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Lung cancer is a malignant tumor with high incidence and mortality across the world. The use of immune 
checkpoint inhibitors for lung cancer has improved the prognosis of some lung cancer patients to a greater 
extent and provided a new direction for the clinical treatment of lung cancer. Immunotherapy still has limita-
tions in terms of its appropriate population and adverse reactions. Particularly for non-small cell lung cancer 
(NSCLC) patients with epidermal growth factor receptor (EGFR) mutation, there has been no major break-
through in current immunotherapy. Whether immunotherapy can bring new benefits after drug resistance is 
induced by tyrosine kinase inhibitor-targeted therapy and whether the combination of immunotherapy with 
other treatments can improve the prognosis remain to be studied in depth. In this article, we provide a detailed 
review of the relevant characteristics of the tumor microenvironment of NSCLC with EGFR mutation and the 
current research on immunotherapy for NSCLC with EGFR mutation. 
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INTRODUCTION

According to the data of the Global Cancer Observatory 
(GLOBOCAN2020), the incidence and mortality of lung 
cancer in China account for 37.0% and 39.8% of those 
in the world, respectively. According to GLOBOCAN 
estimates, there were approximately 2.2 million new lung 
cancer cases worldwide in 2020, accounting for 11.4% of 
all malignant tumors, and there were approximately 1.8 
million deaths, accounting for 18.0% of malignant tumor-
related deaths1. According to the data released by the 
National Cancer Center, 57 per 100,000 people in China 
had lung cancer in 2019, and approximately 630,000 
people die of lung cancer each year2. Lung cancer is also 
the malignant tumor with the heaviest burden in China3. 
From 2012 to 2015, the 5-year survival rate of lung cancer 
in the Chinese population was 19.7%, and most patients 

were already at an advanced stage when they were diag-
nosed. With the combined application of chemotherapy, 
radiotherapy, targeted therapy, and immunotherapy, the 
prognosis of lung cancer has been improved, but in gen-
eral, the 5-year survival rate has not been significantly 
improved4.

Non-small cell lung cancer (NSCLC) accounts for 
approximately 80%–85% of lung cancer, and the driver 
gene mostly determines the treatment and prognosis of 
NSCLC at present. The patients with NSCLC positive 
for the epidermal growth factor receptor (EGFR) gene 
have benefited significantly from the EGFR-tyrosine 
kinase inhibitor (TKI) targeted therapy. The marketed 
EGFR-TKIs have been continually optimized. The third-
generation TKIs have shown a better therapeutic effect, 
and even the drug resistance problem of the T790M 
mutation of the first-generation TKIs has been better 
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resolved. However, the discovery of various new muta-
tion sites and the emergence of complex drug resistance 
targets also pose more challenges for targeted therapy. 
As research on immune checkpoint inhibitors (ICIs) pro-
gresses, can immunotherapy become a new treatment for 
NSCLC with EGFR-sensitive mutations? Programmed 
death-1 (PD-1) inhibitors may be less effective at treating 
NSCLC patients with EGFR mutations5–8. A meta-anal-
ysis including five trials (Checkmate 017, 057, Keynote 
010, OAK, and POPLAR) showed that treatment with 
ICIs prolonged the overall survival (OS) in the EGFR 
wild-type (WT) subgroup [hazard ratio (HR) = 0.67, 95% 
confidence interval (CI) = 0.60–0.75; p < 0.001] but did 
not perform well in the EGFR-mutant subgroup (HR = 
1.11, 95% CI = 0.80–1.53; p = 0.540)5. A similar analysis 
confirmed that ICIs did not increase the OS of NSCLC 
patients with EGFR mutations compared with patients 
taking docetaxel (HR = 1.09, 95% CI = 0.84–1.41)9. 
This has aroused the interest of many people, who have 
explored the treatment efficacy and studied the mecha-
nisms of PD-1/programmed cell death ligand 1 (PD-L1) 
ICIs in patients with EGFR mutation. In this article, we 
will review their efforts in detail. 

