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ABSTRACT

The tangent polynomials Tn (z) are generalization of tangent numbers or the Euler zigzag numbers Tn. In
particular, Tn (0) = Tn. These polynomials are closely related to Bernoulli, Euler and Genocchi polynomials.
One of the extensions and analogues of special polynomials that attract the attention of several mathematicians
is the Apostol-type polynomials. One of these Apostol-type polynomials is the Apostol-tangent polynomials
Tn(z,λ). When λ = 1, Tn (z, 1) = Tn(z). The use of hyperbolic functions to derive asymptotic approximations
of polynomials together with saddle point method was applied to the Bernoulli and Euler polynomials by Lopez
and Temme. The same method was applied to the Genocchi polynomials by Corcino et al. The essential steps
in applying the method are (1) to obtain the integral representation of the polynomials under study using their
exponential generating functions and the Cauchy integral formula, and (2) to apply the saddle point method. It is
found out that the method is applicable to Apostol-tangent polynomials. As a result, asymptotic approximation
of Apostol-tangent polynomials in terms of hyperbolic functions are derived for large values of the parame-
ter n and uniform approximation with enlarged region of validity are also obtained. Moreover, higher-order
Apostol-tangent polynomials are introduced. Using the same method, asymptotic approximation of higher-
order Apostol-tangent polynomials in terms of hyperbolic functions are derived and uniform approximation
with enlarged region of validity are also obtained. It is important to note that the consideration of Apostol-type
polynomials and higher order Apostol-type polynomials were not done by Lopez and Temme. This part is first
done in this paper. The accuracy of the approximations are illustrated by plotting the graphs of the exact values of
the Apostol-tangent and higher-order Apostol-tangent polynomials and their corresponding approximate values
for specific values of the parameters n,λ and m.
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1 Introduction

The Apostol-tangent polynomials denoted by Tn (z;λ) ,λ �= 0 are defined by generating func-
tion (see [1])

2ezw

λe2w+ 1
=

∞∑
n=0

Tn (z;λ)
wn

n!
, (1)

where λεC and the validity of the series in Eq. (1) is given as follows:

|w|<
{π

2
when λ= 1

π when λ �= 1.

when λ= 1, the equation gives the generating function for the classical tangent polynomials Tn (z)
given by (see [2,3])

2ezw

e2w+ 1
=

∞∑
n=0

Tn (z)
wn

n!
, |w|< π

2
. (2)

Setting z= 0 in Eqs. (1) and (2), we obtain

Tn (0,λ) : =Tn (λ) and Tn (0) : =Tn, (3)

where Tn (λ) and Tn are called the Apostol-tangent numbers and classical tangent numbers,
respectively (see [1,4]).

First few values of the Apostol-tangent polynomials are given below:

T0 (z;λ)= 2
1+λ

,T1 (z;λ)= 2 [z+ (−2+ z) λ]

(1+λ)2
,T2 (z;λ)=

2
[
−4λ+ (z+ (−2+ z) λ)2

]
(1+λ)3

,

T3 (z;λ)= 2

(1+λ)4

[
−6z2λ (1+λ)2

]
+ z3 (1+λ)3− 8λ (−4+λ)λ

)
+ 12λ

(
−1+λ2

)]
,

T4 (z;λ)= 2

(1+λ)5

[
24z2 (−1+λ)λ (1+λ)2− 8z3λ (1+λ)3 + z4 (1+λ)4+ 16 (−1+λ)λ

(1+ (−10+λ)λ)− 32λ (1+λ) (1+ (−4+λ)λ)] .

The Apostol-tangent polynomials are extensions of the classical tangent polynomials. The
latter have become an interesting area for many mathematicians for their extensions and analogues
possess properties that are relevant in analytic number theory and physics (see [5–8]). In [1], the
2-variable q generalized tangent-Apostol type polynomials were introduced and investigated as a
new class of q-hybrid special polynomials.

Asymptotic approximations for Bernoulli polynomials Bn
(
nz+ 1

2

)
and Euler polynomials

En
(
nz+ 1

2

)
in terms of hyperbolic functions are established in [9]. In the study of Corcino

et al. [10], the Genichi polynomials are expressed as
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Gn

(
z+ 1

2

)
= n!

2π i

∫
C

wewz

cosh (w/2)
dw
wn+1 (4)

where the contour C encircles the origin in the counterclockwise direction and contains no poles

of 1/ cosh (w/2) . With this, they have derived the asymptotic formulas for Gn
(
z+ 1

2

)
in terms

of hyperbolic functions. However, asymptotic approximations of Apostol-tangent polynomials
parallel to the results obtained in [9] and [10], are not mentioned and found in those studies and
other related literature.

