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ABSTRACT

A fuzzy system is a novel computing technique that accesses uncertain information by fuzzy representation. In
the decision-making process, fuzzy system and soft computing are effective tools that are tolerant to imprecision,
uncertainty, and partial truths. Evolutionary fuzzy systems have been developed with the appearance of interval
fuzzy, dual fuzzy, hesitant fuzzy, neutrosophic, plithogenic representations, etc. Moreover, by capturing compound
features and convey multi-dimensional data, complex numbers are utilized to generalize fuzzy and neutrosophic
fuzzy sets. In this paper, a representation of neutrosophic soft expert systems based on the real and complex numbers
in the interval form is proposed. The interval-valued neutrosophic soft expert set (I-VNSES) is defined, and the
interval-valued complex neutrosophic soft expert set (I-VCNSES) is formally generalized from the concept of I-
VNSES. For both I-VNSES and I-VCNSES, we introduce the relevant basic theoretical operations and study their
properties. Based on these new concepts, a generalized algorithm is proposed and applied to handle the imbedded
indeterminacy in the two-dimensional interval data. The proposed algorithm is tested on the economic factors
that affected the Malaysian economy in 2020 to see which ones are the most influential. Eventually, a comparison
of three current approaches is used to back up this study.

KEYWORDS
Interval-valued neutrosophic set; complex neutrosophic set; interval-valued complex neutrosophic set; soft expert
set; decision making

1 Introduction

Fuzzy sets [1] and its extensions, such as intuitionistic fuzzy sets [2] and neutrosophic sets [3],
have provided a wide range of tools that can deal with uncertainty in different types of problems.
The neutrosophic set has become increasingly popular in the last two decades as a sophisticated
representation of uncertain, incomplete and undetermined data. The neutrosophic set (NS) is char-
acterized by three membership functions which represent truth, falsity, and indeterminacy, and all
these three memberships take values in the non-standard interval [0−, 1+]. Smarandache [4] and Wang

http://dx.doi.org/10.32604/cmes.2022.019684
mailto:ghafur@ukm.edu.my


268 CMES, 2022, vol.132, no.1

et al. [5] introduced the single-valued neutrosophic set (SVNS) as a result of the fast growth of
neutrosophic theory, and this set was later included in various decision-making methods [6–11]. The
SVNS is modified from the classical neutrosophic set which membership structure is similar to the
original model. Still, all of these membership functions take on values between 0 and 1. In reality,
the degree of truth, falsehood, and indeterminacy of a statement might occasionally be expressed
by various different interval values rather than being specified precisely in real situations. So, the
idea of interval neutrosophic set (INS) was proposed by Wang et al. [12] and gave the set-theoretic
operators of INS. Multi-criteria decision-making (MCDM) is one popular branch of decision-making
theory and has been extensively studied in numerous researches [13–20]. Decision information is often
incomplete, inconsistent, and undetermined, which further complicates the decision-making process.
Therefore, the process of integrating the aforementioned uncertainty sets with the MCDM technique
has attracted the attention of many researchers. This useful contribution leads to a fruitful output in the
relevant research literature [21–26]. On the other hand, in some situations, we need to express some real
data of two dimensions, which cannot be expressed by the models mentioned above, which heightens
the need for developing several improved hybrid models that can deal effectively with this type of data.
Consequently, complex numbers are utilized to generalize fuzzy sets through complex fuzzy set [27] by
Ramot et al. Complex fuzzy set is characterized by a unique membership function which consists of
two terms called amplitude term and phase term, where the amplitude term handles the uncertainty,
and the phase term represents the periodicity. This, in turn, led to the development of many similar
models. The most commonly used one which is relevant to this research is the complex neutrosophic
set by Ali et al. [28]. A complex neutrosophic set is characterized by three membership functions, each
of which consists of amplitude term and phase term. The amplitude terms of the truthiness, falsity and
indeterminacy in a complex neutrosophic set are analogous to the membership, non-membership and
indeterminate membership functions in a single-valued neutrosophic set. In contrast, the phase terms
expressed the periodicity of the information. Thus, complex neutrosophic sets handle the single-valued
neutrosophic data, which have the periodic manner. In many real-life applications, it is not easy to find
a crisp (exact) neutrosophic membership degree (as in the single-valued neutrosophic set) since we deal
with unclear and vague periodic information. To overcome this, Ali et al. proposed an interval complex
neutrosophic set (ICNS) [29]. On the other hand, the theory of soft set [30] has been initiated to handle
uncertainty but with the construction that differs from other constructions as in the other uncertainty
sets. It is a mapping that attaches each parameter from its domain to a subset from the universal set.
Since its inception, the soft set has achieved a widespread as a powerful tool that represents complex
variables in a systematic way to handle uncertainty. Accordingly, it has been incorporated into other
uncertainty sets to improve their efficiency. In addition, Alkhazaleh et al. introduced a more advanced
form of a soft set called soft expert set [31] that can incorporate the opinions of many experts in
one model, which in turn handle the subjectivity that exists in real-life situations in a more practical
manner compared to soft set. Among the significant milestones in the development of soft sets and
soft expert sets and their generalizations is introducing the single-valued neutrosophic soft expert set
(SVNSES), which combines the advantages of both single-valued neutrosophic set and soft expert. The
SVNSES is then improved to the complex neutrosophic soft expert set (CNSES) [32] and complex
neutrosophic soft expert relation (CNSER) [33] to solve some complicated real-life problems which
contain uncertain, indeterminate, and inconsistent data with two dimensions.

1.1 Novelty
Recently, Al-Sharqi et al. [34] introduced interval-valued complex neutrosophic soft set (I-VCNSS)

as a combination of interval complex neutrosophic set and soft set to deal with the problems involved
periodicity information and varies with time in interval forms. This model is useful for handling these
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problems with two-dimensional characterization properties. To make this model more practical for
improving new decision-making results, we will improve it into interval-valued complex neutrosophic
soft expert sets (I-VCNSES) by extending interval-valued neutrosophic soft expert set from real
space to complex space in order to incorporate the advantages of soft expert sets to the interval-
valued complex neutrosophic soft sets. The novelty of I-VCNSES appears in its ability to provide
a succinct, elegant, and comprehensive representation of two-dimensional neutrosophic information
(information presented by the amplitude terms and information presented by the phase terms) as
well as the adequate parameterization and the opinions of the experts, all in an interval form. In
addition, the economic-related activities such as the effects of certain financial factors on the economy
of a country where the period of time of the influence as a second variable and the opinion of
many experts play a key role in the final decision. In this paper, we will solve the same types of
decision-making problems that have been solved by CNSES and CNSER by using the interval-based
membership structure while defining the I-VCNSES. I-VCNSES can describe more information range
by virtue of the interval membership values, which more accurately express decision makers’ evaluation
information and cause less information distortion.

1.2 Motivation and Contribution
The main contribution and motivation behind this research can be summarized below:

(1) We extend the concept of I-VNSES that is given in Section 3 to I-VCNSES to incorporate the
time frame offered by phase terms, as well as the capacity to express ambiguous, indeterminate,
and inconsistent data in two dimensions.

(2) We define some basic operations related to our two notions (I-VNSES and I-VCNSES),
namely the complement, union, intersection, AND, and OR. In addition, prove some related
properties.

(3) In terms of the application in Section 5, we propose an algorithm to solve decision-making
problems in the economic field by converting our model from the complex state (I-VCNSES)
to the real state (I-VNSES) and then providing in detail decision steps.

(4) In some real-life problems which the user cannot be solved by soft expert set, fuzzy soft expert
set [35], intuitionistic fuzzy soft expert set [36], neutrosophic soft set expert set [37], interval-
valued generalized fuzzy soft expert set [38], our first proposed interval neutrosophic soft expert
set, etc. To help the user to overcome such problems, an interval-valued complex neutrosophic
soft expert set has been introduced.

(5) An interval-valued complex neutrosophic soft expert set(I-VCNSES) can be viewed as follows:
soft expert set (SES) ⊆ fuzzy soft expert set (FSES) ⊆ intuitionistic fuzzy soft expert set (IFSES)
⊆ interval-valued generalized fuzzy soft expert set (I-VGFSES) ⊆ neutrosophic soft expert set
(NSES) ⊆ interval-valued neutrosophic soft expert set(I-VNSES) ⊆ interval-valued complex
neutrosophic soft expert set(I-VCNSES). So, it is more effective and useful.

(6) Finally, the main feature in our concept (I-VCNSES) is the presence of the amplitude and phase
and their memberships in the form of intervals, and this gives the user more flexibility in the
decision-making process.

1.3 Organization of Paper
Based on the below flowchart, we review how to organize our manuscript briefly.
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2 Preliminaries

In this section, we recapitulate the concepts of interval-valued neutrosophic set (I-VNS), complex
neutrosophic sets (CNS) and interval-complex neutrosophic set (I-CNS) and give an overview of the
operations structures of these concepts that are relevant to the work in this paper.

Definition 2.1. [12] Let U be a space of points (objects) with generic elements in U denoted by
u. Then an I-NS A in U is characterized by three membership functions that are a truth TA(u),
indeterminacy IA(u), and a falsehood FA(u), such that for each point u in U we have TA(u) =
[inf TA(u), supTA(u)], IA(u) = [inf IA(u), sup IA(u)], FA(u)= [inf FA(u), sup FA(u)]⊆ [0, 1] and
0− ≤ TA(u) + IA(u) + FA(u) ≤ 3+ for u ∈ U .

Definition 2.2. [12] Let A and B two I-NSs over a universe U . Then, the fundamental operations
of I-VNSs define as follows:

(1) The complement of an I-VNS A is denoted by Ac and is defined as TAc(u) = FA(u), inf IAc(u) =
1 − supIA(u), supIAc(u) = 1 − inf IA(u) and FAc(u) = TA(u) for any u ∈ U .

(2) A ⊆ B, iff
inf TA(u) ≤ inf TB(u), sup TA(u) ≤ sup TB(u), inf IA(u) ≥ inf IB(u), sup IA(u) ≥ sup IB(u), and
inf FA(u) ≥ inf FB(u), sup FA(u) ≥ sup FB(u) for any u ∈ U .

(3) The union (intersection) of two INSs A and B is an I-VNS denoted as C = A ∪(∩)B and the
three membership functions of I-VNSs defined as

TA ∪(∩)B(u) = [inf TA ∪(∩)B(u), supTA ∪(∩)B(u)]

IA ∪(∩)B(u) = [inf IA ∪(∩)B(u), supIA ∪(∩)B(u)]

FA ∪(∩)B(u) = [inf FA ∪(∩)B(u), supFA ∪(∩)B(u)]

where

inf TA ∪(∩)B(u) = ∨(∧)(inf TA(u), inf TB(u)),
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supTA ∪(∩)B(u) = ∨(∧)(sup TA(u), sup TB(u))

inf IA ∪(∩)B(u) = ∧(∨)(inf IA(u), inf IB(u)),

sup IA ∪(∩)B(u) = ∧(∨)(sup IA(u), sup IB(u))

inf FA ∪(∩)B(u) = ∧(∨)(inf FA(u), inf FB(u)),

sup FA ∪(∩)B(u) = ∧(∨)(sup FA(u), sup FB(u)).

Definition 2.3. [28] A complex neutrosophic set S defined on a universe of discourse U is
characterized by three memberships that are a truth membership TS(u), indeterminacy membership
IS(u), and a falsehood membership FS(u) that assign a complex-valued grade of membership in S to
any element u ∈ U . By definition, all values of TS(u), IS(u) and FS(u) lie within the unit circle in the
complex plane and are expressed by TS(u) = tS(u). ejμS(u), IS(u) = iS(u). ejωS(u) and FS(u) = fS(u).
ejϕS(u) where tS(u), iS(u), fS(u) and μS(u), ωS(u), ϕS(u) are both real-valued such that tS(u), iS(u), fS(u)

belong to the interval [0, 1] and μS(u), ωS(u), ϕS(u) belong to (0, 2π ] and j = √−1.

