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ABSTRACT

Water quality analysis is essential to understand the ecological status of aquatic life. Conventional water quality
index (WQI) assessment methods are limited to features such as water acidic or basicity (pH), dissolved oxygen
(DO), biological oxygen demand (BOD), chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), and
suspended solids (SS). These features are often insufficient to represent the water quality of a heavy metal–polluted
river. Therefore, this paper aims to explore and analyze novel input features in order to formulate an improved
WQI. In this work, prospective insights on the feasibility of alternative water quality input variables as new
discriminant features are discussed. The new discriminant features are a step toward formulating adaptive water
quality parameters according to the land use activities surrounding the river. The results and analysis obtained
from this study have proven the possibility of predicting WQI using new input features. This work analyzes 17
new input features, namely conductivity (COND), salinity (SAL), turbidity (TUR), dissolved solids (DS), nitrate
(NO3), chloride (Cl), phosphate (PO4), arsenic (As), chromium (Cr), zinc (Zn), calcium (Ca), iron (Fe), potassium
(K), magnesium (Mg), sodium (Na), E. coli, and total coliform, in predicting WQI using machine learning
techniques. Five regression algorithms—random forest (RF), AdaBoost, support vector regression (SVR), decision
tree regression (DTR), and multilayer perception (MLP)—are applied for preliminary model selection. The results
show that the RF algorithm exhibits better prediction performance, with R2 of 0.974. Then, this work proposes a
modified RF by incorporating the synthetic minority oversampling technique (SMOTE) into the conventional RF
method. The proposed modified RF method is shown to achieve 77.68%, 74%, 69%, and 71% accuracy, precision,
recall, and F1-score, respectively. In addition, the sensitivity analysis is included to highlight the importance of the
turbidity variable in WQI prediction. The results of sensitivity analysis highlight the importance of certain water
quality variables that are not present in the conventional WQI formulation.
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1 Introduction

Water security is a rising global predicament at present. The scarcity of clean water could create
a calamity of waterborne diseases around the world. Water pollution could conflict with agricultural
and industrial output, which can lead to environmental degradation [1]. Factors that influence water
quality include natural occurrences from the climate as well as anthropogenic inputs coming from
untreated municipal waste, mining activities, industrial effluent discharges, sediment runoff, and land
use changes [2,3].

Developed and developing nations across the world are constantly enforcing laws and reforming
water quality management to improve sanitation and water quality status. The water quality index
(WQI) has been commonly used as a universal indicator to convert several quantitative and intensive
parameters into a single qualitative variable. Due to its simplicity, WQI is commonly utilized to
describe the physical, chemical, and biological properties of water bodies. This representation of WQI
is effective for water quality assessment and resource management [4].

In Malaysia, 90% of the nation’s water supply is derived from rivers and reservoirs. However, the
per capita demand for water availability is growing at a rapid pace to support heavy manufacturing
and large-scale crop cultivation. Population growth, improvement in living standards, and rapid
urbanization have also imposed additional pressure on uncontaminated water resources [5]. According
to statistics from the Malaysian Department of Environment (DOE) in 2017 [6], among the 477 rivers
monitored in Malaysia, 47.0% were clean, 43.4% were semi-polluted, and 9.64% were polluted. In
1974, DOE adopted an ‘Opinion Poll WQI (OP-WQI)’ to rank the level of water quality. The panel of
experts identified dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand
(COD), pH, ammoniacal nitrogen (NH3-N), and suspended solids (SS) as the utmost priorities [7].

In other countries, WQI models with various structures and weightings are developed by using
sub-indexing and aggregation based on local opinions. The considered variables are inconsistent, since
water pollutants such as heavy metals, pesticides, toxic compounds, and radioactive constituents are
not included when evaluating water quality [8,9]. Most of the WQI models developed are region-
specific, based on expert views and local guidelines, and many researchers have also highlighted the
uncertainty of the WQI model [10–12].

Determination of water quality should be site-specific, with weightings decided according to water
usage, taking into account such important parameters as phosphorus, nitrogen, trace metals, and fecal
coliform. These variables are missing from the current Malaysian WQI assessment, making it less
effective [13]. Malaysia’s WQI index only considers the use of common water quality parameters, hence
leading to eclipsing problems. Eclipsing is where the true nature of water quality is not reflected due
to inappropriate sub-indexing and aggregation functions [9].

The number of WQI parameters adopted in Malaysia is not flexible for the user and is independent
of the natural and anthropogenic factors. Thus, this study aims to investigate the potential of other
water quality parameters as input variables. The primary motivation of this study is to explore
the possibilities of predicting water quality under the absence of six primary water quality input
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variables (DO, BOD, COD, NH3-N, SS, pH). To the best of the author’s knowledge, there is limited
technical literature or research that focuses on predicting the water quality index using other water
quality parameters. Hence, this study serves to fill the research gap of understanding the abilities
of different water quality parameters in the assessment of water quality using a machine learning
approach. The remaining sections of this paper are arranged as follows: Section 2 introduces the
manual computation of the water quality index and reviews the research gap of existing modeling
techniques using artificial intelligence. Section 3 outlines the area of study as well as the properties
of the dataset. Section 4 presents the applied methodology for modeling and the proposed modeling
schema. Section 5 discusses the modeling results and analysis of the input parameters. Section 6 ends
the paper with a conclusion.

2 Literature Review
2.1 WQI Formulation

WQI is formulated from six monitoring parameters: dissolved oxygen (DO), biological oxygen
demand (BOD), chemical oxygen demand (COD), suspended solids (SS), ammoniacal nitrogen (AN),
and water acidity or basicity (pH). The formula involves subindex (SI) computation given in Table 1
before being fitted into the weighted formula in Eq. (1). Water quality is classified based on the
Interim National Water Quality Standards for Malaysia (INWQS) shown in Table 2 [14]. Class I is
classified as unpolluted and safe for drinking, Class II is fit for recreational and aquatic use yet requires
conventional treatment, Class III is considered as polluted water supply and hence requires extensive
treatment, Class IV is only for irrigation or domestic use, whereas Class V cannot be utilized for any
purposes [15].