EFFECT OF EGFR MUTATIONS ON THE 
TUMOR IMMUNE MICROENVIRONMENT

In addition to cancer cells, primary tumors also 
include a variety of stromal cells, of which T lympho-
cytes, myeloid cells [myeloid-derived suppressor cells 
(MDSCs), mesenchymal stem cells (MSCs), mast cells, 
macrophages, and neutrophils], cytokines, and exosomes 
constitute the immunomodulatory network of tumors10,11. 
The tumor microenvironment (TME) is an internal envi-
ronment for the development and progression of tumor 
cells and promotes tumor metastasis. Interventions tar-
geting the TME are an important part of tumor immu-
notherapy strategies10. The TME plays a specific role at 
different stages of tumor progression, gradually changing 
from the initial inhibition of tumor development and pro-
gression to a state of adaptation and promotion of tumor 
growth12. T lymphocytes change from having an immune 
surveillance function to an immune escape function 
through immunoediting and even exhibit immunosup-
pression, such as by recruiting regulatory T cells (Tregs) 
and MDSCs and upregulating the levels of immunosup-
pressive cells in the TME. Tumor-associated macrophages 
(TAMs) induce tumor cell invasion by releasing cell colo-
ny-stimulating factor 1 (CSF-1) and macrophage-derived 
epidermal growth factor (EGF). Cancer-associated fibro-
blasts, inflammatory cells, and various growth factors 
and immunomodulatory cytokines are involved in tumor 
progression7–9.

NSCLC with EGFR mutations has a unique TME that 
is mainly in a noninflammatory state. In this state, the 

inflammatory response around the tumor cells is weak, 
lymphocyte infiltration is reduced, and antitumor immu-
nity is lowered. EGFR mutations can regulate potential 
factors associated with TME status through multiple 
pathways, such as through tumor-infiltrating lymphocytes 
(TILs)13–15, Tregs16,17, MDSCs18,19, TAMs, and immuno-
modulatory cytokines20.

EGFR Mutation and Tregs

Tregs are physiologically involved in maintaining 
immune tolerance and immune homeostasis. Under path-
ological conditions, Treg cells are found at a high fre-
quency in various types of cancer and are considered to 
be a key obstacle to antitumor immunity. Forkhead box 
P3 (Foxp3) is one of the key transcription factors con-
trolling the development and function of Tregs. Induction 
of Foxp3 expression in naive T cells in vivo or in vitro 
can lead to Treg-like immunosuppressive effects21–23. 
Cytokines such as transforming growth factor-b, 
interleukin (IL)-10, and IL-35 secreted by Treg cells can 
create an immunosuppressive environment that actively 
attenuates and inhibits the antitumor immune response of 
CD4+ T cells, CD8+ T cells, and natural killer cells9,24,25. 
On the other hand, Tregs constitutively express inhibi-
tory molecules such as cytotoxic T-lymphocyte antigen 
4 (CTLA-4), PD-1, and TIM-3, which bind to specific 
ligands to facilitate their inhibitory function.

The expression of indoleamine 2,3-dioxygenase 
(IDO) can upregulate Treg function and induce immune 
tolerance26,27. Huang et al. found that EGFR-containing 
exosomes can induce plastic transformation of tolerogenic 
dendritic cells (DCs) and cause DCs to produce IDO, 
which plays an important role in converting CD4+CD25− 
T cells into CD4+CD25+ Treg cells28. Amphiregulin 
(AREG) is one of the ligands of EGFR, and its higher 
expression in the plasma of NSCLC patients is associated 
with a poor prognosis29. In addition, as a specific mol-
ecule in the exosomes of tumor cells, amphiregulin plays 
an important role in promoting tumor progression30. Wang 
et al. found that amphiregulin can regulate the suppres-
sive function of Treg through the EGFR/GSK-3/Foxp3 
axis both in vitro and in vivo31. The EGFR-TKI gefitinib 
inhibits EGFR activity, restores GSK-3b activity, and 
attenuates Treg function32. Mascia et al. also showed that 
knockdown of EGFR expression significantly inhibited 
tumor cell growth and downregulated Treg infiltration 
into the TME33.

EGFR Mutation and TILs 

TILs are a group of tumor-infiltrating and antigenic 
cell populations that are present in tumor nests and 
stroma34. CD8+ T cells act as antitumor immune cells in 
the TME to destroy malignant tumor cells by releasing 
cytokines such as interferon-g, perforin, and granzyme B, 
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and the number of CD8+ T cells determines the tumor cell 
killing rate. A high degree of infiltration of CD8+ TILs 
in NSCLC is associated with a good prognosis and treat-
ment outcome35–38.