Definition 2.4. [29] Let U be a space of points (objects) with generic elements in U denoted by
u. Then an interval-valued complex neutrosophic set (in short I-VCNS) N in U is defined by three
interval membership functions that are a truth interval membership function TN(u), indeterminacy
interval membership function IN(u), and a falsehood interval membership function FN(u) as a follows:

TN(u) = tN(u).ejμN (u),

IN(u) = iN(u).ejωN (u)

and

FN(u) = fN(u).ejϕN (u).

where, the amplitude interval-valued terms tN(u), iN(u), fN(u) can be write as

tN(u) = [tN
L(u), tN

U(u)],

iN(u) = [iN
L(u), iN

U(u)],

and

fN(u) = [fN
L
(u), fN

U
(u)]

where, tN
L(u), iN

L(u), fN
L
(u) denote the lower bounds, while tN

U(u), tN
U(u), tN

U(u) denote the
upper bounds. Similarly, for the phases interval-valued terms μN(u) = [μL

N(u), μU
N(u)], ωN(u) =

[ωL
N(u), ωU

N(u)] and ϕN(u) = [ϕL
N(u), ϕU

N (u)].

Definition 2.5. [29] Let M and N two I-VCNSs over a universe U . Then, the fundamental
operations of I-VCNSs define as follows:

(1) The complement of an I-VCNS N is denoted by Nc and is defined as

Nc =
{(

TNc(u) = tNc(u).ejμNc (u), INc(u) = iNc(u).ejωNc (u), FNc(u) = fNc(u).ejϕNc (u)

u
; u ∈ U

)}
.

where, tNc(u) = fN(u) and μNc(u) = 2π − μN(u). Similarly,
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iNc(u) = (inf iNc(u), supiNc(u)) where inf iNc(u) = 1 − sup iN(u) and supiNc(u) = 1 − inf iN(u) with

the phase term ωNc(u) = 2π−ωN(u) also fNc(u) = tN(u), while the phase term ϕNc(u) = 2π−ϕN(u).

(2) The union (intersection) of two I-VCNSs M and N is an I-VCNS denoted as M ∪(∩)N and
the three membership functions of I-VCNSs defined as

TM ∪(∩)N(u) = [inf tM ∪(∩)N(u), suptM ∪(∩)N(u)].ej2πμM ∪(∩)N (u)

IM ∪(∩)N(u) = [inf iM ∪(∩)N(u), supiM ∪(∩)N(u)].ej2πωM ∪(∩)N (u)

FM ∪(∩)N(u) = [inf fM ∪(∩)N(u), supfM ∪(∩)N(u)].ej2πϕM ∪(∩)N (u)

where,

inf tM ∪(∩)N(u) = ∨(∧)(inf tM(u), inf tN(u)),

suptM ∪(∩)N(u) = ∨(∧)(sup tM(u), suptN(u))

inf iM ∪(∩)N(u) = ∧(∨)(inf iM(u), inf iN(u)),

sup iM ∪(∩)N(u) = ∧(∨)(sup iM(u), sup iN(u))

inf fM ∪(∩)N(u) = ∧(∨)(inf fM(u), inf fN(u)),

sup fM ∪(∩)N(u) = ∧(∨)(sup fM(u), sup fN(u))

The phase term’s union (intersection) is defined in the same way as the amplitude term’s union
(intersection). The two symbols ∨, ∧ indicate operators of max and min operators, respectively.

3 Interval Valued Neutrosophic Soft Expert Set

In this part, we introduce the idea of an interval-valued neutrosophic soft expert set(I-VNSES)
as a combination of interval-neutrosophic set(I-NS) and soft expert set (SES). Throughout this paper,
U is a universe, E is a parameters set, X is a set of experts and O = {1 = agree, 0 = disagree} is a set
of opinions such that Z = E × X × O and A ⊆ Z.

Definition 3.1. A pair (K, A) is an I-VNSES over U , where K is mapping given by K : A →
I − VN(U) such that I − VN(U) denotes the power interval-valued neutrosophic set of U .

Hence (K, A) can be write as an ordered pairs follows:

(K, A) = {α = (e, x, o), 〈 TK(u) , IK(u) , FK(u) 〉 : u ∈ U , α ∈ A ⊆ E × X × O}
where the three-interval truth-membership TKα(u), interval indeterminacy-membership IKα(u), and
interval falsity membership FKα(u) of (K, A) are as follows:

TKα(u) = [tL
Kα(u), tU

Kα(u)]

IKα(u) = [iL
Kα(u), iU

Kα(u)]

FKα(u) = [f L
Kα(u), f U

Kα(u)].

Then,

K(α) = {〈[tL
Kα(u), tU

Kα(u)], [iL
Kα(u), iU

Kα(u)] , [f L
Kα(u), f U

Kα(u)]〉}
such that u ∈ U , α ∈ A ⊆ E × X × O.
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Example 3.1. Suppose that one of the producing companies wanted to evaluate their products
with the help of some experts. Let U = {u1, u2, u3} be a set of products, E = {e1, e2} a set of decision
parameters denote the decision “easy to use” and, “quality”, respectively, and let X = {p, q} be a set
of experts. Based on the opinions of the experts that the company used, we get the following:

K(e1, p, 1) =
{(

[0.4, 0.6], [0.1, 0.7], [0.3, 0.5]
u1

)
,
(

[0.2, 0.4], [0.1, 0.1], [0.5, 0.9]
u2

)
,(

[0.5, 0.8], [0.2, 0.6], [0.2, 0.3]
u3

)}

K(e1, q, 1) =
{(

[0.7, 0.8], [0.1, 0.4], [0.3, 0.5]
u1

)
,
(

[0.4, 0.7], [0.2, 0.5], [0.3, 0.6]
u2

)
,(

[0.1, 0.2], [0.6, 0.7], [0.8, 0.9]
u3

)}

K(e2, p, 1) =
{(

[0.1, 0.9], [0.2, 0.4], [0.1, 0.8]
u1

)
,
(

[0.1, 0.4], [0.3, 0.5], [0.6, 0.8]
u2

)
,(

[0.4, 0.8], [0.1, 0.2], [0.2, 0.6]
u3

)}

K(e2, q, 1) =
{(

[0.2, 0.3], [0.7, 0.9], [0.7, 0.8]
u1

)
,
(

[0.3, 0.6], [0.5, 0.8], [0.4, 0.7]
u2

)
,(

[0.8, 0.9], [0.3, 0.4], [0.1, 0.2]
u3

)}

K(e1, p, 0) =
{(

[0.5, 0.6], [0.8, 0.9], [0.4, 0.6]
u1

)
,
(

[0.5, 0.6], [0.8, 0.9], [0.4, 0.5]
u2

)
,(

[0.2, 0.6], [0.1, 0.5], [0.5, 0.7]
u3

)}

K(e1, q, 0) =
{(

[0.5, 0.7], [0.2, 0.5], [0.3, 0.5]
u1

)
,
(

[0.5, 0.8], [0.3, 0.7], [0.2, 0.5]
u2

)
,(

[0.6, 1], [0.1, 0.3], [0, 0.3]
u3

)}

K(e2, p, 0) =
{(

[0.1, 0.8], [0.3, 0.4], [0.1, 0.8]
u1

)
,
(

[0.8, 1], [0.2, 0.3], [0, 0.3]
u2

)
,(

[0.9, 0.9], [0.1, 0.3], [0.1, 0.1]
u3

)}
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K(e2, q, 0) =
{(

[0.8, 0.9], [0.3, 0.5], [0.2, 0.5]
u1

)
,
(

[0.5, 0.7], [0.2, 0.7], [0.3, 0.4]
u2

)
,
(

[0.5, 0.8], [0.3, 0.7], [0.2, 0.7]
u3

)}
The I-VNSES (K, A) is a parameterized family {K(α i), i = 1, 2, 3, . . .} of all I-VNS of U , and

denotes a collection of object approximations.

Definition 3.2. Let (K, A)and (H, B) be two I-VNSESs over U . Then (K, A) is said to be I-VNSE-
subset of (H, B) iff

(1) A ⊆ B.

(2) ∀α ∈ A and α ∈ B , K(α) is I-VN-subset of H(α).

This relationship is indicated by (K, A) ⊆ (H, B). So, in this case (H, B) is called an I-VNSE-
superset of (K, A).

Definition 3.3. Two I-VNSESs (K, A) and (H, B) over U , are said to be equal if (K, A) is an
interval-valued neutrosophic soft expert subset of (H, B) and (H, B) is an interval-valued neutrosophic
soft expert subset of (K, A) and denoted by (K, A) = (H, B).

Definition 3.4. An I-VNSES (K, A) is knowing to be a null I-VNSES and denoted by (K , A)∅ if
for all u ∈ U the terms of the truth interval membership TK , an indeterminate interval membership IK ,
and falsehood interval membership FK , are given by tL

K(u) = tU
K (u) = 0 and iL

K(u) = iU
K (u) = f L

K (u) =
f U

K (u) = 1 .

Definition 3.5. An I-VNSES (K, A) said to be an absolute I-VNSES denoted by (K, A)δ if for all
u ∈ U of the truth interval membership TK , an indeterminate interval membership IK , and falsehood
interval membership FK are given by tL

K(u) = tU
K (u) = 1 and iL

K(u) = iL
K(u) = f L

K (u) = f U
K (u) = 0 .

Definition 3.6. An agree I-VNSES (K , A)1 over U is an I-VNSE subset of (K, A), where the
opinions of all experts agree are defined as follows:

(K , A)1 = {K1(α) : α ∈ E × X × {1}}.
Definition 3.7. A disagree I-VNSES (K, A)0 over U is an I-VNSE of (K, A), where the opinions of

all experts disagree are defined as follows:

(K , A)0 = {K0(α) : α ∈ E × X × {0}}.
Now, we present some fundamental operations on I-VNSESs, namely the complement, union, and

intersection of I-VNSESs, alongside deriving their properties and giving some numerical examples.

Definition 3.8. The complement of I-VNSES (K, A) is denoted by (KC, A) and is defined by
(K, A) c = (Kc, A) such that:

(K, A) c = (Kc, A) = {α, 〈TKC
α
(u) , IKC

α
(u) , FKC

α
(u)〉 : u ∈ U , α ∈ A}

= {α, 〈[tL
Kcα(u), tU

Kcα(u)], [iL
Kcα(u), iU

Kcα(u)]

[f L
Kcα(u), f U

Kcα(u)]〉 : u ∈ U , α ∈ A}
where tKcα(u) = fKα(u), and iKcα(u) = (inf iKcα (u) , supiKcα(u))
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where, inf iKcα(u) = 1 − supiKα(u) and supiKc(e)(u) = 1 − inf iKα(u), also, fKcα(u) = tKα(u).

Example 3.2. Take the part given in Example 3.1, where

K(e1, p, 1) =
{(

[0.4, 0.6], [0.1, 0.7], [0.3, 0.5]
u1

)
,
(

[0.2, 0.4], [0.1, 0.1], [0.5, 0.9]
u2

)
,(

[0.5, 0.8], [0.2, 0.6], [0.2, 0.3]
u3

)}
Now, by employing the I-VN-complement, we get the complement of the part that is given by

Kc(e1, p, 1) =
{(

[0.3, 0.5], [0.3, 0.9], [0.4, 0.6]
u1

)
,
(

[0.5, 0.9], [0.9, 0.9], [0.2, 0.4]
u2

)
,(

[0.2, 0.3], [0.4, 0.8], [0.5, 0.8]
u3

)}
Proposition 3.1. Let (K, A) is an I-VNSES over U , then, ((K, A)C)C = (K, A).