WQI = 0.22SIDO + 0.19SIBOD + 0.16SICOD + 0.16SISS + 0.15AN + 0.12SIpH (1)

Table 1: The estimation of subindex values [14]

Parameter Estimation value Subindex equation

DO (in % saturation) x ≤ 8 SIDO = 0
8 < x < 92 SIDO = −0.395+0.030x2−0.00020x3

x ≥ 92 SIDO = 100
BOD x ≤ 5 SIBOD = 100.4 − 4.23x

x > 5 SIBOD = 108e−0.055x − 0.1x
COD x ≤ 20 SICOD = −1.33x + 99.1

x > 20 SICOD = 103e−0.0157x − 0.04x
NH3-N x ≤ 0.03 SIAN = 100.5 − 105x

0.3 < x < 4 SIAN = 94e−0.573x − 5 |x − 2|
x ≥ 4 SIAN = 0

SS x ≤ 100 SISS = 97.5e−0.00676x + 0.05x
100 < x < 1000 SISS = 71e−0.0061x + 0.015x
x ≥ 1000 SISS = 0

pH x < 5.5 SIpH = 17.2 − 17.2x + 5.02x2

5.5 ≤ x < 7 SIpH = −242 + 95.5x − 6.67x2

7 ≤ x < 8.75 SIpH = −181 + 82.4x − 6.05x2

x ≥ 8.75 SIpH = 536 − 77.0x + 2.76x2
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Table 2: DOE water quality index classification [14]

Parameter Unit Class

I II III IV V

NH3-N mg/l <0.1 0.1–0.3 0.3–0.9 0.9–2.7 >2.7
BOD mg/l <1 1–3 3–6 6–12 >12
COD mg/l <10 10–25 25–50 50–100 >100
DO mg/l >7 5–7 3–5 1–3 <1
pH – >7 6–7 5–6 <5 >5
SS mg/l <25 25–50 50–150 150–300 >300
WQI – <92.7 76.5–92.7 51.9–76.5 31.0–51.9 <31.0

Manual water quality calculation is lengthy, as it requires the process of converting raw data
into subindex. Therefore, alternative techniques have been explored recently to provide a direct and
simplified approach compared to the time-consuming computation process.

2.2 Machine Learning in WQI
River engineering to predict the ecological variables of water quality using artificial intelligence

(AI) and machine learning (ML) is a widely recognized method to simplify the computation process
of water quality assessment. Water quality parameters contain complex interactions and possess
several nonlinear variables. AI techniques are adopted to understand the most suitable and efficient
approach for modeling nonlinear inputs, evolving as a black-box model which brings environmental
insights for strategic and planning purposes [16]. Various research works and technical literature are
published based on the application of ML models such as neural networks, adaptive neuro-fuzzy
inference systems, regression methods, ensemble techniques, and other hybrid models in water resource
management [17–20]. These publications strive to understand the correlation of each water quality
parameter, investigate the minimal number of inputs required for water quality index prediction, and
spatially assess the point source and distribution of water pollution.

The most prominent tool for water quality modeling is artificial neural networks (ANNs), as
the outcomes delivered from ANNs are consistently high in accuracy. ANNs are remarkable at
forecasting and identifying problem variables from a set of complex or inaccurate data. When it comes
to estimating WQI using ANN, the use of backpropagation neural networks (BPNN) and radial basis
function neural networks (RBFNN) is equally effective for simplifying the computation process of
WQI in the Langat and Klang Rivers, Malaysia [21]. The parameters used for the work in [21] are based
on DO, BOD, COD, NH3-N, SS, and pH, with the best coefficient of determination (R2) evaluated
using RBFNN at 0.9807 when BOD is excluded from the input. The authors ranked DO as having
the highest correlation with WQI. Othman et al. [15] constructed an ANN model of 98.78% accuracy
as the basis of water quality assessment. The publication benchmarked that the best performance
was attained when only five input parameters were considered, eliminating pH as an input variable.
Nevertheless, ANNs are prone to overfitting and facing local minima problems [22], though these
shortcomings could be overcome with optimization and generalization techniques.



CMES, 2022, vol.132, no.3 1015

Tiwari et al. [23] explored the capability of an adaptive neuro-fuzzy inference system (ANFIS) by
predicting WQI based on two clustering techniques, fuzzy C-means (FCM) and subtractive clustering
(SC). The model’s performance was significantly close to the experimental value, and it suggested
ammonia, chlorides, and fecal coliform as the most sensitive parameters for water quality assessment
in India. Multistep modeling performed by Elkiran et al. [24] compared several AI models, i.e.,
BPNN, ANFIS, support vector machine (SVM), and a linear autoregressive integrated moving average
(ARIMA) model, in DO prediction. The authors explained that ANFIS might have better verification
in two of the three stations evaluated, while SVM has an edge in prediction performance in one of the
stations. Abobakr Yahya et al. [25] developed an SVM approach for ungauged catchment water quality
prediction; the presented model proved to be efficient, with high precision, yet sensitive to the error
level.

2.3 Research Gap in WQI Modeling
In summary, based on the above literature, it is evident that water quality prediction models

based on machine learning are reliable and capable. It is also apparent that the determinant features
of water quality vary according to the area of study, since different rivers have different land use
purposes, and hence, certain water quality parameters may seem significant for a specific river but
not be universally applicable. Although the application of AI models to water quality assessment has
significantly increased, many models merely consider input parameters from the water quality index
formula. Meanwhile, other water quality parameters and their role in water quality assessment have
yet to be explored. There are approximately 30 water quality parameters, which include biological,
chemical, and physical parameters, as well as trace metals of water bodies that interact with each
other and affect water quality. However, there is a lack of critical parameters in most WQI models [9];
for example, the Malaysian WQI only considers common WQ inputs, neglecting biological indicators.

Moreover, the influence of land use, human activities, and socioeconomic behavior have different
effects on the variability of water quality. The hydrological process of rivers is dynamic and complex;
hence, it is mandatory to understand other significantly influential variables that have nonlinear
processes in water quality assessment. This information is essential as a way toward formulating water
quality in terms of adaptive parameters that suit the land use activities around the river.