In this study, the asymptotic approximations of the Apostol-tangent polynomials Tn (z;λ) for
large n which are uniformly valid in some unbounded region of the complex variable z, are derived
using saddle point method as used in [9] and [10]. Moreover, asymptotic expansion of higher-
order Apostol-tangent polynomials Tm

n (z;λ) is obtained. Corresponding asymptotic formulas of
the tangent polynomials are given as corollaries.

2 Asymptotic Expansions of Apostol-Tangent Polynomials

Theorem 2.1. For λεC − {0} , and zεC such that
∣∣Imz−1

∣∣ <
π−Argλ

2 and
∣∣z−1

∣∣ <∣∣z−1− (
π i
2 − δ

)∣∣and n≥ 1,

Tn (nz+ 1;λ)= nnznsech
(
z−1+ δ

)
√

λ

{
1− 1− 2sech2

(
z−1+ δ

)
2nz2

+O
(

1
n2

)}
, (5)

where δ = (logλ) /2 and the logarithim is taken to be the principal branch.

Proof . Applying the Cauchy Integral Formula [11] to Eq. (1), we have

Tn (z;λ)= n!
2π i

∫
C

2ewz

e2δ+2w+ 1
dw
wn+1 , (6)

where C is a circle about the origin with radius <
∣∣π i
2 − δ

∣∣ . With 2e(w+δ) cosh
(
w+ δ = e(2w+2δ))+1,

it follows from Eq. (6) that

Tn (z+ 1;λ)= n!

2π i
√

λ

∫
C
f (w)ezw

w
wn+1 , (7)

where
√

λ = e(logλ)/2 = eδ and f (w) = 1/ cosh (w+ δ) . The function f (w) is meromorphic func-
tion with simple poles at the zeros of cosh (w+ δ) which are given by wj = (2j+ 1) π i

2 − δ, j =
0,±1,±2, . . .

Now take z �−→ nz and let nz �−→∞ with z fixed. It follows from Eq. (7) that

Tn (nz+ 1;λ)= n!

2π i
√

λ

∫
C
f (w) en(zw−logw) dw

w
. (8)

The main contribution of the integrand above to the integral occurs at the saddle point of
the argument of the exponential [12]. This saddle point is at the point w = 1/z = z−1, z �= 0.
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Assume that z−1 is not a pole of f (w) . Then approximations of Tn (nz+ 1;λ) can be obtained by
expanding f (w) around the saddle point [13–16]. Let

f (w)=
∞∑
k=0

f (k)
(
z−1

)
k!

(
w− z−1

)k
,
∣∣∣w− z−1

∣∣∣< r (9)

where r is the distance from z−1 to the nearest singularity of f (w). For w is the circle C, the
above series is absolutely convergent if the saddle point z−1 is closer to the origin than to any

of the singularities wj . That is, if z−1 is in the strip
∣∣Imz−1

∣∣ < π−Argλ
2 and

∣∣z−1
∣∣ < ∣∣z−1 −wj

∣∣ for
j= 0,±1,±2,… It follows from Lemma 1, Lemma 2 and Theorem 1 of [16] that

Tn (nz+ 1;λ)= (nz)n√
λ

∞∑
k=0

f (k)
(
z−1)
k!

pk (n)

(nz)k
, (10)

where

p0 (n)= 1,p1 (n)= 0,p2 (n)=−n,p3 (n)= 2n (11)

pk (n)= (1− k) pk−1 (n)+ npk−2 (n) ,k≥ 3. (12)

Computing the derivatives f (k)
(
z−1) for k= 0, 1, 2 give

f
(
z−1

)
= sech

(
z−1+ δ

)
, (13)

f (1)
(
z−1

)
=− tanh

(
z−1+ δ

)
sech

(
z−1+ δ

)
, (14)

f (2)
(
z−1

)
= sech

(
z−1+ δ

)(
1− 2sech2

(
z−1+ δ

))
. (15)

Expanding the sum in Eq. (10) and keeping only the first three terms yield

Tn (nz+ 1;λ)= (nz)n√
λ

[
u
(
z−1)
0!

+ u(1) (z−1)
1!

p1 (n)
nz

+ u(2) (z−1)
2!

p2 (n)

(nz)2
+O

(
1
n2

)]

= nnzz√
λ

⎧⎨
⎩sech

(
1
z
+ δ

)
−

sech
(
1
z + δ

)(
1− 2sech2

(
1
z + δ

))
2nz2

+O
(

1
n2

)⎫⎬
⎭

=
nnzn

(
sech

(
1
z + δ

))
√

λ

⎧⎨
⎩1−

1− 2sech2
(
1
z + δ

)
2nz2

+O
(

1
n2

)⎫⎬
⎭ .