Proof. Assume that (K, A) is an I-VNSES over U defined as

(K, A) = {(α = (e, x, o), 〈[TK(u)], [IK(u)], [FK(u)]〉) : u ∈ U , α ∈ A ⊆ E × X × O}.
The complement of (K, A) denoted by (K, A) c = (Kc, A) is as defined below:

(Kc, A) = {(α = (e, x, o), 〈[TKc
α
(u)], [IKc

α
(u)], [FKc

α
(u)]〉) : u ∈ U , α ∈ A ⊆ E × X × O}

= {α,([tL
Kcα(u), tU

Kcα(u)], [iL
Kcα(u), iU

Kcα(u)] , [f L
Kcα(u), f U

Kcα(u)] : u ∈ U , α ∈ A}
= {α, ([f L

Kα
(u), f U

Kα
(u)], [1 − supiL

Kα (u), 1 − inf iU
Kα (u)] , [tL

Kα (u), tU
Kα (u)]) : u ∈ U , α ∈ A}.

Thus,

((K, A) c)c = {α, ([f L
Kcα(u), f U

Kcα(u)], [1 − supiL
Kcα(u)), 1 − inf iU

Kcα(u))] , [tL
Kcα(u), tU

Kcα(u)]) : u ∈ U , α ∈ A}
= {α, ([tL

Kα(u), tU
Kα(u)], [1 − (1 − inf iL

Kα(u)), (1 − (1 − supiU
Kα(u))], [f L

Kα(u), f U
Kα(u)]) : u ∈ U , α ∈ A}

= {α, ([tL
Kα(u), tU

Kα(u)], [inf iL
Kα(u)), supiU

Kα(u)], [f L
Kα(u), f U

Kα(u)])u ∈ U , α ∈ A}
= (K , A)

This completes the proof.

Definition 3.9. The union of two I-VNSESs (K, A) and (G, B) over U is also I-VNSES (H, C),
where C = A ∪ B and ∀c ∈ C , u ∈ U .

THc(u) =
⎧⎨⎩[inf tKc(u), suptKc(u)] if c ∈ A − B,

[inf tGc(u), suptGc(u)] if c ∈ B − A,
[inf tHC

(u), suptHC
(u)] if c ∈ A ∩ B,

IHc(u) =
⎧⎨⎩[inf iKc(u), supiKc(u)] if c ∈ A − B,

[inf iGc(u), supiGc(u)] if c ∈ B − A,
[inf iHC

(u), supiHC
(u)] if c ∈ A ∩ B,

FHc(u) =
⎧⎨⎩[inf fKc(u), supfKc(u)] if c ∈ A − B,

[inf fGc(u), supfGc(u)] if c ∈ B − A,
[inf fHC

(u), supfHC
(u)] if c ∈ A ∩ B,
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where,

inf tH(c)(u) = ∨(inf tKc(u), inf tGc(u)), suptHc(u) = ∨(suptKc(u), suptGc(u)),

inf iHc(u) = ∧(inf iKc(u), inf iGc(u)), supiHc(u) = ∧(supiKc(u), supiGc(u)),

inf fHC
(u) = ∧(inf fKC

(x), inf fGC
(u)), supiHC

(u) = ∧(supfKC
(u), supfGC

(u)).

The union (K, A)∪(G, B) = (H, C) and the two symbols ∨, ∧ indicate operators of max and min
operators, respectively.

Definition 3.10. The intersection of two I-VNSESs (K, A) and (G, B) over U is also I-VNSES
(H, C), where C = A ∩ B and ∀c ∈ C , u ∈ U .

THc(u) =
⎧⎨⎩[inf tKc(u), suptKc(u)] if c ∈ A − B,

[inf tGc(u), suptGc(u)] if c ∈ B − A,
[inf tHC

(u), suptHC
(u)] if c ∈ A ∩ B,

IHc(u) =
⎧⎨⎩[inf iKc(u), supiKc(u)] if c ∈ A − B,

[inf iGc(u), supiGc(u)] if c ∈ B − A,
[inf iHC

(u), supiHC
(u)] if c ∈ A ∩ B,

FHc(u) =
⎧⎨⎩[inf fKc(u), supfKc(u)] if c ∈ A − B,

[inf fGc(u), supfGc(u)] if c ∈ B − A,
[inf fHC

(u), supfHC
(u)] if c ∈ A ∩ B,

where,

inf tH(c)(u) = ∧(inf tK(c)
(u), inf tG(c)

(u)), suptH(c)
(u) = ∧(suptK(c)

(u), suptG(c)
(u)),

inf iH(c)
(u) = ∨(inf iK(c)

(u), inf iG(c)
(u)), supiH(c)

(u) = ∨(supiK(c)
(u), supiG(c)

(u)),

inf fH(C)
(u) = ∨(inf fK(c)

(x), inf fG(c)
(u)), supiH(C)

(u) = ∨(supfK(c)
(u), supfG(c)

(u)).

The intersection (K, A)∩(G, B) = (H, C) and the two symbols ∨, ∧ indicate operators of max
and min operators, respectively.

Example 3.3. Consider Example 3.1, Let A = {(e1, p, 1), (e1, q, 0), (e2, p, 1)} and B =
{(e1, p, 1), (e1, q, 0), (e2, p, 0)}. Assume that (K, A) and (G, B) are two I-VNSESs over universe U , then

(K, A) ={{
(e1, p, 1),

{( 〈[0.4, 0.6], [0.1, 0.7], [0.3, 0.5]〉
u1

)
,

( 〈[0.2, 0.4], [0.1, 0.1], [0.5, 0.9]〉
u2

)
,

( 〈[0.1, 0.7], [0 , 0.3], [0.3, 0.5]〉
u3

)}}
{
(e1, q, 0),

{( 〈[0.5, 0.7], [0.2, 0.5], [0.3, 0.5]〉
u1

)
,
( 〈[0.5, 0.8], [0.3, 0.7], [0.2, 0.5]〉

u2

)
,

( 〈[0.6, 1], [0.1, 0.3], [0, 0.3]〉
u3

)}}
{
(e2, p, 1),

{( 〈[0.1, 0.9], [0.2, 0.4], [0.1, 0.8]〉
u1

)
,
( 〈[0.1, 0.4], [0.3, 0.5], [0.6, 0.8]〉

u2

)
,( 〈[0.4, 0.8], [0.1, 0.2], [0.2, 0.6]〉

u3

)}}}
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(G, B)

=
{{

(e1, p, 1),
{( 〈[0.3, 0.5], [0.2, 0.4], [0.4, 0.7]〉

u1

)
,

( 〈[0.5, 0.6], [0.1, 0.3], [0.3, 0.4]〉
u2

)
,

( 〈[0.6, 0.8], [0.7, 0.8], [0.1, 0.4]〉
u3

)}}
{
(e1, q, 0),

{( 〈[0.5, 0.6], [0.8, 0.9], [0.4, 0.6]〉
u1

)
,
( 〈[0.5, 0.6], [0.8, 0.9], [0.4, 0.5]〉

u2

)
,

( 〈[0.2, 0.6], [0.1, 0.5], [0.5, 0.7]〉
u3

)}}
{
(e2, p, 0),

{( 〈[0.1, 0.8], [0.3, 0.4], [0.1, 0.8]〉
u1

)
,
( 〈[0.8, 1], [0.2, 0.3], [0, 0.3]〉

u2

)
,

( 〈[0.9, 0.9], [0.1, 0.3], [0.1, 0.1]〉
u3

)}}}
By using I-VN-union, then (K, A)∪(G, B) = (H, C) such that

(H, C)

=
{{

(e1, p, 1),
{( 〈[0.4, 0.6], [0.1, 0.4], [0.3, 0.5]〉

u1

)
,

( 〈[0.5, 0.6], [0.1, 0.1], [0.3, 0.4]〉
u2

)
,
( 〈[0.6, 0.8], [0, 0.3], [0.1, 0.4]〉

u3

)}}
{
(e1, q, 0),

{( 〈[0.5, 0.7], [0.2, 0.5], [0.3, 0.5]〉
u1

)
,

( 〈[0.5, 0.8], [0.3, 0.7], [0.2, 0.5]〉
u2

)
,
( 〈[0.6, 1], [0.1, 0.3], [0, 0.3]〉

u3

)}}
{
(e2, p, 0),

{( 〈[0.5, 0.6], [0.8, 0.9], [0.4, 0.6]〉
u1

)
,
( 〈[0.8, 1], [0.2, 0.3], [0, 0.3]〉

u2

)
,

( 〈[0.9, 0.9], [0.1, 0.3], [0.1, 0.1]〉
u3

)}}
{
(e2, p, 1),

{( 〈[0.1, 0.9], [0.2, 0.4], [0.1, 0.8]〉
u1

)
,
( 〈[0.1, 0.4], [0.3, 0.5], [0.6, 0.8]〉

u2

)
,

( 〈[0.4, 0.8], [0.1, 0.2], [0.2, 0.6]〉
u3

)}}}

Proposition 3.2. If (K, A), (G, B) and (H, D) be I-VNSESs over U . Then, we have the following
properties:

(1) (K, A) ∪(G, B) = (G, B)∪(K, A)

(2) (K, A) ∩(G, B) = (G, B)∩(K, A)

(3) ((K, A) ∪(G, B)) ∪(H, D) = (K, A)∪ ((G, B) ∪(H, D))

(4) ((K, A) ∩(G, B)) ∩(H, D) = (K, A)∩ ((G, B) ∩(H, D))

Proof. (1) By employing Definition 3.9, we will demonstrate that (K , A)∪(G, B) = (G, B)∪(K, A)

and we consider the case when c ∈ A ∩ B; c = (e, x, o) and the other cases are trivial:

(K, A) ∪(G, B) = {(c, 〈max{[TKc(u)], [TGc(u)]}, min{[IKc(u)], [IGc(u)]},min{[FKc(u)], [FGc(u)]}〉): u ∈ U}
= {(c, 〈max{[TGc(u)], [TKc(u)]}, min{[IGc(u)], [IKc(u)]},min{[FGc(u)], [FKc(u)]}〉): u ∈ U}
= (G, A) ∪(K, B) �

(2) The proof is similar to that of part (1).

(3) By using Definition 3.9, we want to prove that ((K, A)∪(G, B)) ∪(H, D) = (K , A)∪ ((G, B) ∪(H, D))

and we consider the case c ∈ A ∩ B; c = (e, x, o) as the other cases are trivial:

(K, A) ∪(G, B) = {(c, 〈max{[TKc(u)], [TGc(u)]}, min{[IKc(u)], [IGc(u)]},min{[FKc(u)], [FGc(u)]}〉): u ∈ U}
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Considering the case when c ∈ D, then we have

(K, A) ∪(G, B) ∪(H, D) = {(c, 〈max{max{[TKc(u)], [TGc(u)]}, [THc(u)]},min{min{[IKc(u)], [IGc(u)]}, [IHc(u)]},
(min{min{[FKc(u)], [FGc(u)]}, [FHc(u)]}) : u ∈ U}

= {(c,(max {[TKc(u)]}, max{[TGc(u)], [THc(u)]}min {[IKc(u)]}, min{[IGc(u)], [IHc(u)]}
min {[FKc(u)]}, min{[FGc(u), FHc(u)]}) : u ∈ U}

= (K, A) ∪ ((G, B) ∪(H, D)).

The proof of part (4) is similar to part (3).

In the following, we will introduce the definitions of AND and OR operations on IV-NSESs with
a proposition on these two operations.