The existing development of water quality modeling had the following research gaps: (1) Existing
publications are focused on comparative analysis of different AI techniques and approaches, aiming
at simplifying the WQI calculation process; the current WQI was limited to just six water quality
parameters, so other water quality parameters were not taken into consideration. Models should be
updated when new data or evidence is found about what is polluting the water source. (2) Sensitivity
analysis from research articles [15,21,26] has continuously concluded that among the six water quality
input variables, certain variables can be omitted, thus suggesting the possibility to investigate more
water quality aspects for water quality assessment and management. (3) Change in anthropogenic
activities in the 21st century has had an impact on water quality exposure, hence the rising need to
redefine important water quality variables as input parameters.

3 Materials and Methods
3.1 Study Area

The two rivers considered in this research study are the Klang River and the Langat River (Fig. 1);
most of the rivers in both river basins are in the semi-polluted and polluted categories within the
Federal Territory of Kuala Lumpur and state of Selangor, Malaysia. The two main rivers supply
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hundreds of thousands of people in the Klang Valley. Therefore, consumers were highly affected when
wastewater treatment plants were forced to shut down due to water pollution. Hence, there is an arising
need to monitor the health of both rivers, as they are important water sources for domestic use.

The Klang River is approximately 120 km in length with a basin area of 1288 km2, located at
2°55′N–3°25′N latitude and 101′I5′E–101°55′E longitude. The upstream begins in the mountains of
Peninsular Malaysia at 1200 m altitude, comprising the Gombak and Hulu Langat districts, running
through the heart of Kuala Lumpur, then crosses part of Selangor state before stemming with Port
Klang to the Straits of Malacca. Most of the river basin is surrounded by urban infrastructures and
industrial, recreational, and residential utilities. The river lies in a tropical climate area with heavy
rainfall during the Southwest and Northeast Monsoons, average monthly humidity of 80%–85%, and
uniform temperature between 27°C and 31°C. The area receives daily sunshine for 4.5 to 7.0 h per
day, with an evaporation rate ranging between 3.0 and 5.0 mm daily [26,27]. The water quality of the
Klang River basin is deteriorating due to the combination of rapid urbanization and high occurrences
of pollution. Based on Sharif et al. [28], among the sources of pollution are residential and industrial
runoff from construction sites and sewage discharge from treatment plants. It is estimated that 77,000
metric tons of garbage are dumped into the Klang River every year.

Meanwhile, the Langat River stretches across a total catchment area of 1815 km2 across Kajang,
Cheras, Bangi, and Putrajaya, situated between latitudes 2°40′M 152′′N and 3°16′M 15′′N and
longitudes 101°19′M 20′′E and 102°1′M 10′′E. The main river is 141 km long, located 40 km to the
east of Kuala Lumpur, featuring large tributaries such as the Semenyih River, the Lui River, and the
Beranang River. The river flows from a highland altitude of 1500 m at the Pahang–Selangor border,
draining towards the Straits of Malacca. The Langat and Semenyih Reservoirs are built for domestic
and industrial water supplies and to generate power for Langat Valley. The Langat River also supports
numerous activities such as effluent discharge, irrigation, fishing, and sand mining along its streams.
The catchment also serves as an important water source facility to 1.2 million people [25,29].

3.2 Data Collection and Monitoring Sites
The dataset used for this study was obtained from the Department of Environment (DOE),

Malaysia at 94 monitoring stations (shown in Fig. 1) along the Klang and Langat Rivers during the
period between 2014 and 2019. The water quality parameters that are included in this study are DO,
BOD, COD, NH3-N, SS, pH, conductivity (COND), salinity (SAL), turbidity (TUR), dissolved solids
(DS), nitrate (NO3), chloride (Cl), phosphate (PO4), Arsenic (As), Chromium (Cr), Zinc (Zn), Calcium
(Ca), Iron (Fe), Potassium (K), Magnesium (Mg), Sodium (Na), E. coli, and total coliform. The type
of pollution for both the Klang and Langat Rivers is similar, as both areas are located in densely
populated industrial and residential districts; given the average similarity of the data analyzed, both
datasets were merged, and the statistical properties of each river are compiled in Table 3 below.
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Figure 1: Klang river and Langat river at Selangor, Malaysia

Table 3: Data set statistical properties

Parameters Min Max Mean SD

pH 4.15 9.83 7.34 0.38
DO (mg/l) 0.01 9.13 5.49 1.75
BOD (mg/l) 1.00 89.00 10.21 7.69
COD (mg/l) 4.50 263.40 31.48 23.06
SS (mg/l) 0.00 4400.0 46.93 165.18
NH3-N (mg/l) 0.009 30.90 3.94 3.69
COND (μS/cm) 3.50 38577.82 373.82 1963.73
SAL (ppt g/l) 0.00 24.43 0.20 1.2
TUR (NTU) 0.00 3529.2 43.19 111.68
DS (mg/l) 1.00 24800.0 249.33 1341.23
NO3 (mg/l) 0.01 280.0 1.24 6.39
Cl (mg/l) 0.948 15500.0 68.94 682.64
PO4 (mg/l) 0.01 9.13 0.3811 0.5004
As (mg/l) 0.0009 0.604 0.0176 0.0295

(Continued)
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Table 3 (continued)

Parameters Min Max Mean SD

Cr (mg/l) 0.0009 0.241 0.0012 0.0035
Zn (mg/l) 0.001 3.78 0.0292 0.0855
Ca (mg/l) 0.1 298 15.14 16.92
Fe (mg/l) 0.0097 22.6 0.2715 0.5874
K (mg/l) 0.10 500 6.119 16.96
Mg (mg/l) 0.10 2600 5.067 53.72
Na (mg/l) 0.10 8280 43.15 363.25
E. coli (cfu/100 ml) 0.00 6.6e9 28.4e6 205.9e6
Total coliform
(cfu/100 ml)

0.00 1500e9 4.95e9 30.9e9

The distribution of DO in the Klang River ranged between 0.50 mg/l and 11.51 mg/l, with an
average of 5.4 mg/l; a significant fraction of DO values fall in Class III. As compared to the Langat
River, which has an average DO of 6.0 mg/l, the Klang River is much more deprived of dissolved
oxygen to sustain aquatic life. Both rivers have a mean DO value of 5.49. Pollution in the Klang River
is much more evident, as BOD and COD levels are in Class IV (10.59 mg/l) and Class III (32.47 mg/l).
The Klang River is at serious ecological risk, as the mean value of NH3-N is categorized in Class V at
4.28 mg/l.