Teng et al. evaluated the efficacy of immunotherapy 
by establishing a TME model based on TIL and PD-L1 
expression, suggesting that an immune-inflammatory 
TME (PD-L1+ and TIL+) is most likely to benefit from 
anti-PD-1/PDL1 therapy39. Some patients with EGFR 
mutations have lower TIL levels as well as a lower ratio of 
PD-L1+CD8+ TILs14,15,40. The decrease in CD8+ TIL levels 
may be related to the low expression of major histocom-
patibility complex (MHC) molecules. The MHC plays an 
important role in tumor antigen presentation. The tumor 
antigens of MHC class I molecules constitute the first 
signal for cell activation, they activate CD8+ T cells, and 
they play a role in the antitumor immune effect41.

EGFR Mutation With TAM and Immunoregulatory 
Suppressors

Macrophages are an important component in the TME, 
and it is well established that macrophages can polarize 
into two states in response to different microenvironmen-
tal stimuli, namely, classically activated M1 macrophages 
and alternatively activated M2 macrophages. The former 
typically show inflammatory functions, whereas the lat-
ter show anti-inflammatory functions. TAMs are thought 
to more closely resemble M2-polarized macrophages and 
facilitate tumor growth by inducing immune suppression. 
For NSCLC with EGFR mutations, whose TME is in a 
noninflammatory state, Chen et al. showed that EGFR 
activation can recruit M2 macrophages to suppress antitu-
mor immunity by inducing the expression of ILT442. Wang 
et al. analyzed data among 515 human lung adenocarci-
nomas from the TCGA database and found that enumera-
tion of alveolar macrophages (AMS) by CIBERSORT 
revealed a higher number of AMS in 32 EGFR-mutant 
tumors compared with 408 EGFR WT/KRAS WT tumors 
(p = 0.036) and 75 KRAS-mutant tumors. Their study 
showed that AMS promoted tumor progression in EGFR 
mutated NSCLC (p = 0.073)43. In addition, activation of 
the EGFR pathway can induce the release of multiple 
immunosuppressive factors, including TNF-b [transform-
ing growth factor-b (TGF-b)], IL-10, vascular endothe-
lial growth factor (VEGF), IDO, CC chemokine ligand 2 
(CCL-2), arginase (ARG)-1 and adenosine, etc.44. These 
immunosuppressive agents can directly inhibit the kill-
ing of natural killer cells, the maturation of DCs, and the 
proliferation and function of cytotoxic T cells. Moreover, 
it can further inhibit the host antitumor immunity by pro-
moting the transformation of CD3+CD4+CD25− cells to 
CD4+CD25FoxP3+ Tregs, inducing the polarization of 
TAM into M2 macrophages, and mediating the recruit-
ment and activation of MDSCs45.

EGFR Mutation and MDSCs

MDSC is an immature and dysfunctional myeloid cell 
group differentiated from immature bone marrow cells 
(IMCS) under a variety of pathological conditions such 
as inflammation, infection, and cancer. It has a strong 
immunosuppressive function. MDSC, Treg, and Tam 
together constitute the main immunosuppressive cells of 
TME in patients with lung cancer. It has been reported 
that MDSC in lung cancer can be divided into two types, 
namely, monocyte CD33+CD11b+CD14+ MDSCs or 
granulocyte-like CD33+CD11b+CD14− MDSCs46. In 
EGFR mutant NSCLC, the activation of EGFR pathway 
can produce some cytokines (such as IDO and VEGF). 
These cytokines can induce IMCs to differentiate into 
MDSC and recruit MDSCs into TME, so as to play 
the function of immunosuppression. Continuous acti-
vation of EGFR signaling pathway in tumor cells can 
induce the activation of downstream STAT3, which is 
the main transcription factor regulating MDSC amplifi-
cation47. However, there is no clear answer to whether 
EGFR mutation exists in IMC. Generally speaking, the 
activation of EGFR signaling pathway can lead to the 
activation of downstream signaling networks that affect 
multiple processes of cells, which may be the reason 
why EGFR-mutant NSCLC shows a TME significantly 
different from EGFR WT lung cancer, and MDSCs are 
an important participant in the formation of this nonin-
flammatory microenvironment.