Definition 3.11. If (K, A) and (G, B) be any two I-VNSESs over a soft universe (U , Z). Then
(K, A) and (G, B) denoted by (K, A) ∧ (G, B) = (H, A × B) where (H, A × B) = H(α, β) , such that
H(α, β) = K(α) ∩ G(β), when (α, β) ∈ A × B, and ∩ represent the intersection of interval-valued
neutrosophic set.

Definition 3.12. If (K, A) and (G, B) be any two IV-NSESs over a soft universe (U , Z). Then (K, A)

OR (G, B) denoted by (K, A) ∨ (G, B) = (H, A × B) where (H, A × B) = H(α, β), such that H(α, β) =
K(α) ∪ G(β), when (α, β) ∈ A × B, and ∪ represent the union of interval-valued neutrosophic set.

Proposition 3.3. If (K, A), (G, B) and (H, D) be I-VNSESs over U . Then, we have the following
properties:

(1) ((K, A) ∧ (G, B)) ∧ (H, D) = (K, A) ∧ ((G, B) ∧ (H, D))

(2) ((K, A) ∨ (G, B)) ∨ (H, D) = (K, A) ∨ ((G, B) ∨ (H, D))

Proof. The proof of the above two proposition is similar to the proof of Proposition 3.2 part (3)
and (4).

4 Interval-Valued Complex Neutrosophic Soft Expert Sets

In this part, we establish the idea of I-VCNSES by extending I-VNSES from real space to complex
space. We denote U as a universe, E is a set of parameters, X as a set of experts and O = {1 = agree,
0 = disagree} as a set of opinions, such that Z = E × X × O and A ⊆ Z.

Definition 4.1. A pair (K̄, A) is called an I-VCNSES over U , where K̄ is a mapping given by
K̄ : A → I − VCN(U), where I-VCN(U) denotes the power interval-valued complex neutrosophic set
of U . Thus, the I-VCNSES (K̄, A) can be displayed as:

(K̄, A) = {(α = (e, x, o), 〈[TK̄α (u)] , [IK̄α (u)] , [FK̄α (u)]) : u ∈ U , α ∈ A ⊆ E × X × O}
= (α, 〈[tK̄α (u).ej2πωK̄α

(u)], [iK̄α (u).ej2πψK̄α
(u)], [fK̄α (u).ej2πφK̄α(u) ]〉) : u ∈ U , α ∈ A

⊆ E × X × O.

The amplitude of interval-values terms tK̄α (u), iK̄α (u) and fK̄α (u) can be further divided as tK̄α (u) =
[tL

K̄α (u), tU
K̄α (u)], iK̄α (u) = [iL

K̄α (u), iU
K̄α (u)] and fK̄α (u) = [f L

K̄α
(u), f U

K̄α
(u)],

where, tL
K̄α (u), iL

K̄α (u), f L
K̄α

(u) represent the lower bound, while tU
K̄α (u), iU

K̄α (u), f U
K̄α

(u) symbolize
the upper bound in each interval value respectively. Also, for the phases of interval-values terms:
ωK̄α (u) = [ωL

K̄α (u), ωU
K̄α (u)], ψK̄α (u) = [ψL

K̄α
(u), ψU

K̄α
(u)], φK̄α (u) = [φL

K̄α
(u), φU

K̄α
(u)].
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Example 4.1. Suppose that an electrical appliance sales company develops two types of its products
and wants to ask some experts on these products by taking into account the degree of quality and ease
of use represented amplitude terms and phase terms, respectively. Suppose U = {u1, u2} is a set of
electrical appliances, E = {e1, e2} is a set of parameters denoting “quality”, “ease of use” respectively
and let X = {p, q} is a set of experts. In order to obtain the opinion of the two experts, the company
distributed a questionnaire to the two experts to make decisions about these two new products, I-
VCNSES (K̄, A) will be defined as follows: U = {u1, u2}, A = {easy to use; quality} = {e1, e2} ⊆ E,
and

X = {p, q}
Then,

(K̄, A) =
{{

(e1, p, 1),
{(〈[0.4, 0.6].ej2π [0.5,0.6], [0.1, 0.7].ej2π [0.1,0.3], [0.3, 0.5].ej2π [0.8,0.9]〉

u1

)
,(〈[0.1, 0.3].ej2π [0.1,0.3], [0.31, 0.7].ej2π [0.6,0.8], [0.4, 0.61].ej2π [0.2,0.58]〉

u2

)}}
{{

(e2, p, 1),
{(〈[0.2, 0.7].ej2π [0.7,0.8], [0.4, 0.9].ej2π [0.3,0.5], [0.6, 0.8].ej2π [0.5,0.6]〉

u1

)
,(〈[0.15, 0.52].ej2π [0.1,0.3], [0, 0.5].ej2π [0.6,0.8], [0.3, 0.3].ej2π [0.6,0.7]〉

u2

)}}
{{

(e2, q, 1),
{(〈[0.3, 0.5].ej2π [0.5,0.6], [0.3, 0.9].ej2π [0.1,0.3], [0.4, 0.6].ej2π [0.8,0.9]〉

u1

)
,(〈[0.5, 0.9].ej2π [0.3,0.6], [0.9, 0.9].ej2π [0.7,0.9], [0.2, 0.4].ej2π [0.2,0.5]〉

u2

)}}
{{

(e1, p, 0),
{(〈[0.2, 0.6].ej2π [0.7,0.8], [0.3, 0.4].ej2π [0.6,0.7], [0.3, 0.4].ej2π [0.6,0.8]〉

u1

)
,(〈[0.1, 0.3].ej2π [0.2,0.5], [0.3, 0.4].ej2π [0.3,0.6], [0.7, 0.8].ej2π [0.6,0.9]〉

u2

)}}
{{

(e1, q, 0),
{(〈[0.3, 0.8].ej2π [0.3,0.8], [0.2, 0.2].ej2π [0.4,0.7], [0.2, 0.5].ej2π [0.6,0.8]〉

u1

)
,(〈[0.4, 0.6].ej2π [0.9,1], [0, 0.3].ej2π [0.7,0.8], [0, 0.4].ej2π [0.4,0.6]〉

u2

)}}
{{

(e2, p, 0),
{(〈[0.1, 0.6].ej2π [0.3,0.6], [0.4, 0.8].ej2π [0.3,0.3], [0.4, 0.6].ej2π [0,0.5]〉

u1

)
,(〈[0.3, 0.6].ej2π [0.3,0.6], [0.2, 0.6].ej2π [0.5,0.8], [0.5, 0.8].ej2π [0.3,0.7]〉

u2

)}}
{{

(e2, q, 0),
{(〈[0.5, 0.8].ej2π [0.3,0.7], [0.3, 0.5].ej2π [0.4,0.7], [0.3, 0.6].ej2π [0.1,0.7]〉

u1

)
,(〈[0.4, 0.6].ej2π [0.2,0.6], [0.3, 0.4].ej2π [0.5,0.7], [0.4, 0.8].ej2π [0.3,0.6]〉

u2

)}}}
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In the I-VCNSES (K̄, A), the interval amplitude terms and the interval phase terms are between 0
and 1, with an amplitude term near to 0 (1) indicating that the electrical device’s quality is low (high)
and easy (difficult), and a phase term close to 0 (1) indicating that the device’s expire time is short
(long).

Based on the Definition 4.1, we introduce two concepts which are the subset and equality of I-
VCNSESs.

Definition 4.2. Let (K̄, A)and (H̄, B) be two I-VCNSESs over U. Then (K̄ , A) is said to be I-
VCNSE-subset of (H̄, B) iff

(1) A ⊆ B.

(2) ∀α ∈ A and β ∈ B then tL
K̄α (u) ≤ tL

H̄β
(u),

iL
K̄α (u) ≥ iL

H̄β
(u) , f L

K̄α
(u) ≥ f L

H̄β
(u) and

tU
K̄α (u) ≤ tU

H̄β
(u), iU

K̄α (u) ≥ iU
H̄β

(u),

f U
K̄α

(u) ≥ f U
H̄β

(u) for the amplitude terms and ωL
K̄α (u) ≤ ωL

H̄β
(u), ψL

K̄α
(u) ≥ ψL

H̄β
(u), φL

K̄α
(u) ≥

φL
H̄β

(u) and ωU
K̄α (u) ≤ ωU

H̄β
(u), ψU

K̄α
(u) ≥ ψU

H̄β
(u), φU

K̄α
(u) ≥ φU

H̄β
(u) for the phase terms for all

u ∈ U .

This relationship is denoted by (K̄, A) ⊆ (H̄, B) so in this case (H̄, B) is called an I-VCNSE-
superset of (K̄, A).

Definition 4.3. Two I-VCNSESs (K̄, A)and (H̄, B) over U are said to be equal if (K̄ , A) is an
I-VCNSE-subset of (H̄, B) and (H̄, B) is an I-VCNSE-subset of (K̄ , A) and denoted by (K̄, A) =
(H̄, B).

Definition 4.4. An I-VCNSES (K̄, A) is known to be a null I-VCNSES and denoted by (K̄, A)∅ if
for all u ∈ U and α ∈ A, then the amplitude and phase terms of the of the three interval membership
functions TK̄α (u), IK̄α (u), FK̄α (u) are given by ([0, 0], [1, 1], [1, 1]), respectively.

Definition 4.5. An I-VCNSES (K̄, A) is known to be an absolute I-VCNSES and denoted by
(K̄, A)δ if for all u ∈ U and α ∈ A, then the amplitude and phase terms of the three interval
membership functions TK̄α (u), IK̄α (u), FK̄α (u) are given by ([1, 1], [0, 0], [0, 0]), respectively.

Definition 4.6. An agree I-VCNSES ( K̄, A)1 over U is an I-VCNSE-subset of (K̄, A), where the
opinions of all experts agree are written as follows:

(K̄, A)1 = {K̄(α) : α ∈ Z × X × {1}}.
Definition 4.7. A disagree I-VCNSES ( K̄, A)0 over U is an I-VCNSE-subset of (K̄, A), where the

where the opinions of all experts agree are written as follows:

( K̄, A)0 = {K̄(α) : α ∈ Z × X × {0}}.
Next, we provide some fundamental operations on I-VCNSESs, like the complement, union,

and intersection of I-VCNSESs, derive essential properties and pertinent laws to this concept as De
Morgan’s laws, and give some illustrative numerical examples.

Definition 4.8. The complement of an I-VCNSES (K̄ , A) is denoted by (K̄C, A) and is defined by
(K̄, A) c = (K̄c, A) such that
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(K̄, A) c = (K̄c, A) = {α = (e, x, o), 〈 TK̄C
α
(u) , IK̄C

α
(x) , FK̄C

α
(x) 〉 : u ∈ U , α ∈ A ⊆ E × X × O}

= {α, 〈 tK̄C
α
(u).e

j2πω
K̄C

α
(u)

, iK̄C
α
(u).e

j2πψ
K̄C

α
(u)

, fK̄C
α
(u).e

j2πφ
K̄C

α
(u) 〉 : u ∈ U , α ∈ A ⊆ E × X × O}.

where

tK̄C
α
(u) = fK̄α (u) and ωK̄C

α
(u) = 2π − ωK̄α (u)

Similarly, iK̄C
α
(u) = (inf iK̄C

α
(u), supiK̄C

α
(u)),

where, inf iK̄C
α
(u) = 1 − sup iK̄α (u) and supiK̄C

α
(u) = 1 − inf iK̄α (u) with the phase term ψK̄C

α
(u) =

2π − ψK̄α (u) also fK̄C
α
(u) = tK̄α (u), while the phase term φK̄C

α
(u) = 2π − φK̄α (u).