The pH value, on the other hand, is in Class I, similar for both the Klang and Langat Rivers at an
average of 7.34 and 7.31, respectively. The concentration of SS in the Klang River is under control in
Class II, with a mean of 35.05 mg/l, whereas the SS concentration in the Langat River demands more
attention, as it is in Class III (115.22 mg/l). The BOD and COD concentration of the Langat River are
in the same class as the Klang River; ammonia levels, averaging 2.0 mg/l, fall into Class IV.

Throughout the monitoring period, the Klang River was classified as Class III 56.7% of the time,
and 62.2% of the Langat River’s data are categorized as polluted in Class III according to the WQI
index. The distribution of WQI for both rivers is illustrated in Fig. 2. The WQI classification of the
entire dataset has the highest percentage in Class III (57.42%). Overall, only a fraction (28.75%) of
WQI data are in Class I (2.72%) and Class II (26.02%). There are a total of 759 instances where the
water was unfit for any purpose.

The variability of samples is largely due to the geographical variation of pollution sources
dispersed into the river basin. Both rivers flow through urban areas and townships where wastewater
or sewage effluent is poured into the river channels. For example, significant variation can be observed
in turbidity, as the maximum value is 3529 NTU and the lowest is 0.00 NTU. The large variation could
be the impact of industrial effluents and urban runoff mixing from water treatment processes.
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Figure 2: Class distribution of water quality in Klang and Langat River for n = 5,483 samples

4 Methodology

The major goal of this study is to propose a prediction model that predicts WQI using a new
set of features instead of the conventional features that are usually applied in the WQI formula.
Therefore, the six common WQ variables (DO, BOD, COD, NH3-N, SS, and pH) were not included in
the modeling process. Instead, new water quality features are applied in this work, including COND,
SAL, TUR, DS, NO3, Cl, PO4, As, Cr, Zn, Ca, Fe, K, Mg, Na, E. coli, and total coliform. The
methodology of this study is illustrated in Fig. 3 below, which involves data preprocessing of the
dataset, followed by preliminary model selection using five machine learning regression algorithms.
This step acts as the data analysis stage to select a suitable model capable of predicting WQI with
the 17 input features. Next, the best-fitting algorithm is chosen for classification training. In the
training phase, two sets of training data are applied; the first set is the unmodified training data, which
contain imbalanced classes, while the next set of training data is modified using the data augmentation
technique. The synthetic minority oversampling technique (SMOTE) is an oversampling approach
to recreate synthetic examples of minority classes [30]. The results are then analyzed based on the
accuracy, precision, recall, and confusion matrix. Lastly, sensitivity analysis was carried out to evaluate
the relative importance of the 17 new input parameters among all 23 input parameters.

4.1 Preliminary Model Selection
Regression algorithms are suggested in this study as a data analysis step for choosing an algorithm

that could predict the continuous values of WQI. The regression technique is a supervised machine
learning algorithm that allows the prediction of a continuous outcome from one or more predictors.
The basis of this technique often involves modeling the relationship and dependencies between the
target output and input features to predict the value of a given new datapoint. The following five
machine-learning algorithms are employed in this study.

4.1.1 Multilayer Perception

Multilayer perception (MLP) is a variant of the classical ANN model, popular for both classi-
fication and regression. MLP models operate on a network of sigmoid activation neurons connected
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by links of several weights. The three basic layers of the MLP model consist of the input layer going
through hidden layers to reach the output layer [31].

Figure 3: The proposed methodology

The net input Neti is the addition of the threshold bi with the summation of input values x (xi

to xj) multiplied by assigned weights w (wi to wij). The weights represent the strength of each neuron,
which is optimized throughout the whole training process.

Neti = bi +
∑n

j=1
wijxj (2)

The activation function then accepts the input from the previous layer and transfers the output to
the next layer [29].

f (Neti) = 1
1 + e−Neti

(3)

4.1.2 AdaBoost

Adaptive boosting (AdaBoost) is an ensemble learning-based model that combines multiple base
learners, which generally outperform a single learner. The AdaBoost regression can automatically
adjust the weightage of the model based on estimation errors by generating multiple regressors [32].
It has the potential to enhance the generalization capability of nonlinear and complicated regression
problems [33].

4.1.3 Support Vector Regression Machine

Support vector regression machines (SVRMs) are a generalization of support vector machines to
estimate the continuous output value. SVRMs are widely known in pattern recognition and regression
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problems due to their generalization principle adopted from the structural risk minimization theory
(SRM), which minimizes the empirical risks of overfitting in statistical learning theory [34]. The
development of SVR models is aimed at reducing the upper bound error, where the four main kernel
functions of the SVR model are the linear, polynomial, radial basis, and sigmoid functions [35].

The value of the kernel function K
(
xi, xj

)
is equal to the inner product of two vectors, xi and xj.

The common kernel function types are shown in Table 4, where γ , r, and d are kernel parameters.

Table 4: Kernel function [25]

Linear K
(
xi, xj

) = xT
i × xj

Polynomial K
(
xi, xj

) = (
γ xT

i × xj + r
)d

Radial basis K
(
xi, xj

) = exp
(
− ∥∥xi − xj

∥∥2
)

Sigmoid K
(
xi, xj

) = tanh
(
xT

i × xj + r
)

4.1.4 Decision Tree Regression

Decision tree regression (DTR) is a popular machine learning tool used in event outcome
prediction, investment risks, and decision-making. Decision trees classify instances based on feature
values, starting from the root node. The instances are represented with nodes, and each branch in the
decision tree holds a value that the node can assume [36]. The decision tree model applies a top-down,
recursive divide-and-conquer mode. After the feature of the root node is selected, the branch of each
feature is given possible values, and this process is repeated recursively until all instances contain the
same class. The decision tree approach is useful in predicting unpredictable outcomes by adding new
scenarios into the complex dataset until a behavioral pattern is found [26]. The DTR algorithm extracts
the features from the dataset, organizes the features into a tree-shaped structure, and combines a series
of basic rules in the prediction stage [17].