EGFR MUTATIONS CAUSE REDUCED 
IMMUNOGENICITY IN TUMOR CELLS

EGFR Causes Changes in Tumor Mutation 
Burden (TMB)

TMB is the total number of substitution, insertion, and 
deletion mutations per megabase in the coding region of 
tumor genes. It is a good biomarker for predicting the effi-
cacy of immunotherapy. It can quantitatively estimate the 
total number of mutations in the coding region of tumor 
genomes. Higher TMB is associated with more neoanti-
gens produced by tumors, easier recognition by immune 
cells, and long-term clinical responses48.

Cancer cells can produce tumor-specific antigens and 
tumor-associated antigens, which are processed by anti-
gen presentation machinery to activate effector lympho-
cytes against them49. Tumor-specific antigens are defined 
as neoantigens present only on the surface of tumor cells 
but not on the surface of normal cells that mainly spe-
cifically induce the activation of T lymphocytes to pro-
duce CTLs and exert antitumor effects. Neoantigens can 
be generated by mutations of oncogenes or tumor sup-
pressor genes, chromosomal translocations, and viral 
genes encoding new peptides. When tumors show a 
greater mutation load, T-cell differentiation may be better 
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stimulated, and T-cell clonal expansion will produce a 
larger antitumor immune cell bank50. We can measure the 
value of TMB by the total number of nonsynonymous 
mutations in each coding region of the tumor genome. 
The nonsynonymous mutation number is more closely 
related to TMB than the total exon mutation burden51. For 
the treatment of NSCLC with ICIs, a higher TMB enables 
a faster response and better clinical efficacy52,53. In prac-
tice, however, the survival rate of patients with high TMB 
may be worse without ICI treatment52.

Patients with EGFR mutations show lower neoantigen 
burden and fewer nonsynonymous mutations54, and the 
latter are negatively correlated with the clonality of T-cell 
receptor b55. Patients with EGFR mutations have sig-
nificantly lower TMB than those with WT EGFR, which 
may be related to the smoking history of EGFR-mutant 
NSCLC. The number of point mutations in lung cancer 
patients who smoke is 10 times that of never-smokers, 
which shows that smoking history is significantly asso-
ciated with the increase in TMB56. A meta-analysis 
showed that the chance of having EGFR mutations in 
never-smokers is significantly higher, while the number 
of patients with EGFR mutations decreases as the smok-
ing history increases57. Recently, the possibility that tra-
ditional chemotherapy can alter TMB has been explored. 
Studies on EGFR mutation sites have found that TMB 
may also differ between mutation sites, and tumors with 
the EGFR L858R mutation have been confirmed to have 
higher TMB and better response to ICIs58.

EGFR Mutations Cause Changes in the Antigen 
Presentation Machinery

Mitogen-activated protein kinase (MAPK) signal-
ing inhibits the antigen presentation machinery, while 
the inhibition of MAPK signaling broadly upregulates 
it. Brea et al. activated the MAPK pathway by inducing 
EGFR mutations and found that in addition to induc-
ing the upregulation of immune checkpoint blockade, it 
caused the inhibition of MHC-1 in vivo. EGFR mutations 
led to the downregulation of the expression of MHC class 
I molecules, resulting in weak antigen-presenting ability 
and low immunogenicity59. 

The expression of MHC-I and MHC-II can be 
achieved through the interferon-g (IFN-g) signal trans-
duction pathway and the downstream MEK/ERK signal 
transduction pathway60–63. Watanabe et al. found that the 
combination of an EGFR-TKI (irreversible EGFR-TKI 
afatinib or trametinib) and IFN-g had an additive effect 
on HLA expression and the expression of antigen pep-
tide transporter TAP1 and b2-microglobulin64. We can 
deduce that MHC molecules are expressed more highly 
when the EGFR pathway is inhibited, further confirming 
that EGFR mutations are negatively correlated with the 
expression of MHC molecules.