Example 4.2. Take the part given in Example 4.1, where

K̄(e1, p, 1) =
{(〈[0.4, 0.6].ej2π [0.5,0.6], [0.1, 0.7].ej2π [0.1,0.3], [0.3, 0.5].ej2π [0.8,0.9]〉

u1

)
,(〈[0.2, 0.4].ej2π [0.3,0.6], [0.1, 0.1].ej2π [0.7,0.9], [0.5, 0.9].ej2π [0.2,0.5]〉

u2

)}
By using the I-VCN-complement, we get the complement of the part given by

K̄c(e1, p, 1) =
{(〈[0.3, 0.5].ej2π [0.8,0.9], [0.3, 0.9].ej2π [0.7,0.9], [0.4, 0.6].ej2π [0.5,0.6]〉

u1

)
,(〈[0.5, 0.9].ej2π [0.2,0.5], [0.9, 0.9].ej2π [0.1,0.3], [0.2, 0.4].ej2π [0.3,0.6]〉

u2

)}
Proposition 4.1. Let (K̄, A) be an I-VCNSES over U , then, ((K̄, A)C)C = (K̄ , A).

Proof. Suppose that (K̄, A) is an I-VCNSES over U defined as

(K̄, A) = {(α = (e, x, o), 〈[TK̄α (u)] , [IK̄α (u)] , [FK̄α (u)]〉) : u ∈ U , α ∈ A ⊆ E × X × O}
The complement of (K̄, A) denoted by (K̄, A) c = (K̄c, A) is as defined below:

(K̄, A) c = (K̄c, A) = {(α = (e, x, o), 〈[TK̄c
α
(u)] , [IK̄c

α
(u)], [FK̄c

α
(u)]〉) : u ∈ U , α ∈ A ⊆ E × X × O}

= {(α, 〈 [tK̄c
α
(u).ej2πωK̄c

α
(u)] , [iK̄c

α
(u).ej2πψK̄c

α
(u)], [fK̄c

α
(u).ej2πφK̄c

α
(u)]〉) : u ∈ U , α ∈ A ⊆ E × X × O}

= {(α, 〈[fK̄α (u).ej2π(2π−ωK̄α
(u))], [(1 − sup iK̄α (u), 1 − infK̄α (u)).e

j2π(2π−ψ
Kα

(u))

], [ tK̄α (u).ej2π(2π−φK̄α
(u))]〉) :

u ∈ U , α ∈ A ⊆ E × X × O}.
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Thus,((
K̄, A

)c
)c =

{(
α,

〈[
fK̄C

α
(u).e

j2π(2π−ω
K̄C

α
(u))

]
,
[(

1 − supiK̄c
α
(u), 1−

inf iK̄c
α
(u)

)
.e

j2π(2π−ψ
K̄C

α
(u))

]
,
[

tK̄C
α

(u).e
j2π(2π−ω

K̄C
α

(u))
] 〉)

: u ∈ U , α ∈ A ⊆ E × X × O
}

=
{(

α,
〈[

tK̄α
(u).ej2π(2π−(2π−ωK̄α

(u)))
]

,[(
1 − (1 − infiK̄α

(u)), 1 − (1 − supiK̄α
(u))

)
.ej2π(2π−(2π−ψKα

(u)))
]

,[
fK̄α

(u).ej2π(2π−(2π−ωK̄α
(u)))

]〉)
: u ∈ U , α ∈ A ⊆ E × X × O

}
=

{(
α,

〈[
tK̄α

(u).ej2πωK̄α
(u)

]
,
[

iK̄α
(u).e

j2πψK(α)
(u)

]
,
[

fK̄α
(u).ej2πωK̄α(u)

]〉)
: u ∈ U , α ∈ A

⊆ E × X × O
}

= (
K̄, A

)
.

This completes the proof.

Definition 4.9. The union of two I-VCNSESs (K̄, A) and (Ḡ, B) over U is also I-VCNSES (H̄, C),
where C = A ∪ B and ∀c, u ∈ C , U , respectively.

TH̄c(u) =
⎧⎨⎩

[inf tKc(u), suptKc(u)].ej2πωK̄c
(u) if c ∈ A − B,

[inf tGc(u), suptGc(u)].ej2πωḠc
(u) if c ∈ B − A,

[inf tHc(u), suptHc(u)].ej2πωH̄c
(u) if c ∈ A ∩ B,

IH̄c(u) =
⎧⎨⎩

[inf iKc(u), supiKc(u)].ej2πψK̄c
(u) if c ∈ A − B,

[inf iGc(u), supiGc(u)].ej2πψḠc
(u) if c ∈ B − A,

[inf iHc(u), supiHc(u)].ej2πψH̄c
(u) if c ∈ A ∩ B,

FH̄c(u) =
⎧⎨⎩

[inf fKc(u), supfKc(u)].ej2π
K̄c
(u) if c ∈ A − B,

[inf fGc(u), supfGc(u)].ej2πψḠc
(u) if c ∈ B − A,

[inf fHc(u), supfHc(u)].ej2π
H̄c
(u) if c ∈ A ∩ B,

where,

inf tH̄c(u) = ∨(inf tK̄c(u), inf tḠc(u)), suptH̄c(u) = ∨(suptK̄c(u), suptḠc(u)),

inf iH̄c(u) = ∧(inf iK̄c(u), inf iḠc(u)), supiH̄c(u) = ∧(supiK̄c(u), supiḠc(u)),

inf fH̄c(u) = ∧(inf fK̄c(u), inf fḠc(u)), supfH̄c(u) = ∧(supfK̄c(u), supfḠc(u)),

The phase term’s union is defined in the same way as the amplitude term’s union (K̄ , A) ∪ (Ḡ, B) =
(H̄, A) and the two symbols ∨, ∧ indicate operators of max and min operators, respectively.

Definition 4.10. The intersection of two I-VCNSESs (K̄, A) and (Ḡ, B) over U is also I-VCNSES
(H̄, C), where C = A ∩ B and ∀c, u ∈ C , U , respectively.

TH̄c(u) =
⎧⎨⎩

[inf tKc(u), suptKc(u)].ej2πωK̄c
(u) if c ∈ A − B,

[inf tGc(u), suptGc(u)].ej2πωḠc
(u) if c ∈ B − A,

[inf tHc(u), suptHc(u)].ej2πωH̄c
(u) if c ∈ A ∩ B,
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IH̄c(u) =
⎧⎨⎩

[inf iKc(u), supiKc(u)].ej2πψK̄c
(u) if c ∈ A − B,

[inf iGc(u), supiGc(u)].ej2πψḠc
(u) if c ∈ B − A,

[inf iHc(u), supiHc(u)].ej2πψH̄c
(u) if c ∈ A ∩ B,

FH̄c(u) =
⎧⎨⎩

[inf fKc(u), supfKc(u)].ej2π
K̄c
(u) if c ∈ A − B,

[inf fGc(u), supfGc(u)].ej2πψḠc
(u) if c ∈ B − A,

[inf fHc(u), supfHc(u)].ej2π
H̄c
(u) if c ∈ A ∩ B,

where,

inf tH̄c(u) = ∧(inf tK̄c(u), inf tḠc(u)), suptH̄c(u) = ∧(suptK̄c(u), suptḠc(u)),

inf iH̄c(u) = ∨(inf iK̄c(u), inf iḠc(u)), supiH̄c(u) = ∨(supiK̄c(u), supiḠc(u)),

inf fH̄c(u) = ∨(inf fK̄c(u), inf fḠc(u)), supfH̄c(u) = ∨(supfK̄c(u), supfḠc(u)),

The phase term’s intersection is defined in the same way as the amplitude term’s intersection
(K̄, A) ∩ (Ḡ, B) = (H̄, A) and the two symbols ∨, ∧ indicate operators of max and min operators,
respectively.

Now, we present the De Morgan’s law holds for the I-VCNSES as follows.

Proposition 4.2. If (K̄, A) and (Ḡ, B) are two I-VCNSESs over U , then the following properties
are obtained as a result:

(1) ((K̄, A) ∪ (Ḡ, B))
c = (K̄, A)c ∩(Ḡ, B)c,

(2) ((K̄, A) ∩ (Ḡ, B))
c = (K̄, A)c ∪(Ḡ, B)c.

Proof. (1) Suppose that (K̄, A) ∪(Ḡ, B) = (H̄, D), where D = A ∪ B and ∀α ∈ D, then by definition
4.9, we get

TH̄α (u) =
⎧⎨⎩

[inf tK̄α (u), suptK̄α (u)].ej2πωK̄α
(u) if α ∈ A − B,

[inf tḠα (u), suptḠα (u)].ej2πωḠα
(u) if α ∈ B − A,

[inf tH̄α (u), suptH̄α (u)].ej2πωH̄α
(u) if α ∈ A ∩ B,

Since (K̄, A) ∪(Ḡ, B) = (H̄, D), then we have ((K̄, A) ∪ (Ḡ, B))
c = (H̄, D)c = (H̄c, D), ∀α ∈ D.

Hence, ∀α ∈ D

TH̄c
α
(u) =

⎧⎨⎩
[inf fK̄α (u), supfK̄α (u)].ej2π(2π−ωK̄α

(u)) if α ∈ A − B,
[inf fḠα (u), supfḠα (u)].ej2π(2π−ωK̄α

(u)) if α ∈ B − A,
[inf fH̄α (u), supfH̄α (u)].ej2π(2π−ωH̄α

(u)) if α ∈ A ∩ B,
We have, (K̄, A)c = (K̄c, A) and (Ḡ, B)c = (Ḡc, B), then, (K̄, A)c ∩ (Ḡ, B)c = (K̄c, A) ∩(Ḡc, B).

Assume that (K̄c, A) ∩(Ḡc, B) = (M̄, C), where C = A ∪ B.

Hence ∀α ∈ C,

TM̄α (u) =
⎧⎨⎩

[inf tK̄c
α
(u), suptK̄c

α
(u)].ej2πωK̄c

α
(u) if α ∈ A − B,

[inf tḠc
α
(u), suptḠc

α
(u)].ej2πωḠc

α
(u) if α ∈ B − A,

[inf tM̄c
α
(u), suptM̄c

α
(u)].ej2πωM̄c

α
(u) if α ∈ A ∩ B,

=
⎧⎨⎩

[inf fK̄α (u), supfK̄α (u)].ej2π(2π−ωK̄α
(u)) if α ∈ A − B,

[inf fḠα (u), supfḠα (u)].ej2π(2π−ωK̄α
(u)) if α ∈ B − A,

[inf fH̄α (u), supfH̄α (u)].ej2π(2π−ωH̄α
(u)) if α ∈ A ∩ B,
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Therefore, H̄c and M̄ are the same operators and D = C, which implies T(K̄α ∪ Ḡα)
c(u) =

T(K̄c
α ∩ Ḡc

α)(u) ∀u ∈ U .

In the same method, we can get the rest terms. Thus, it follows that ((K̄, A) ∪ (Ḡ, B))
c =

(K̄, A)c ∩(Ḡ, B) c and this completes the proof.

The proof (2) is a similar manner proof of (1).

Proposition 4.3. If (K̄, A), (Ḡ, B) and (H̄, D) be I-VCNSESs over U . Then, we have the following
properties:

(1) (K̄, A) ∪(Ḡ, B) = (Ḡ, B) ∪(K̄, A)

(2) (K̄, A) ∩(Ḡ, B) = (Ḡ, B) ∩(K̄, A)

(3) ((K̄, A) ∪(Ḡ, B)) ∪(H̄, D) = (K̄, A) ∪ ((Ḡ, B) ∪(H̄, D))

(4) ((K̄, A) ∩(Ḡ, B)) ∩(H̄, D) = (K̄, A) ∩ ((Ḡ, B) ∩(H̄, D))

Proof. The proof of the above four propositions is similar to the proof of proposition 3.2 depending
on definitions 4.9, 4.10.