4.1.5 Random Forest

Random forest (RF) is an ensemble learning algorithm that can be both a classification and a
regression method. The RF creates several decision tree predictors that were initially uncorrelated
from the sample dataset and assembles these weak learners into a strong learner [37]. The training
data are randomized into a few samples and formed into several tree predictors. The RF algorithm
shown in Fig. 4 generates results based on the average result of each tree [38,39].

4.2 Regression Evaluation
In order to evaluate the goodness of fit of the trained algorithms, four statistical measurements

are applied to analyze the performance of the RF, AdaBoost, DTR, SVR, and MLP-NN models. The
performance metrics applied are the mean absolute error (MAE), mean squared error (MSE), root
mean squared error (RMSE), and the coefficient of determination (R2). MAE is often used to represent
the discrepancy of error expected from the forecast on average, it is the average absolute difference
between observed and predicted outcomes. Meanwhile, MSE and RMSE represent the squaring or
square root of the computed error. Both measures are disproportionate to the actual increase in error.
The R2 metric measures the proportion variation of the outcome estimated by predictor variables.
In regression models, R2 is the squared correlation between observed and predicted values. A higher
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R2 and lower MAE, MSE, and RMSE values present better fitness and smaller discrepancy. These
statistical measures are calculated based on the following formulas:

MAE =
∑n

i=1

∣∣yi − ŷ1

∣∣
n

(4)

MSE = 1
n

n∑
i=1

(
yi − ŷ

)2
(5)

RMSE =
√√√√1

n

n∑
i=1

(
yi − ŷ

)2
(6)

R2 = 1 −
∑

i

(
yi − ŷi

)2

∑
i (yi − y)

2 (7)

Figure 4: The random forest pseudocode applied in this work

4.3 Classification Training
Classification training refers to models’ learning to categorize class labels based on the input data.

The classification models assign label values and separate new observations into a specific class. In this
study, classes are generated from the WQI ranges provided in Table 2. Discrete categorical data are
converted from the continuous WQI values based on the index range. There are a total of five classes
with Class III as the majority class, while Class I and Class V have a limited number of observations.
This section of the study includes the methodology proposed for addressing the case of an imbalanced
dataset.

4.3.1 Synthetic Minority Oversampling Technique (SMOTE)

An imbalanced dataset occurs when the dataset contains classification categories that are not
equally represented. Imbalanced datasets are commonly handled by using oversampling or under-
sampling techniques. SMOTE is a feasible approach for oversampling the dataset with recreation of
synthetic samples for the minority class [30]. The new data are sampled along the line segments joining
k minority class samples based on interpolation (Fig. 5).
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Figure 5: An illustration of the SMOTE interpolation of a selected minority sample, extracted from
Douzas et al. [40]

4.3.2 Classification Evaluation

Several performance metrics are applied in the evaluation of the classification models. The
confusion matrix is used to show information between the actual and predicted values performed
by the classification system by means of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN). A common measure of classification performance is prediction accuracy,
which shows the proportion of the total number of correct predictions against the total number of the
testing dataset.

Accuracy = TP + TN
N

× 100% (8)

where N is the total number of testing data.

Precision, recall, and F1-score are also calculated to evaluate the effectiveness of the classifiers.
Precision measures the ratio of correct positive class predictions to the total predicted positives. Recall
or sensitivity quantifies the ratio of correct positive class predictions to the total positive observations.
The F-measure is a score balancing between precision and recall. Ideally, measures closer to one show
the best performance.

Precision = TP
TP + FP

(9)

Recall = TP
TP + FN

(10)

F1 score = 2 × Precision × Recall
Precision + Recall

(11)

4.4 Sensitivity Analysis
Sensitivity analysis is the assessment of the importance of each input variable in the fitted model.

The analysis is based on the ‘leave-one-out’ method, where changes in network error are recorded.
The analysis performs parameter ranking according to the ratio of the leave-one-out model with the
reference model. The results of sensitivity analysis often provide useful information on the effects of
each predictor, which is insightful for pruning input parameters [7].
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In this study, two sensitivity analyses are carried out to compare the rankings of all 23 parameters
with the 17 new parameters. The method computes the misclassification rate when each variable is
removed. The ratio of each variable is then calculated based on the error of the reduced model against
the full model. A higher ratio returns higher significance of the parameter in the system.

5 Results and Discussion
5.1 Input Variables and Data Processing

A total of 5,483 samples of water quality parameters were obtained after pre-processing of the
dataset received from the Department of Environment. Features such as E. coli and dissolved solids
have very wide scales and distributions, which may lead to inaccuracy and degradation of the predictive
performance, specifically algorithms that incorporate dimensional or distance elements. Hence, data
normalization is applied to the dataset by setting the minimum and maximum threshold to be between
[−1, +1]. To ensure each water quality variable has equal bounds in the analysis, the dataset is fit into
a mean of zero and a variance of one.

Next, the water quality index (WQI) is calculated based on Eq. (1) and classified into five classes
shown in Table 2 and Fig. 2. Split validation is used in this study by splitting the data into two groups:
80% for training and 20% for testing.

The correlation coefficient between input variables for the Langat and Klang Rivers is depicted
in Table 5. It is apparent that salinity, DS, Cl, Ca, K, Mg, and Na are significantly correlated with
conductivity at r > 0.8. A high positive correlation is also observed between Na and K (r = 0.92),
which in turn are at r = 0.97 and 0.96 with Cl, respectively. The hardness of water could also be
represented by the good relation between Ca and Cl (0.80). These values show the influence of ion
concentration on the salinity and conductivity of the river.

The highest negative correlation is found between NO3 and As (−0.04), and between Fe and K
(−0.04), Mg (−0.03), and Na (−0.03). The presence of E. coli and total coliform has no effect on other
water quality parameters, while both are closely related at r = 0.62.