EGFR MUTATION AND PD-L1 EXPRESSION

Mechanism of PD-L1 Expression 

PD-L1 is one of the ligands of T-cell immune check-
point PD-1 that is widely expressed in hematopoietic and 
parenchymal cells. It participates in T-cell autoimmune 
tolerance and prevents itself from being attacked by the 
immune system under chronic inflammation or infection. 
In a variety of solid tumors, PD-L1 is overexpressed to 
protect tumor cells from being damaged by cytotoxic 
T cells, thereby forming an immunosuppressive TME 
and promoting tumor progression65,66. The expression 
mechanisms of PD-L1 in tumor cells can be divided into 
constitutive oncogene activation expression and cytokine-
induced expression, and oncogene activation expression 
is constitutive and diffuse67. In a variety of tumors, the 
loss of phosphatase and tensin homolog can constitu-
tively upregulate the expression of PD-L1 on the surface 
of tumor cells, and dysregulation of the Janus-activated 
kinase/signal transducer and activator of transcription 
(STAT) pathway can also lead to oncogene-driven PD-L1 
overexpression. Coelho et al. found that KRAS activat-
ing mutations can enhance the stability of PD-L1 mRNA 
through the MEK-ERK signaling pathway68, and multiple 
different signaling pathways can participate in the regu-
lation of PD-L1. The inflammatory status of the tumor 
TME plays an important role in the upregulation of PD-L1 
expression in the process of cytokine-induced upregula-
tion of PD-L1. In the inflammatory microenvironment, T 
cells mount a classical inflammatory response and secrete 
a variety of cytokines to induce PD-L1 expression on 
tumor cells. Cytokines including IL-1a, IL-6, TNF-a, 
and IFN-g promote PD-L1 expression on tumor cells in 
a dose-dependent and additive manner. Among them, 
IFN-g is the main stimulating factor of PD-L169.

Effect of EGFR Mutation on PD-L1 Expression 

The EGFR signaling pathway is one of the most 
important oncogenic pathways in NSCLC70. The activa-
tion of EGFR signal transduction not only impacts tumor 
biology but also can regulate host antitumor immunity, 
including by driving PD-L1 expression and imped-
ing TIL activation71. The expression level of PD-L1 in 
NSCLC cell lines with mutated EGFR was found to be 
significantly higher than that in cells with WT EGFR72. 
After the activity of EGFR was blocked by EGFR-TKIs, 
NSCLC cell lines with EGFR mutations downregulated 
their PD-L1 expression. The transfection of BEAS2B 
immortalized bronchial epithelial cells with mutated 
EGFR resulted in increased PD-L1 expression at the 
mRNA and protein levels. In mouse models, EGFR muta-
tions activated PD-L1 expression and induced immune 
escape, whereas treatment with EGFR-TKIs downregu-
lated PD-L1 expression73.
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From these results, we can infer that the transduc-
tion of oncogenic EGFR signaling can directly or indi-
rectly drive PD-L1 upregulation. The PI3K–Akt–STAT3/
mTOR signaling pathway is involved in EGFR-mediated 
PD-L1 expression74. The activation of mTOR upregulates 
the expression of PD-L1 by inducing its translation rather 
than transcription. IFN-g-mediated PD-L1 expression also 
depends on mTOR. Inhibition of Akt or STAT3 activity 
may downregulate PD-L1 expression even in gefitinib-
resistant NSCLC75. There is also evidence that EGFR 
activation can upregulate PD-L1 through the ERK1/2 
pathway76. Contrary to what was expected, patients with 
mEGFR have tended to have worse remission than those 
with WT EGFR during anti-PD-1/PD-L1 clinical treat-
ment. The reason for the poor therapeutic effect may be 
that the upregulation of EGFR-mediated PD-L1 expres-
sion induced by the PI3K–Akt–STAT3/mTOR signal-
ing pathway and the mEGFR-induced decrease in IFN-g 
occur simultaneously, so it is difficult to estimate whether 
PD-L1 expression is increased in reality69,70. 

This relationship is paradoxical in the clinical analy-
sis of NSCLC patients with EGFR mutations. Tang et al. 
analyzed the tissues of 170 patients with lung adenocar-
cinoma by immunohistochemical assays, and the results 
showed that PD-L1 overexpression may be related to 
EGFR mutations77. However, two pooled analyses78,79 
confirmed that PD-L1 expression was negatively cor-
related with EGFR mutation. The researchers evaluated 
the tissue sample data of 3,969 patients by analyzing the 
immunohistochemical assays of 18 studies and found 
that EGFR-mutant NSCLC was less likely to be PD-L1 
positive than WT EGFR tumors [odds ratio (OR) = 0.59, 
95% CI = 0.39–0.92; p < 0.02]80. Liu et al. found that 
EGFR-WT NSCLC tumors were more likely to be PD-L1 
positive than EGFR-mutant tumors (OR = 1.79, 95% CI 
= 1.10–2.93; p = 0.02)81. In addition, they analyzed the 
mRNA and protein levels of PD-L1 in the Cancer Genome 
Atlas and internal database (Guangdong Lung Cancer 
Institute) and detected lower PD-L1 mRNA and PD-L1 
protein expression in EGFR-mutant NSCLC samples 
than WT tumor samples. These opposing results may be 
related to the differences in how PD-L1 expression was 
measured (i.e., immunohistochemical analysis vs. mRNA 
expression). For now, it remains controversial how EGFR 
mutations influence PD-L1 expression.