In the following, we will introduce the definitions of AND and OR operations on I-VCNSESs
with a proposition on these two operations.

Definition 4.11. If (K̄, A) and (Ḡ, B) be any two I-VCNSESs over a soft universe (U , Z). Then
(K̄, A) AND (Ḡ, B) denoted by (K̄, A) ∧̃ (Ḡ, B) = (H̄, A × B), where (H̄, A × B) = H̄(α, β), such that
H̄(α, β) = K̄(α) ∩ Ḡ(β), when (α, β) ∈ A × B, and ∩ represent the intersection of interval-valued
complex neutrosophic set.

Definition 4.12. If (K̄, A) and (Ḡ, B) be any two I-VCNSESs over a soft universe (U , Z). Then
(K̄, A) OR (Ḡ, B) denoted by (K̄, A) ∨̃ (Ḡ, B) = (H̄, A × B), where (H̄, A × B) = H̄(a, b), such that
H̄(a, b) = K̄(a) ∪ Ḡ(a), when (a, b) ∈ A × B, and ∪ represent the union of interval-valued complex
neutrosophic set.

Proposition 4.4. If (K̄, A), (Ḡ, B) and (H̄, D) be I-VCNSESs over U . Then, we have the following
properties:

(1) ((K̄, A)∧̃(Ḡ, B))∧̃(H̄, D) = (K̄, A)∧̃((Ḡ, B)∧̃(H̄, D))

(2) ((K̄, A) ∨̃ (Ḡ, B)) ∨̃ (H̄, D) = (K̄, A) ∨̃ ((Ḡ, B) ∨̃ (H̄, D))

Proof. The proof of the above two proposition is similar to the proof of proposition 4.3 part 3
and 4.

5 Decision-Making on I-VCNSES Environment

In this part, we will highlight the importance of our model in real life by solving one of the decision-
making problems in the economic field.

Example 5.1. In this example, assume that we are interested in knowing the extent to which the
Malaysian economy in 2020 is affected by the four economic factors. The four factors are as follows,
the plunge in oil prices and commodities commercial, the slowdown in china’s economy, the tax (GST)
on services and goods that applied this year, and exchange rate variability in this year. Our problem
is to order these four destinations in descending order from a maximum influencing the Malaysian
economy to a minimum affecting the Malaysian economy in 2020. So let U = {u1, u2, u3, u4}, where
u1 = plunge in oil prices and commodities commercial, u2 = slowdown in China’s economy, u3 = tax
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(GST) on services and goods, u4 = exchange rate variability in this year. And E = {e1, e2, e3} be the
set of the parameters that represents the main sectors of the Malaysian economy, where e1 = industry
sector, e2 = external trade sector, e3 = touris msector. We also assume the set X = {p, q} be a set of
economic experts which are assigned to analyze those four factors by determining the grade and the
full time of the effect of these factors on the aforementioned sectors of the Malaysian-economy as in
the following I-VCNSES:
(
K,A

)

=

⎧⎪⎨⎪⎩(
e1, p, 1

)
,

⎛⎜⎝ [0.9, 1] .e
j2π

[
8
12 , 11

12

]
, [0.1, 0.2] .e

j2π
[

1
12 , 3

12

]
, [0, 0.1] .ej2π [0,0]