Table 5: Correlation coefficient (r) between input variables with output WQI values and class

COND SAL TUR DS NO3 Cl PO4 As Cr Zn Ca Fe K Mg Na E. coli TC WQI Class

COND 1.00
SAL 1.00 1.00
TUR 0.02 0.02 1.00
DS 0.96 0.96 0.02 1.00
NO3 0.00 0.00 0.03 0.00 1.00
Cl 0.97 0.97 0.01 0.96 −0.01 1.00
PO4 0.00 0.00 −0.02 0.01 0.04 −0.02 1.00
As 0.06 0.05 0.01 0.06 −0.04 0.05 0.31 1.00
Cr 0.03 0.03 0.02 0.03 0.12 0.03 0.07 0.02 1.00
Zn 0.01 0.01 0.05 0.02 0.37 0.00 0.03 0.02 0.16 1.00
Ca 0.80 0.79 0.02 0.80 0.07 0.80 0.14 0.14 0.03 0.07 1.00
Fe −0.03 −0.03 0.03 −0.03 0.00 −0.03 0.01 −0.01 0.05 0.01 −0.06 1.00
K 0.93 0.93 0.02 0.93 0.00 0.96 0.04 0.07 0.03 0.01 0.83 −0.04 1.00
Mg 0.85 0.85 0.02 0.85 −0.01 0.88 −0.02 0.03 0.02 0.00 0.71 −0.03 0.94 1.00
Na 0.95 0.95 0.02 0.94 −0.01 0.97 −0.02 0.05 0.03 0.01 0.78 −0.03 0.92 0.85 1.00
E. coli 0.00 0.00 −0.01 0.00 −0.02 −0.01 0.07 −0.03 0.00 0.01 0.07 0.00 0.01 −0.01 −0.01 1.00
TC 0.00 −0.01 −0.02 0.00 −0.03 −0.01 0.07 −0.02 −0.01 −0.01 0.07 0.00 0.01 −0.01 −0.01 0.62 1.00
WQI −0.05 −0.05 −0.18 −0.05 −0.01 −0.02 −0.49 −0.33 −0.03 −0.06 −0.36 −0.03 −0.01 −0.01 −0.02 −0.14 −0.16 1.00
Class 0.05 0.05 0.17 0.05 0.01 0.02 0.43 0.28 0.03 0.06 0.33 0.04 0.01 0.01 0.03 0.14 0.15 −0.91 1.00
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5.2 Preliminary Model Selection
In this study, the Python programming language is used for data pre-processing and the prediction

model. The scikit learn packages are applied to select the appropriate model for the prediction analysis.
Five machine learning models are trained to predict WQI based on 17 input parameters, and the
performance is shown in Figs. 6a–6e below. Based on the simulated and observed WQI for 20 sample
data, it is evident that despite excluding the conventional six input parameters used to formulate
WQI, the new 17 input variables are competent in achieving close prediction for WQI in most of
the prediction models.
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Figure 6: (Continued)



1026 CMES, 2022, vol.132, no.3

(e)

30

40

50

60

70

80

90

100

0 5 10 15 20
W

Q
I

Sample No.

Observed WQI MLP Simulated WQI

Figure 6: Comparison of the observed and simulated WQI using (a) random forest, (b) AdaBoost, (c)
decision tree regression, (d) support vector regression, and (e) multilayer perception

The DTR model showed the highest fluctuation pattern and was unable to capture the pattern of
the WQI accurately. Even though the AdaBoost model was able to reach exact predictions for a few of
the datapoints, the model showed high deviation from the actual value for most of the samples. On the
other hand, both SVR and MLP models are good at modeling the WQI, since several simulated values
are in line with the observed values. Apparently, the RF model has better prediction performance,
given its higher accuracy in simulating WQI compared to the other models. The RF model is better at
simulating the pattern of the observed values.

Table 6 presents a comparison of performance metrics’ evaluation between the trained models.
The results indicate that in most of the simulated WQIs, the RF model predominated, with the highest
R2 and a fair RMSE. The weakest performance was associated with the SVR model, for which the
performance metrics have higher mean errors in both datasets. The AdaBoost, DTR, and MLP models
produced average results compared to the other methods.

Table 6: Simulation results of the 5 machine learning algorithms

Parameter Results

MAE MSE RMSE R2

Random forest 1.806 5.875 2.425 0.974
AdaBoost 5.791 51.507 7.173 0.753
DTR 4.759 40.733 6.382 0.807
SVR 6.012 62.709 7.915 0.690
MLP 5.484 52.479 7.241 0.742
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The obtained RMSEs for RF, ADA, DTR, SVR, and MLP are 2.425, 7.173, 6.382, 7.915,
and 7.241, respectively. The RF model provides the smallest RMSE, MSE, and MAE among the
other algorithms, which confirms the capability of the RF model to predict WQI. The reason RF
outperforms the other models is its capability of learning nonlinear relationships between the WQI and
input layers. Random forest possesses higher robustness in handling outliers and unbalanced datasets,
as it is efficient in decreasing bias and overfitting of data [41]. Thus, the overall results show the superior
performance of RF models with the input combination COND, SAL, TUR, DS, NO3, Cl, PO4, As,
Cr, Zn, Ca, Fe, K, Mg, Na, E. coli, and total coliform. All five techniques were compared to the
actual outcome, plotted in Fig. 7. The results suggest that the RF regression method provides better
predictive accuracy in terms of all performance evaluation parameters. The pattern of the plot obtained
portrays the linearity of the algorithm, which has moderate accuracy. The substantial improvement in
the predictive accuracy of the RF approach using the alternative set of input features indicates that it
can be effectively used in predicting the impact of water quality.
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Figure 7: (Continued)
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Figure 7: Correlation between the observed and simulated WQIs using (a) random forest, (b)
AdaBoost, (c) decision tree regression, (d) support vector regression, and (e) multilayer perception

5.3 Classification Training
As per the investigation conducted in 5.2, the RF model is proven competent in modeling the

behavior of the 17 water quality inputs, which correspond to the continuous WQI output. This
section of the study performs classification modeling of the five WQ classes shown in Fig. 2 using a
random forest classifier. The study aims to improve the efficiency of classification prediction through
a modified training approach. Two RF classification models will be tested on two different datasets:
Model A is trained on Training Set A, which contains an unmodified training dataset, and Model B
is based on the SMOTE-modified Training Set B. Models A and B are then tested on a new testing
set, and both models’ performance is then compared in terms of their confusion matrix, accuracy,
precision, and recall, tabulated in Table 7.