EXPLORATION ON THE COMBINED 
APPLICATION OF ICIs AND EGFR-TKIs

Effects of EGFR-TKIs on the TME 

TKIs can increase IFN secretion to enhance the 
induction of MHC-I and MHC-II molecules, promote 
Foxp3 degradation to attenuate the suppressive func-
tion of Tregs81, enhance antigen-specific antitumor T-cell 

responses, reduce T-cell apoptosis, and increase the 
cytotoxicity of CTLs that can enhance the immune sys-
tem responses79. Therefore, the combined application of 
EGFR-TKIs may show some effect in anti-PD-1/PD-L1 
treatment. 

Effect of Treatment With EGFR-TKIs on 
PD-L1 Expression

The expression of PD-L1 may be dynamic and may 
be inhibited during EGFR-TKI treatment, but some 
patients show increased PD-L1 expression after display-
ing acquired resistance to EGFR-TKIs. Gainor et al. 
examined the levels of PD-L1 in paired tumor tissues that 
were taken either before EGFR-TKI treatment or after 
the development of resistance to EGFR-TKI, and the 
results showed that PD-L1 expression was significantly 
increased in 12 patients (21%)13. The researchers also 
found that the frequency of PD-L1 expression in patients 
with EGFR mutations was lower before TKI exposure 
(16%; PD-L1 ³ 5%) than after acquired resistance to TKI 
had occurred (29%; PD-L1 ³ 5%). Therefore, the authors 
concluded that the development of primary resistance to 
EGFR-TKIs in NSCLC patients with EGFR mutations 
seems to be related to the upregulation of PD-L1 expres-
sion on the tumor surface.

Combined Application of TKIs and Immunosuppressive 
Agents 

Some clinical trials have tested the combinations 
of PD-1 or PD-L1 inhibitors with EGFR TKIs, target-
ing TKI-pretreated or untreated patients with EGFR 
mutations. In a phase I clinical trial, the investigators 
treated 20 NSCLC patients with EGFR mutations who 
had received TKI therapy with erlotinib in combination 
with nivolumab, and the results showed an objective 
response rate of 15% (3/20), but five patients experienced 
treatment-related grade 3 toxicity events in this study82. 
TATTON was a phase Ib trial that combined osimertinib 
(third-generation TKI) with selumetinib (MEK1/2 inhibi-
tor), savolitinib (MET-TKI), or durvalumab (anti-PD-L1 
monoclonal antibody) for the treatment of EGFR-mutant 
NSCLC. Because of the increased incidence of interstitial 
lung disease in the durvalumab group, this arm of the trial 
was terminated83.

CAURAL is a phase III randomized trial that was also 
terminated early due to safety concerns given the high inci-
dence of interstitial lung disease reported in the TATTON 
trial. In a phase Ib trial, erlotinib was administered in com-
bination with atezolizumab, and the initial results showed 
an objective response rate of 75% (95% CI = 50.9–91.3) 
and a median duration of response (DOR) of 16.7 months 
(range = 4.2–26.0). Although no grade ³4 adverse events 
occurred, grade 3 treatment-related adverse events were 
reported in 43% of patients84. Indeed, toxicity is the main 
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concern of the combination strategy. In the trial on gefitinib 
combined with durvalumab, grade 3 and grade 4 hyper-
transaminasemia occurred in 40% and 15% of patients, 
respectively, and 20% of patients had to discontinue 
treatment because of treatment-related adverse events85. 
Clinical trials combining TKIs and ICIs are still ongoing, 
and most of them still need to assess safety and tolerability. 
The reason behind the increased toxicity remains unclear, 
but current studies show that these combinations have no 
significant advantage in therapeutic efficacy, but they show 
more severe toxicity and side effects.