u1

⎞⎟⎠ ,

⎛⎜⎝ [0.4, 0.5] .e
j2π

[
5
12 , 6

12

]
, [0.5, 0.6] .e

j2π
[

3
12 , 4

12

]
, [0, 5, 0.7] .e

j2π
[

2
12 , 4

12

]
u2

⎞⎟⎠
⎫⎪⎬⎪⎭ ,

⎧⎪⎨⎪⎩
⎛⎜⎝ 〈[0.3, 0.4] .e

j2π
[

2
12 , 3

12

]
, [0.2, 0.3] .e

j2π
[

3
12 , 5

12

]
, [0, 6, 0.7] .e

j2π
[

9
12 , 11

12

]
〉

u3

⎞⎟⎠ ,

⎛⎜⎝ 〈[0.6, 0.9] .e
j2π

[
7
12 , 9

12

]
, [0.5, 0.6] .e

j2π
[

5
12 , 7

12

]
, [0, 3, 0.4] .e

j2π
[
0, 1

12

]
〉

u4

⎞⎟⎠
⎫⎪⎬⎪⎭

⎧⎪⎨⎪⎩(
e1, q, 1

)
,

⎛⎜⎝ 〈[0.5, 0.9] .e
j2π

[
7
12 , 10

12

]
, [0.2, 0.2] .e

j2π
[

1
12 , 2

12

]
, [0.2, 0.3] .e

j2π
[
0, 1

12

]
〉

u1

⎞⎟⎠ ,

⎛⎜⎝ 〈[0.5, 0.7] .e
j2π

[
6
12 , 7

12

]
, [0.2, 0.4] .e

j2π
[

4
12 , 5

12

]
, [0, 8, 0.9] .e

j2π
[

6
12 , 8

12

]
〉

u2

⎞⎟⎠ ,

⎧⎪⎨⎪⎩
⎛⎜⎝ 〈[0.2, 0.4] .e

j2π
[

1
12 , 2

12

]
, [0.6, 0.9] .e

j2π
[

6
12 , 8

12

]
, [0, 5, 0.9] .e

j2π
[

8
12 , 10

12

]
〉

u3

⎞⎟⎠ ,

⎛⎜⎝ 〈[0.6, 0.8] .e
j2π

[
8
12 , 9

12

]
, [0.3, 0.4] .e

j2π
[

5
12 , 6

12

]
, [0.2, 0.3] .e

j2π
[

1
12 , 4

12

]
〉

u4

⎞⎟⎠
⎫⎪⎬⎪⎭

⎧⎪⎨⎪⎩(
e2, p, 1

)
,

⎛⎜⎝ [0.6, 0.9] .e
j2π

[
7
12 , 8

12

]
, [0.2, 0.3] .e

j2π
[

3
12 , 4

12

]
, [0, 0.2] .e

j2π
[

1
12 , 2

12

]
u1

⎞⎟⎠ ,

⎛⎜⎝ [0.2, 0.4] .e
j2π

[
5
12 , 7

12

]
, [0.4, 0.5] .e

j2π
[

1
12 , 3

12

]
, [0, 3, 0.4] .e

j2π
[
0, 1

12

]
u2

⎞⎟⎠ ,

⎧⎪⎨⎪⎩
⎛⎜⎝ [0.1, 0.3] .e

j2π
[

8
12 , 9

12

]
, [0.4, 0.6] .e

j2π
[

6
12 , 8

12

]
, [0, 7, 0.9] .e

j2π
[

7
12 , 10

12

]
u3

⎞⎟⎠ ,

⎛⎜⎝ [0.3, 0.7] .e
j2π

[
7
12 , 9

12

]
, [0.1, 0.4] .e

j2π
[

5
12 , 7

12

]
, [0.1, 0.2] .e

j2π
[

4
12 , 7

12

]
u4

⎞⎟⎠
⎫⎪⎬⎪⎭

⎧⎪⎨⎪⎩(
e2, q, 1

)
,

⎛⎜⎝ [0.5, 0.7] .e
j2π

[
9
12 , 11

12

]
, [0.1, 0.2] .e

j2π
[
0, 1

12

]
, [0, 0.1] .e

j2π
[

2
12 , 3

12

]
u1

⎞⎟⎠ ,

⎛⎜⎝ [0.6, 0.7] .e
j2π

[
4
12 , 7

12

]
, [0.1, 0.3] .e

j2π
[

1
12 , 4

12

]
, [0.6, 0.9] .e

j2π
[

2
12 , 5

12

]
u2

⎞⎟⎠ ,

⎧⎪⎨⎪⎩
⎛⎜⎝ [0.2, 0.4] .e

j2π
[

3
12 , 8

12

]
, [0.3, 0.5] .e

j2π
[

5
12 , 6

12

]
, [0, 6, 0.8] .e

j2π
[

5
12 , 7

12

]
u3

⎞⎟⎠ ,

⎛⎜⎝ [0.4, 0.5] .e
j2π

[
6
12 , 8

12

]
, [0.2, 0.5] .e

j2π
[

1
12 , 3

12

]
, [0.4, 0.8] .e

j2π
[

4
12 , 6

12

]
u4

⎞⎟⎠
⎫⎪⎬⎪⎭

⎧⎪⎨⎪⎩(
e3, p, 1

)
,

⎛⎜⎝ [0.6, 0.8] .e
j2π

[
6
12 , 10

12

]
, [0, 0.1] .e

j2π
[

2
12 , 3

12

]
, [0.2, 0.4] .e

j2π
[

1
12 , 2

12

]
u1

⎞⎟⎠ ,

⎛⎜⎝ [0.5, 0.7] .e
j2π

[
2
12 , 4

12

]
, [0.3, 0.4] .e

j2π
[

2
12 , 4

12

]
, [0.1, 0.2] .e

j2π
[

3
12 , 6

12

]
u2

⎞⎟⎠ ,

⎧⎪⎨⎪⎩
⎛⎜⎝ [0.3, 0.6] .e

j2π
[

5
12 , 7

12

]
, [0.2, 0.4] .e

j2π
[

7
12 , 9

12

]
, [0.5, 0.9] .e

j2π
[

2
12 , 6

12

]
u3

⎞⎟⎠ ,

⎛⎜⎝ [0.3, 0.8] .e
j2π

[
6
12 , 9

12

]
, [0.2, 0.6] .e

j2π
[

1
12 , 4

12

]
, [0.3, 0.5] .e

j2π
[
0, 2

12

]
u4

⎞⎟⎠
⎫⎪⎬⎪⎭

⎧⎪⎨⎪⎩(
e3, q, 1

)
,

⎛⎜⎝ [0.4, 0.7] .e
j2π

[
3
12 , 7

12

]
, [0.2, 0.5] .e

j2π
[

4
12 , 5

12

]
, [0.1, 0.2] .e

j2π
[

2
12 , 4

12

]
u1

⎞⎟⎠ ,

⎛⎜⎝ [0.2, 0.4] .e
j2π

[
3
12 , 7

12

]
, [0.1, 0.3] .e

j2π
[

6
12 , 8

12

]
, [0.3, 0.5] .e

j2π
[

4
12 , 6

12

]
u2

⎞⎟⎠ ,

⎧⎪⎨⎪⎩
⎛⎜⎝ [0, 0.3] .e

j2π
[

1
12 , 3

12

]
, [0.4, 0.6] .e

j2π
[

6
12 , 8

12

]
, [0.5, 0.9] .e

j2π
[

3
12 , 7

12

]
u3

⎞⎟⎠ ,

⎛⎜⎝ [0.2, 0.4] .e
j2π

[
5
12 , 7

12

]
, [0.3, 0.7] .e

j2π
[

3
12 , 5

12

]
, [0.3, 0.8] .e

j2π
[

3
12 , 7

12

]
u4

⎞⎟⎠
⎫⎪⎬⎪⎭

⎧⎪⎨⎪⎩(
e1, p, 0

)
,

⎛⎜⎝ [0.1, 0.3] .e
j2π

[
1
12 , 3

12

]
, [0.4, 0.8] .e

j2π
[

7
12 , 11

12

]
, [0.8, 0.9] .e

j2π
[

8
12 , 12

12

]
u1

⎞⎟⎠ ,

⎛⎜⎝ [0.4, 0.7] .e
j2π

[
7
12 , 9

12

]
, [0.3, 0.7] .e

j2π
[

4
12 , 9

12

]
, [0.2, 0.6] .e

j2π
[

6
12 , 9

12

]
u2

⎞⎟⎠ ,

⎧⎪⎨⎪⎩
⎛⎜⎝ [0.3, 0.6] .e

j2π
[

5
12 , 10

12

]
, [0.5, 0.8] .e

j2π
[

7
12 , 9

12

]
, [0.1, 0.3] .e

j2π
[

1
12 , 4

12

]
u3

⎞⎟⎠ ,

⎛⎜⎝ [0.2, 0.3] .e
j2π

[
3
12 , 4

12

]
, [0.5, 0.8] .e

j2π
[

4
12 , 6

12

]
, [0.3, 0.9] .e

j2π
[

7
12 , 11

12

]
u4

⎞⎟⎠
⎫⎪⎬⎪⎭
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⎧⎪⎨⎪⎩(
e1, q, 0

)
,

⎛⎜⎝ [0.2, 0.3] .e
j2π

[
2
12 , 5

12

]
, [0.2, 0.7] .e

j2π
[

7
12 , 10

12

]
, [0, 0.1] .e

j2π
[

9
12 , 11

12

]
u1

⎞⎟⎠ ,

⎛⎜⎝ [0.3, 0.8] .e
j2π

[
4
12 , 7

12

]
, [0.2, 0.6] .e

j2π
[

5
12 , 7

12

]
, [0.2, 0.7] .e

j2π
[

2
12 , 4

12

]
u2

⎞⎟⎠ ,

⎧⎪⎨⎪⎩
⎛⎜⎝ [0.5, 0.8] .e

j2π
[

8
12 , 11

12

]
, [0.1, 0.1] .e

j2π
[

6
12 , 7

12

]
, [0.6, 0.9] .e

j2π
[

1
12 , 2

12

]
u3

⎞⎟⎠ ,

⎛⎜⎝ [0.6, 0.9] .e
j2π

[
3
12 , 6

12

]
, [0.3, 0.5] .e

j2π
[

7
12 , 8

12

]
, [0.1, 0.6] .e

j2π
[

5
12 , 10

12

]
u4

⎞⎟⎠
⎫⎪⎬⎪⎭

⎧⎪⎨⎪⎩(
e2, p, 0

)
,

⎛⎜⎝ [0.1, 0.3] .e
j2π

[
2
12 , 4

12

]
, [0.4, 0.8] .e

j2π
[

3
12 , 8

12

]
, [0.4, 0.7] .e

j2π
[

9
12 , 11

12

]
u1

⎞⎟⎠ ,

⎛⎜⎝ [0.3, 0.5] .e
j2π

[
3
12 , 6

12

]
, [0.2, 0.6] .e

j2π
[

8
12 , 10

12

]
, [0.3, 0.8] .e

j2π
[

7
12 , 12

12

]
u2

⎞⎟⎠ ,

⎧⎪⎨⎪⎩
⎛⎜⎝ [0.1, 0.8] .e

j2π
[

6
12 , 11

12

]
, [0.5, 0.9] .e

j2π
[

5
12 , 7

12

]
, [0.2, 0.7] .e

j2π
[

2
12 , 6

12

]
u3

⎞⎟⎠ ,

⎛⎜⎝ [0.2, 0.2] .e
j2π

[
5
12 , 7

12

]
, [0.6, 0.9] .e

j2π
[

7
12 , 10

12

]
, [0.6, 0.8] .e

j2π
[

4
12 , 10

12

]
u4

⎞⎟⎠
⎫⎪⎬⎪⎭

⎧⎪⎨⎪⎩(
e2, q, 0

)
,

⎛⎜⎝ [0.1, 0.1] .e
j2π

[
1
12 , 4

12

]
, [0.2, 0.6] .e

j2π
[

8
12 , 12

12

]
, [0.5, 0.5] .e

j2π
[

6
12 , 9

12

]
u1

⎞⎟⎠ ,

⎛⎜⎝ [0.5, 0.8] .e
j2π

[
6
12 , 8

12

]
, [0.3, 0.6] .e

j2π
[

7
12 , 11

12

]
, [0.5, 0.8] .e

j2π
[

7
12 , 10

12

]
u2

⎞⎟⎠ ,

⎧⎪⎨⎪⎩
⎛⎜⎝ [0.9, 0.9] .e

j2π
[

8
12 , 11

12

]
, [0.2, 0.5] .e

j2π
[

6
12 , 7

12

]
, [0.2, 0.3] .e

j2π
[

5
12 , 6

12

]
u3

⎞⎟⎠ ,

⎛⎜⎝ [0.2, 0.4] .e
j2π

[
4
12 , 5

12

]
, [0.4, 0.6] .e

j2π
[

6
12 , 8

12

]
, [0.5, 0.5] .e

j2π
[

7
12 , 9

12

]
u4

⎞⎟⎠
⎫⎪⎬⎪⎭

⎧⎪⎨⎪⎩(
e3, p, 0

)
,

⎛⎜⎝ [0, 0.5] .e
j2π

[
2
12 , 4

12

]
, [0.4, 0.9] .e

j2π
[

5
12 , 11

12

]
, [0.1, 0.4] .e

j2π
[

7
12 , 10

12

]
u1

⎞⎟⎠ ,

⎛⎜⎝ [0.1, 0.3] .e
j2π

[
1
12 , 3

12

]
, [0.3, 0.8] .e

j2π
[

6
12 , 11

12

]
, [0.4, 0.8] .e

j2π
[

8
12 , 12

12

]
u2

⎞⎟⎠ ,

⎧⎪⎨⎪⎩
⎛⎜⎝ [0.3, 0.8] .e

j2π
[

7
12 , 10

12

]
, [0.4, 0.7] .e

j2π
[

2
12 , 5

12

]
, [0.3, 0.6] .e

j2π
[

4
12 , 9

12

]
u3

⎞⎟⎠ ,

⎛⎜⎝ [0, 0.2] .e
j2π

[
2

12 , 4
12

]
, [0.3, 0.7] .e

j2π
[

9
12 , 11

12

]
, [0.6, 0.8] .e

j2π
[

6
12 , 10

12

]
u4

⎞⎟⎠
⎫⎪⎬⎪⎭

⎧⎪⎨⎪⎩(
e3, q, 0

)
,

⎛⎜⎝ 〈[0.1, 0.3] .e
j2π

[
3
12 , 6

12

]
, [0.2, 0.6] .e

j2π
[

5
12 , 8

12

]
, [0, 0.3] .e

j2π
[

7
12 , 11

12

]
〉

u1

⎞⎟⎠ ,

⎛⎜⎝ 〈[0.2, 0.5] .e
j2π

[
3
12 , 5

12

]
, [0.2, 0.9] .e

j2π
[

3
12 , 5

12

]
, [0.2, 0.7] .e

j2π
[

6
12 , 9

12

]
〉

u2

⎞⎟⎠ ,

⎧⎪⎨⎪⎩
⎛⎜⎝ 〈[0.4, 0.8] .e

j2π
[

5
12 , 9

12

]
, [0.1, 0.5] .e

j2π
[

4
12 , 7

12

]
, [0.6, 0.8] .e

j2π
[

4
12 , 10

12

]
〉

u3

⎞⎟⎠ ,

⎛⎜⎝ 〈[0.3, 0.7] .e
j2π

[
3
12 , 9

12

]
, [0.1, 0.4] .e

j2π
[

5
12 , 7

12

]
, [0, 0.6] .e

j2π
[

2
12 , 6

12

]
〉

u4

⎞⎟⎠
⎫⎪⎬⎪⎭

⎫⎪⎬⎪⎭
In this situation, the amplitude interval terms measurement the impact degree of the above-

mentioned factors on the Malaysian economy in 2020, whilst the phase interval terms represent the
period of this impact. By this way, the interval-valued complex neutrosophic number(

〈[0.9, 1].ej2π[ 8
12 , 11

12 ], [0.1, 0.2].ej2π[ 1
12 , 3

12 ], [0, 0.1]〉.ej2π [0,0]

u1

)
In the approximation K̄(e1, p, 1) indicates that the Malaysian economy in 2020 has been greatly

affected by the plunge in oil and commodity prices. The lower and upper bounds of the complex
interval-valued truth membership function [0.9, 1].ej2π[ 8

12 , 11
12 ] shows that expert p strongly supports that

the decline in oil and commodity prices has a great impact on the Malaysian economy by amplitude
term degree from 0.9 to 1 and this influence extends from 8 to 11 months accordant to the phase term[

8
12

, 11
12

]
. While the lower and upper bounds of the complex interval-valued indeterminacy membership

function [0.1, 0.2].ej2π[ 1
12 , 3

12 ] reveal that the expert is unable to determine whether there is an effect of a
degree between 0.1 and 0.2, and this effect is not clear for a period ranging from 1 to 3 months. For the
lower and upper bounds of the complex interval-valued falsity membership function [0, 0.1].ej2π [0,0], the
expert p assumes that there is no effect of a degree ranging from 0 to 0.1 and that the time in which there
is no effect is 0 month. The algorithm given below converts the I-CNSE-values to the INSEV-values
using a workable formula. We then convert the INSEVs to normalized SVNSE-values by taking the
arithmetic average of TKα (u), IKα (u) and FKα (u), respectively.
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Then, we proceed with SVNSE-values to make the final decision using the SVNSE-method [25].
The following steps clarify the proposed algorithm:

Algorithm
Step 1. Constructing the I-VCNSES (K̄, A).

Step 2. Convert I-VCNSES (K̄, A) to I-VNSES (K, A) by obtaining the values of the weighted
aggregation of TK(α)

(u), IK(α)
(u) and FK(α)

(u), ∀α ∈ A and ∀u ∈ U as the following formulas:

TKα (u) =
[

w1tL
K̄α (u) + w2

(
1

2π

)
2πωL

K̄α (u) , w1tU
K̄α (u) + w2

(
1

2π

)
2πωU

K̄α (u)

]
IKα (u) =

[
w1iL

K̄α (u) + w2

(
1

2π

)
2πψL

K̄α
(u) , w1iU

K̄α (u) + w2

(
1

2π

)
2πψU

K̄α
(u)

]
FKα (u) =

[
w1f L

K̄α
(u) + w2

(
1

2π

)
2πΦL

K̄α (u) , w1f U
K̄α

(u) + w2

(
1

2π

)
2πΦU

K̄α (u)

]
.

where the amplitude terms are tL
K̄α (u), tU

K̄α (u), iL
K̄α (u), iU

K̄α (u), f L
K̄α

(u),

f U
K̄α

(u) and the phase terms are ωL
K̄α (u), ωU

K̄α (u), ψL
K̄α

(u), ψU
K̄α

(u),

ΦL
K̄α (u), ΦU

K̄α (u) in the I-VCNSES (K̄, A), respectively. TKα (u), IKα (u) and FKα (u) are three interval
membership functions in I-VNSES (K, A), and w1, w2 the weight values for the terms of the amplitude
and phase terms, respectively, where w1, w2 ∈ [0, 1] and w1 + w2 = 1.

Step 3. By taking the arithmetic average of TKα (u), IKα (u) and FKα (u), we convert I-VNSES (K, A)

to SVNSES (V , A).

Step 4. Find the values of

MVα (u) = TVα
(u)+(1− IVα

(u))+(1− FVα
(u))

3
, ∀u ∈ U and ∀α ∈ A. Note that MVα (u) is the normalized values

of SVα (u) = TVα (u) − IVα (u) − FVα (u), ∀u ∈ U and ∀α ∈ A. We normalize the elements
of S = { SVα (u), ∀u ∈ U and ∀α ∈ A}, since they represent the degree of influence, where the truth
membership function TV(u), indeterminacy membership function IV(u), and a falsehood membership
function FV (u) are single-valued neutrosophic soft expert functions.

Step 5. For both agree-SVNSES and disagree-SVNSES values, take the greatest numerical degree.

Step 6. Compute the score of all element ui ∈ U by taking the aggregate of the numerical grade of all
elements for the agree-SVNSES and disagree-SVNSES, denoted by Pi and Qi, respectively.