Table 7: Performance metrics for WQI classification of RF Model A and Model B

Class Precision Recall F1-score

Model A (Accuracy = 79.66%)

I 0.33 0.10 0.15
II 0.85 0.80 0.82
III 0.80 0.92 0.85
IV 0.66 0.44 0.53
V 0.00 0.00 0.00
Macro average 0.53 0.45 0.47

Model B (Accuracy = 77.68%)

I 0.54 0.48 0.51
II 0.80 0.78 0.79
III 0.83 0.83 0.83
IV 0.52 0.59 0.56

(Continued)
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Table 7 (continued)

Class Precision Recall F1-score

V 1.00 0.75 0.86
Macro average 0.74 0.69 0.71

The recall rate (Table 7) shows that the sensitivity of Model A towards Class V is the worst. This is
critical, as dangerous water that is incorrectly classified could be consumed. An improvement in recall
is seen in Model B, with a 75% sensitivity rate. Moreover, the precision and recall rates of Class I also
improve from 33% to 54% and 10% to 48% when Model B is trained with the SMOTE modified
training dataset. However, the accuracy of Model B is much lower, as Model B’s performance in
predicting Classes II and III shows a decline. This is possibly due to the training process of SMOTE—
the presence of indistinguishable boundaries between the two classes introduces noise to the model [40].
Nonetheless, Model B has the best performance in average F1-score as compared to the unmodified
Model A. In the case of water classification, precision and sensitivity are the most important estimates.
In Fig. 8, class-wise accuracy is represented in the form of a confusion matrix. Fig. 9 provides a visual
overview of the classification performance of Model A and Model B. Significant improvements are
observed for predictions of Class V and Class I. Overall, the accuracy of both models is substantially
similar in agreement, at 79.66% for Model A and 77.68% for Model B.

Figure 8: Confusion matrix for WQI classification of random forest (a) Model A, (b) Model B
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Figure 9: Visual comparison of the precision, recall, and F1-score between Model A and Model B

5.4 Sensitivity Analysis
The results of sensitivity analysis among the 17 and 23 input variables (Table 8) highlight the

importance of certain water quality variables that are not present in the current WQI formulation.
The rankings from Table 8 show turbidity as the first determining factor for predicting WQI with
unconventional features. The firm ground of turbidity’s importance was also proven when the 23
predictors were analyzed. Turbidity ranked as the sixth parameter, while the first five parameters were
the conventional input features. The common input feature pH shows less significance in this study
as the 13th variable. Moreover, sensitivity analysis also shows that the variables sodium, chloride, and
conductivity were less influential in both WQI predictions. These variables could be removed from the
future experimental phase to provide better generalization and less noise for the model.

Table 8: Sensitivity analysis among 17 and 23 predictors

Ratio (17
predictors)

Input variables Ranking Input variables Ratio (23
predictors)

1.104 TUR 1 DO 1.962
1.061 Total coliform 2 NH3N 1.482
1.049 NO3 3 BOD 1.352
1.046 DS 4 SS 1.209
1.044 Mg 5 COD 1.177
1.043 As 6 TUR 1.004
1.043 K 7 Ca 1.001
1.041 Ca 8 SAL 0.999
1.035 Fe 9 Zn 0.998
1.029 SAL 10 PO4 0.986

(Continued)
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Table 8 (continued)

Ratio (17
predictors)

Input variables Ranking Input variables Ratio (23
predictors)

1.025 PO4 11 K 0.985
1.020 Cr 12 NO3 0.983
1.019 Zn 13 pH 0.977
1.015 E. coli 14 E. coli 0.977
1.007 Cl 15 Total coliform 0.973
1.001 COND 16 Fe 0.970
0.993 Na 17 Mg 0.969
– – 18 As 0.965
– – 19 Cr 0.963
– – 20 COND 0.961
– – 21 DS 0.951
– – 22 Cl 0.940
– – 23 Na 0.925

5.5 Discussion
The significance of unconventional water quality variables has been constantly published in

research materials that highlight the absence of COND, DS, Cl, Na, Cl, As, Zn, Fe, and other
heavy metal concentrations such as aluminum (Al), cadmium (Cd), chromium (Cr), and lead (Pb)
from drinking water quality standards [42]. Results from Wagh et al. [43] also further showed that
groundwater is constantly saturated with pollutants such as COND, Na, Cl, and DS which exceeded
the desirable limits. Areas that are affected by urban land use activities often have COND, NO3, PO4,
Cl-, DO, BOD, Pb, Cd, and total coliform values above the stipulated standards [44].

Therefore, it is evident that alternative water quality parameters should be included in assessing
water quality. The hypothesis is proven in this study that these inputs will contribute towards
accurate prediction of water quality. Although none of the inputs used were part of the conventional
WQI subindex’s formula, the proposed modified RF model managed to achieve a coefficient of
determination of 0.974 and error below 6%. The proposed model indicates that 97.4% of the variability
of WQI can be explained by the 17 water quality inputs. Nonetheless, a modified approach is required
when handling the classification of the dataset. From Section 5.3, it is evident that the proposed
integration of SMOTE with RF could improve the real positives predicted.

The findings from this study correspond to previous works tabulated in Table 9, which shows that
the proposed modified RF model is efficient in WQ modeling. The adoption of SVMs in [45] suggested
that, if the least relevant parameters are included, the SVM model has less advantage in prediction.
This is also proven in this study, as the SVR model showed R2 of only 0.69. On the other hand, Ho et al.
[26] conducted a leave-one-out analysis on all six common parameters and concluded that exclusion of
DO, BOD, and COD had a large impact on accuracy. Sensitivity analysis by Gazzaz et al. [7] pointed
out that, for the Perak River, DO, BOD, NH3-N, pH, COD, and turbidity should receive priority in
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WQI computation instead of using SS. The research ranked SS concentration 18th in importance,
while the WQI ranked SS concentration third.