EGFR MUTATIONS AND TREATMENT 
WITH ICIs

We found that patients with EGFR mutations did not 
respond well to immunotherapy in the Checkmate 017, 
057, Keynote 010, OAK, and POPLAR studies, which 
then raises questions as to whether there are differences 
between different mutation sites? It is known that EGFR 
mutations occur at several hotspots between exons 18 and 
21. The in-frame deletion in exon 19 (EGFRD19) and the 
L858R point mutation in exon 21 were the most com-
mon mutations detected, accounting for 50% and 40% 
of patient samples, respectively86. Both types of muta-
tions are sensitizing mutations, and tumors with these 
mutations are sensitive to EGFR TKIs. A special type of 
EGFR mutation, an in-frame insertion in exon 20, occurs 
in 3%–7% of NSCLCs, and most tumors with this type 
of mutation are resistant to treatment with EGFR TKIs87. 
Hastings et al. treated 126 patients with the most common 
EGFR gene mutations (EGFRD19 and EGFR L858R) 
with ICIs and compared them with 212 patients with 
WT EGFR88. The researchers found that patients with 
EGFRD19 had a lower objective response rate than those 
in the WT EGFR group (p = 0.002), whereas there was no 
difference between the WT EGFR group and the EGFR 
L858R group. In terms of OS benefit, there was no dif-
ference between WT EGFR and EGFR L858R, whereas 
shorter OS was found in the EGFRD19 group (p = 0.069 
and p = 0.03, respectively). Haratani et al. assessed the 
response of the EGFR resistance mutation T790M to the 
treatment with ICIs89. The results suggested that treat-
ment with ICIs may provide poorer survival outcomes in 
this subgroup of patients than in those with nonresistant 
mutations. The authors suggested that ICIs may achieve 
certain results in patients whose condition progressed 
after first-line TKI treatment before they developed the 
secondary T790M mutation. Yamada et al. retrospectively 
analyzed 27 patients with advanced NSCLC with EGFR 
mutations (rare or T790M) whose condition progressed 
after TKI treatment90. They found that the efficacy and 
best outcome of immunotherapy were correlated with 
having a rare EGFR mutation or not having the T790M 
mutation. This result suggested the possible use of ICIs, 

such as the later treatment for patients with rare EGFR 
mutations but not the T790M mutation whose condition 
progressed after TKI treatment. In addition, data from the 
ImmunoTarget registry presented at the American Society 
of Clinical Oncology (ASCO) 2018 meeting showed that 
NSCLC patients with the T790M mutation or EGFRD19 
mutation who were treated with ICIs had worse survival 
than those having other types of mutations91.

In summary, further analysis of the different EGFR 
mutations is necessary for improved selection of patients 
with EGFR mutations who may be more responsive to 
ICIs. At present, it remains unclear as to the therapeutic 
efficacy of ICIs in NSCLC patients with EGFR mutations 
whose conditions have progressed after TKI treatment. 
The key question remains whether ICIs have a definite 
benefit in NSCLC patients with EGFR mutation. For 
EGFR-mutant NSCLC, factors leading to weak immuno-
genicity, such as TME not yet in an inflammatory state, 
lack of PD-L1+/CD8+ TILs, and low TMB92,93, will limit 
the antitumor immune response, even in a subgroup of 
patients with higher PD-L1 expression. Therefore, the 
clinical application of ICIs in patients with EGFR-mutant 
NSCLC still needs further study.