Step 7. We get the values of the score ri = Pi − Qi for each element ui ∈ U .

Step 8. Choose the value of the highest score in Z = max
ui∈U

{ri}.

The decision is to choose value ui as the solution to the problem. If there is more than one value
with the highest ri score, then any one of those values can be chosen as the best solution.

Here, we would like to point out that this method (algorithm) is used with decision-making
problems that have information that has a known weight (complete weight information). To implement
these steps that were mentioned in the algorithm above, we assume that the weight vector to the
amplitude terms is w1 = 0.6. and the weight vector to the phase terms is w2 = 0.4.

Now, to convert the I-VCNSES (K̄, A) to the I-VNSES (K , A), and to obtain the weighted
aggregation values of TKα (u), IKα (u) and FKα (u),
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∀u ∈ U and ∀α ∈ A. To clarify this step, we calculate TKα (u), IKα (u) and FKα (u), for u =
u1 and α = (e1, p, 1) as shown below:

TK(α=e1,p,1)
(u) =

[
w1tL

K̄(α=e1,p,1)
(u) + w2

(
1

2π

)
ρωL

K̄(α=e1,p,1)
(u) , w1tU

K̄(α)
(u) + w2

(
1

2π

)
ρωU

K̄(α=e1,p,1)
(u)

]
=

[
0.6(0.9) + 0.4

(
1

2π

)
2π

8
12

, 0.6(1) + 0.4
(

1
2π

)
2π

11
12

]
= [0.8, 0.96]
IK(α=e1,p,1)

(u) =
[

w1iL
K̄(α=e1,p,1)

(u) + w2

(
1

2π

)
βψL

K̄(α=e1,p,1)
(u) , w1iU

K̄(α)
(u) + w2

(
1

2π

)
βψU

K̄(α=e1,p,1)
(u)

]
=

[
0.6(0.1) + 0.4

(
1

2π

)
2π

1
12

, 0.6(0.2) + 0.4
(

1
2π

)
2π

3
12

]
= [0.09, 0.22]
FK(α=e1,p,1)

(u) =
[

w1f L
K̄(α=e1,p,1)

(u) + w2

(
1

2π

)
γΦL

K̄(α=e1,p,1)
(u) , w1f U

K̄(α)
(u) + w2

(
1

2π

)
γΦU

K̄(α=e1,p,1)
(u)

]
=

[
0.6(0) + 0.4

(
1

2π

)
2π(0) , 0.6(0.1) + 0.4

(
1

2π

)
2π(0)

]
= [0 , 0.06]

Hence for α = (e1, p, 1 ) and u = u1 the I-VNSES (TKα (u), IKα (u), FKα (u)) = ([0.8, 0.96],
[0.09,0.22], [0,0.06]) Then, we apply Step 3 in the algorithm to get (0.88, 0.15, 0.03) as these values
represent SVNESs. In the same method we calculate the other values. Finally, we get Table 1 which
includes the values of MVα (u) in addition to a value of SVNSESs.

Table 1: Values of (V , A) and MV(α)
(u)

U u1 u2 u3 u4

(e1, p, 1) (0.88, 0.15, 0.03) (0.45, 0.44, 0.45) (0.29, 0.28, 0.72) (0.72, 0.52, 0.23)

0.9 0.52 0.4 0.66
(e1, q, 1) (0.70, 0.16, 0.16) (0.57, 0.32, 0.74) (0.22, 0.68, 0.71) (0.70, 0.39, 0.23)

0.79 0.50 0.28 0.69
(e2, p, 1) (0.69, 0.26, 0.11) (0.38, 0.34, 0.22) (0.43, 0.53, 0.76) (0.57, 0.35, 0.27)

0.77 0.60 0.38 0.65
(e2, q, 1) (0.69, 0.10, 0.11) (0.58, 0.20, 0.56) (0.36, 0.42, 0.62) (0.50, 0.28, 0.53)

0.83 0.60 0.44 0.56
(e3, p, 1) (0.70, 0.11, 0.23) (0.46, 0.31, 0.24) (0.47, 0.45, 0.55) (0.58, 0.32, 0.27)

0.78 0.64 0.49 0.66
(e3, q, 1) (0.50, 0.36, 0.19) (0.35, 0.36, 0.41) (0.16, 0.53, 0.59) (0.38, 0.43, 0.50)

0.65 0.53 0.35 0.81
(e1, p, 0) (0.19, 0.66, 0.84) (0.56, 0.52, 0.49) (0.52, 0.66, 0.20) (0.27, 0.56, 0.66)

0.23 0.52 0.55 0.35
(e1, q, 0) (0.27, 0.55, 0.63) (0.51, 0.44, 0.37) (0.71, 0.28, 0.50) (0.60, 0.49, 0.46)

0.36 0.57 0.64 0.55
(e2, p, 0) (0.22, 0.55, 0.66) (0.39, 0.54, 0.65) (0.56, 0.62, 0.41) (0.32, 0.73, 0.66)

0.37 0.40 0.51 0.31
(e2, q, 0) (0.14, 0.57, 0.55) (0.63, 0.43, 0.67) (0.85, 0.43, 0.33) (0.33, 0.53, 0.57)

0.34 0.51 0.70 0.41

(Continued)
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Table 1 (continued)

U u1 u2 u3 u4

(e3, p, 0) (0.25, 0.65, 0.86) (0.9, 0.62, 0.70) (0.62, 0.44, 0.49) (0.16, 0.63, 0.69)

0.25 0.29 0.56 0.28
(e3, q, 0) (0.27, 0.45, 0.40) (0.35, 0.46, 0.52) (0.60, 0.36, 0.65) (0.50, 0.35, 0.31)

0.47 0.46 0.53 0.61

By Tables 2 and 3, we get the highest numerical grade for the elements in the agree-SVNSES and
disagree-SVNSES, respectively. The values of Pi , Qi and ri are given in Table 4, where ri = Pi − Qi,
represent the final score of each alternative, for all i = 1, 2, 3, 4.

Table 2: Numerical grade for agree-SVNSES

U ui Highest numeric grade

(e1, p, 1) u1 0.90
(e1, q, 1) u1 0.79
(e2, p, 1) u1 0.77
(e2, q, 1) u1 0.83
(e3, p, 1) u1 0.78
(e3, q, 1) u4 0.81

Table 3: Numerical grade for disagree-SVNSES

U ui Highest numeric grade

(e1, p, 0) u3 0.55
(e1, q, 0) u3 0.64
(e2, p, 0) u3 0.51
(e2, q, 0) u3 0.70
(e3, p, 0) u3 0.56
(e3, q, 0) u4 0.60

Table 4: The score ri = Pi − Qi

Pi Qi ri

Score(u1) = 4.07 Score(u1) = 0 4.07
Score(u2) = 0 Score(u2) = 0 0
Score(u3) = 0 Score(u3) = 2.96 −2.96
Score(u4) = 0.81 Score(u4) = 0.61 0.20

Finally, according to the Step 8 of proposed algorithm, the maximum ri is r1, followed by r4 and
r2, where r3 is the minimum ri. Thus, u1 which represents the plunge in oil prices and commodities
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commercial is the most significant factor influencing Malaysia’s economy in 2020, followed by in
influence u4 exchange rate variability in this year and u2 the slowdown in china’s economy, where
u3 which represents the tax (GST) on services and goods that applied this year is the least influential
element in the Malaysian economy in 2020.

6 Comparison between I-VCNSES and Other Existing Methods

In this section, we will now compare our second concept (I-VCNSES), which is an expansion of
our first concept (I-VNSES) with three existing methods, which is neutrosophic soft set (NSS) [39],
single-valued neutrosophic soft expert set (SVNSES) [40], and complex neutrosophic soft expert set
(CNSES).

Because neutrosophic soft set lacks the phase term that indicates the time frame, so it is clear that
it is unable to solve the decision-making problem given in this work (see Example 5.1), which involves
two-dimensional data, i.e., the degree of the influence and the total time of the influence. Another
reason is its incapacity to deal with several experts. However, the single-valued neutrosophic soft expert
set can deal with more than one expert. But it is not able to deal with problems that involve two-
dimensional information (amplitude terms and phase terms) like the problem presented in this work.

The complex neutrosophic soft expert set can overcome the problems which the above two
concepts cannot overcome by using neutrosophic expert soft set, by virtue of the phase terms
which have the ability to represent the time frame of the interaction between the variables as well
as parameterization and the opinions of the experts, all in a single set. In comparison, the main
distinguishing feature of our proposed is its ability to describe the grade of three complex memberships
in the form of an interval that is a subset of the unit interval. Furthermore, since it is difficult for
an expert to express his/her certainty by an exact real number, so it is suitable to choose an interval
that expresses the certainty level. Therefore, the I-VCNSESs help in modeling the uncertainty and the
consequences of any ignorance, mistakes, and confusion of experts. Therefore, it can be judged that
our concept is more important and useful than the above-mentioned concepts.

6.1 Advantages and Limitations
Our proposed model has certain advantages and limitations. Firstly, our model (I-VCNSES) has

the ability to provide a succinct, elegant, and comprehensive representation of two-dimensional inter-
val neutrosophic information (amplitude terms and phase terms) as well as adequate parameterization
and opinions of the experts, all in the form of an interval. Secondly, I-VCNSES includes evaluation
information missing in the neutrosophic soft model and single-valued neutrosophic soft expert model,
such as the time frame which is presented by the phase term. In addition, it has the added advantage
of allowing the users to know the opinion of all the experts in an interval model without the necessity
for any additional cumbersome operations. Thirdly, the I-VCNSES that is used in our method has the
ability to handle the uncertainty information that is captured by the amplitude terms and phase terms
of the complex numbers simultaneously. Fourthly, a new practical formula is employed to convert
the interval-valued complex neutrosophic soft expert from the complex state to the real state, which
gives decision-making with a simple computational process without the need to carry out directed
operations on complex numbers. Fifthly, our model represents the information of two-dimensional in
interval form, namely information of amplitude term and phase term, thus making our model more
appropriate for use in real-life problems like decision-making, medical diagnosis to select the best
alternative. Finally, the interval form which characterized our concept gives the user more flexibility
in the real decision-making process, where the real decision we get through our concept is characterized
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as more trustworthy and more acceptable than the other existing concepts in which there is no attention
to the interval form. Therefore, these features mentioned above are essential points that distinguish
our model from existing models. Our idea, on the other hand, is incapable of handling discontinuous
attribute-value sets that correspond to different attributes. Therefore, we recommend for future studies
that this gap be overcome by generalizing our concept to an interval-valued complex neutrosophic
hypersoft expert set.

7 Conclusion

A novel mathematical tool is created to highlight the information using time factors and to
realize the opinions of all the experts in an interval model. In this article, we established the concept
of IV-CNSES by extending our concept of IV-NSES from real space to complex space. The basic
operations on both I-VNSES and I-VCNSES, namely subset, complement, union, intersection, AND
and OR operations were defined. Subsequently, some basic algebraic properties of these operations
were proven. In addition, we showed the importance of this concept in real life through a proposed new
algorithm and we applied it to both models to solve a hypothetical decision-making problem related
to the economic factors that affected the Malaysian economy in 2020. A comparison of our proposed
model with three other existing models indicates the efficiency of our model and also it showed the
superiority of our concept over these concepts with flexibility and accuracy in representing two-
dimensional interval neutrosophic information. Finally, these flexible new extensions are not applied
yet in many fields like computer science, social science, medical science, engineering, etc. So, in future
work, we plan to combine this concept with other types of algebraic structures such as group [41,42]
and ring [43,44]. We are wishful to provide our work to other MCDM models and applications for
modeling vagueness and uncertainty.
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