Table 9: Comparison of results in this study with other research works

References Location Input data Prediction algo-
rithm/Performance
evaluation

Remarks

This study Klang and Langat
Rivers, Selangor

COND, SAL,
TUR, DS, NO3,
Cl, PO4, As, Cr,
Zn, Ca, Fe, K, Mg,
Na, E. coli, total
coliform

RF // R2 = 0.974,
Accuracy =
77.68%,
Precision = 74%,
Recall = 69%,
F1-score = 71%

Although the inputs
used do not contain
relative weights in the
WQI formula, the
output generated is
accurate with the use of
random forest in
nonlinear data.
Classification training
using modified
SMOTE training data
could improve the
efficiency and
reliability of the
classifier.

Leong et al.
[45]

Perak River, Perak DO, BOD, COD,
SS, NH3-N, pH

SVM // R2 =
0.8796
LS-SVM // R2 =
0.9227

In this study, using
support vector
machines, the model in
the least squares
method is much more
stable and accurate.
The authors also
trained the model using
31 predictors but
concluded that too
many predictors
lowered the accuracy,
as most of the variables
had low correlation
with WQI.

(Continued)
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Table 9 (continued)

References Location Input data Prediction algo-
rithm/Performance
evaluation

Remarks

Ho et al. [26] Klang River,
Selangor

DO, BOD, COD,
SS, NH3-N, pH

Decision Tree //
Accuracy
w/o NH3-N:
84.09%
w/o NH3-N, pH:
81.82%
w/o NH3-N, pH,
SS: 77.27%

The research concluded
that WQI can be
predicted with decision
trees without much loss
of information if
certain variables such
as NH3-N are excluded
from the input. The
most important
parameters
corresponding to the
relative weights are
DO, BOD, and COD.

Gazzaz et al.
[7]

Kinta River, Perak DO, BOD, COD,
SS, NH3-N, pH,
Turbidity, Mg, Ca,
K, Cl, WT, E. coli,
Zn, DS, Fe, TS,
Na, SS, EC,
NO3-N, As, PO4-P,
Total coliform

ANN // R2 = 0.954 The study applied
principal factor
analysis (PFA) and
identified 23 out of the
31 water quality
variables that are
responsible for the
variation of water data.
The inputs used
contained indicators of
nutrients, microbes,
and heavy metals that
are not included in the
current WQI formula.
The ANN approach is
capable of calculating
and forecasting water
quality in a more
robust manner.

In summary, the use of other WQ parameters should not be entirely neglected when assessing
WQI. The WQI formulation should be tailored according to the river’s needs. Besides that, a suitable
machine learning model as suggested in this work is important to model the nonlinear inputs.

The use of the proposed new water quality variables is beneficial because most of the water quality
parameters are interrelated. In the published work by Joarder et al. [46], electrical conductivity was
analyzed as one of the most appropriate variables to justify most of the dependent variables for WQI.
Electrical conductivity is also directly related to the content of DS and salinity, where a high electrical
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conductivity signifies a significant number of impurities present in the water source. Commonly, the
impurities consist of ions such as chloride, phosphate, and nitrate from sewage runoff and agricultural
waste. Chloride content dominant in water content could cause corrosion of iron plates or pipes
[47]. Excess nitrate and phosphate concentration is toxic to human consumption and could stimulate
algal blooms that would cause oxygen depletion or eutrophication [48]. However, previous works
only considered DO in the WQI formulation to represent these reactions, which can be considered
inadequate and less robust.

Moreover, the measure of turbidity is also influential in predicting WQI yet neglected by the
conventional WQI formula. Turbidity describes the clarity of water, where high turbidity represents
a dense mixture of clay and organic matter. The presence of these foreign compounds directly affects
light transmission to aquatic plants; hence, lowered photosynthesis would result in lower dissolved
oxygen and unfavorable water quality [49]. In addition, the potential risk of heavy metal contamination
originating from water sources was also found to affect the mangrove forests of Kuala Selangor [50]
and the Klang estuary [51]. Since these metal concentrations are not present in the conventional WQI
measurement, the estuary ecosystem is unknowingly still being fed from heavy metal–contaminated
water sources even though WQI is continuously monitored.

Nevertheless, despite the high compliance of the RF model in modeling the nonlinear relation of
these inputs, the simulation model could be improved through optimization algorithms to reduce the
errors. The high average magnitude of errors is because the target WQI does not include any of the pro-
posed new input variables. Furthermore, with the contribution of the SMOTE resampling technique,
the accuracy of the imbalanced dataset has been improved for minority classes. Model accuracy, on the
other hand, has been improved by implementing k-means clustering during oversampling to remove
unnecessary noise generated during the interpolation phase [40]. The adoption of novel input water
quality parameters can be further investigated through the use of deep learning predictors that are
proven effective and stable [52,53]. Subsequently, in future sustainability water resources management,
reassessment of WQI formulation can be carried out to fit more water quality parameters. This work
serves as a step forward toward utilizing more biological predictors in water quality monitoring.

6 Conclusion

This study explored the prospective use of unconventional input parameters for water quality
index (WQI) prediction using a random forest (RF) regression and classification model. The new
input features investigated are able to simulate WQI fairly. Comprehensive comparisons between the
performance of five machine learning models were carried out. The findings revealed that the RF
model exhibits better prediction performance given its ability to capture the nonlinear characteristics
of input variables to the water quality index. Therefore, it can be concluded that the RF model is
suitable for forecasting the impact of pollutants on water quality based on the inputs as investigated
in this study. This study further proposed a modified RF model by incorporating the SMOTE
technique to address the imbalance in minority classes. The findings showed drastic improvement
in the proposed model’s sensitivity, from 45% to 69%, and precision, from 53% to 74%. Sensitivity
analysis provided insights on the influential parameter of turbidity on water quality prediction.
Although the current findings are insufficient to formulate a new water quality index, this paper
demonstrates the importance and capability of other water quality parameters as a step toward
better water quality representation. The results aligned with other research that highlighted the
influence of these parameters on water quality. Hence, it is crucial that the input parameters used in
formulating WQI should include inorganic compounds and heavy metal constituents. Future works
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can be extended from this study to include socioeconomic factors for source identification of these
pollutants to offer flexibility in water quality assessment. The model can also be extended to more
datasets before it is widely adopted for new WQI computation.
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