an RPN leads to a 1.6% improvement in success plot and a 1.6%
improvement in precision plot. The CA block not only pays attention to location information but also
preserves channel information, which enhances feature representation. It can be seen that, compared
to the baseline, adding CA achieved a 2.4% improvement in success plot and a 3.7% improvement
in precision plot. Finally, we added both of these methods to obtain our tracker. It can be seen that
the performance of the proposed tracker has been greatly improved as it exhibits increases of 3.4% in
success plot and of 4.8% in precision plot.

6 Conclusion

In this paper, we propose an object-tracking algorithm combining cascaded RPN fusion and
coordinate attention and use large-scale image pairs for end-to-end training. The coordinate attention
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embeds location information into channel attention while maintaining channel associations and uses
location information to establish long-term spatial location dependence. A CA block is used to
enhance the representation of features. We also added the RPN block in the shallow layers to form
a cascaded RPN structure for fusing the processing results of different layers, to make the tracker
more robust. In addition, we conducted a series of experiments on four datasets and achieved good
performance. In particular, the proposed tracker exhibits good efficacy in dealing with fast motion
and large-scale changes. In the future, we plan to improve the tracking network based on anchor
freeness, because anchor-free tracking has fewer parameters, and the entire tracking process is concise.
We believe that the cross-entropy loss function used for classification in the tracking network requires
improvement, since it only classifies the foreground and background of the samples and does not take
into account the positive and negative sample imbalance and the hard and easy sample imbalance
that exist during the training process. Meanwhile, the intersection-over-union loss function used for
regression only considers the area of the prediction and real frames, without paying attention to the
distance between the two, along with the similarity of the shape, which is not comprehensive enough
and must be improved.
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