ANTIANGIOGENIC DRUGS MAY IMPROVE 
THE IMMUNE RESPONSE IN PATIENTS 

WITH EGFR MUTATIONS

Antiangiogenic drugs can directly or indirectly improve 
the immune microenvironment of tumors. In fact, in the 
process of tumor progression, the abnormal vascular pro-
liferation around the tumor inhibits the body’s antitumor 
immunity roughly through the following three aspects: 1) 
the lack of pericyte coverage, the widening of the endothe-
lial cell gap, and the breakage or loss of the basement 
membrane of the new blood vessels increase the leakage 
of blood vessels, resulting in increased interstitial fluid 
pressure, which hinders the infiltration of T cells; 2) the 
nascent vasculature often lacks some adhesion molecules, 
which further inhibits the response of immune cells; and 3) 
tumor blood vessels are morphologically characterized by 
tortuosity, distension, high disorder, and uneven thickness, 
which lead to blood flow disturbances and hypoxia94. The 
hypoxic environment can help to upregulate some signals 
that inhibit antitumor immune responses, such as PD-L1, 
IDO, IL-6, and IL-10, and the hypoxic TME can also pro-
mote the polarization of TAMs into an M2-like pheno-
type95. Therefore, antitumor angiogenic drugs can induce 
the normalization of tumor blood vessels and induce TAM 
differentiation into M1-like phenotype by alleviating 
hypoxia96. There is increasing evidence that appropriate 
administration of antiangiogenic drugs can induce changes 
in the state of the TME, that is, from an immunosuppres-
sive state to an improved antitumor immunity state97. Anti-
VEGF drugs can also block circulating VEGF-mediated 
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blocking effects that hinder the maturation and differentia-
tion of DCs98. The combined application of ICIs and anti-
angiogenic drugs has also been studied in clinical trials. 
NCT00790010 investigated the role of ipilimumab (anti-
CTLA-4) and bevacizumab (anti-VEGF) in patients with 
metastatic melanoma, and the results showed that patients 
receiving the combined treatment had a better prognosis99. 
Wallin et al. treated 10 patients with previously untreated 
metastatic renal cell carcinoma with the combination of 
atezolizumab (anti-PD-L1) and bevacizumab, and eight 
of them showed a favorable response100. The Impower150 
study is a multicenter, open-label, randomized, phase III 
study that evaluated the efficacy and safety of atezoli-
zumab plus chemotherapy with or without bevacizumab 
versus bevacizumab in combination with chemotherapy 
in patients with nonsquamous NSCLC. The results of 
IMpower150 showed that immunotherapy combined with 
antiangiogenic agents and chemotherapy yielded signifi-
cant benefits in both PFS and OS in first-line treatment of 
nonsquamous NSCLC. The study was divided into three 
groups, the treatment regimen of group A was atezolizumab 
+ paclitaxel + carboplatin (ACP), the treatment regimen of 
group B was atezolizumab + bevacizumab + paclitaxel + 
carboplatin (ABCP), and the treatment regimen of group 
C was bevacizumab + paclitaxel + carboplatin (BCP)101. 
A subgroup analysis of patients with EGFR-sensitive 
mutations in the Impower150 trial showed that the ABCP 
regimen also provided significant OS benefits. Median OS 
was improved by 11.3 months, 29.4 versus 18.1 months, 
HR = 0.6 (95% Cl = 0.31, 1.14), in ABCP versus BCP. In 
addition, no OS benefit was observed in the ACP group 
compared with the BCP group. The incidence of treat-
ment-related grade 3–4 adverse events was 21 (64%) of 33 

patients in the ABCP group, 30 (68%) of 44 patients in the 
ACP group, and 28 (64%) of 44 patients in the BCP group. 
No patients in the ABCP and ACP groups experienced 
grade 5 adverse events. One patient in the BCP group 
experienced a grade 5 adverse event102. In the safety analy-
sis of Impower150, when compared with the three-drug 
ACP and BCP regimens, the four-drug ABCP regimen has 
no additional toxicity and are relatively safe and tolerable. 
The findings of Impower150 provide a new direction and 
possibility for immunotherapy. It is certain that the nor-
malization of tumor blood vessels has a great promoting 
effect on antitumor immunity, but whether the combination 
of ICIs and antiangiogenic drugs can become a new pos-
sibility for the treatment of EGFR-mutant NSCLC needs 
further study103. Please see Figure 1 for a graphical sum-
mary of this review.

OUTLOOK

There is increasing evidence that ICIs provide clini-
cal benefit to cancer patients, and immunotherapy will 
play an increasingly important role in cancer therapy in 
the future. For EGFR-mutant NSCLC, it is important to 
determine whether patients can benefit from ICI treat-
ment. Different types of EGFR mutations may exhibit 
different responses to ICIs, and it is necessary to explore 
the mechanism by which patients with EGFR muta-
tions benefit from ICI treatment. Understanding how to 
improve the immunogenicity of EGFR-mutant NSCLC 
will provide much-needed evidence for the application of 
immunosuppressive agents. Therefore, many clinical tri-
als and basic studies are still needed to explore the mech-
anism, potential influencing factors, and biomarkers of 
the response to ICIs. It is believed that future studies can 
clarify or improve the immunotherapy for EGFR-mutant 
NSCLC and can continue to extend the good prognosis of 
patients with EGFR-mutant NSCLC.
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