The accuracy of the asymptotic formula obtained in Eq. (5) is shown in Fig. 1.

To enlarge the region of validity of Eq. (5) and obtain an asymptotic expansion valid in a
larger region, the following theorem will be utilized.
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Theorem 2.2. [9] The polynomials

Pn (z)= n!
2π i

∫
C
f (w)ewz

dw
wn+1 , (16)

where f (w) is analytic at the origin with simple poles w1,w2, · · · (and respective residues r1, r2, · · · ),
can be represented, for each integer m> 0, as

Pn (nz)=−
m∑
k=1

rkewknz

wn+1
k

� (n+ 1,wknz)

+ (nz)n
∞∑
k=0

f (k)
(
z−1)+ h(k)

m
(
z−1)

k!
pk (n)

(nz)k
, (17)

that is valid for z ∈C,
∣∣z−1

∣∣< ∣∣z−1−wj
∣∣ , for all j=m+1,m+2, · · · , where the polynomials pk (n)

are given in Eq. (12) and h(k)
m is the kth derivative of the function

hm (w)=−
m∑
l=1

rl
w−wl

,

where the residues wl are ordered by increasing modulus |wl| ≤
∣∣wl+1

∣∣ . Each term of the finite

sum in the above equation equals n! rk/w
n+1
k multiplied by the Taylor polynomial of degree n in

z= 0 of ewknz.

The second asymptotic formula for Tn (nz+ 1;λ) with enlarged region of validity is given in
the following theorem.

Figure 1: Solid lines represent Tn (nx+ 1;λ) for several values of n, whereas dashed lines represent
the right-hand side of (5) with z= x, both normalized by the factor

(
1+ ∣∣ x

α

∣∣n)−1
where we choose

α = 0.2 (a) n= 7 and λ= 4 (b) n= 14 and λ= 9
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Theorem 2.3. Let z ∈ C\ {0} such that
∣∣∣z− 2

±(2k+1)π i−2δ

∣∣∣ > 2
(2k+1)π+2δ for k = 0, 1, 2, · · · ,

m− 1 and λ ∈C {0}. Then, as n→∞,

Tn (nz+ 1;λ)= −2n+1i(√
λ
)nz+1

m−1∑
k=0

(−1)k
[
− e

(2k+1)π inz
2

[(2k+ 1)π i− 2δ]n+1�

(
n+ 1,

[
(2k+ 1)π i

2
− δ

]
nz
)

+ e
−(2k+1)π inz

2

[− (2k+ 1)π i− 2δ]n+1�

(
n+ 1,

[− (2k+ 1)π i
2

− δ

]
nz
)]

+ (nz)n√
λ

{
sech

(
1
z
+ δ

)

+
m−1∑
k=0

(−1)k+1 4 (2k+ 1)π

4
(
1
z + δ

)2+ (2k+ 1)2 π2
−

sech
(
1
z + δ

)(
1− 2sech2

(
1
z + δ

))
2nz2

−
m−1∑
k=0

(−1)k 16 (2k+ 1)π

[
(2k+ 1)2 π2− 12

(
1
z + δ

)2]

nz2
{
4
(
1
z + δ

)2+ (2k+ 1)2 π2

}3 +O
(

1
n2

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (18)

Proof . We start by computing the residues rl for the Apostol-tangent polynomials. Observe

that the case is the function f (w)= sech (w+ δ)= 1
cosh(w+δ)

= p(w)
q(w)

which has simple poles at wl =
±(2l+1)π i

2 − δ, l= 0, 1, 2, . . . ,m− 1. Thus, the corresponding residues are

rl =
p (wl)
q′ (wl)

= 1
sinh (wl+ δ)

, (19)

where

sinh (wl + δ)= sinh
((

l+ 1
2

)
π i
)
= i sinh

(
lπ + π

2

)
= (−1)li . (20)

On the other hand, for w−l = −(2l+1)π i
2 − δ, l= 0, 1, 2, . . . ,m− 1,

sinh
(
w−l + δ

)=− sinh
((

l+ 1
2

)
π i
)
=−i sinh

(
lπ + π

2

)
= (−1)l+1 . (21)

Thus, the residues rl, l= 0, 1, 2, . . .m− 1 of the function f (w) are

rl =
1

(−1)li
and rl =

1

(−1)l+1i
= (−1)l . (22)
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Next, the derivatives of hm (w) at the saddle point z−1 will be computed. With the simple

poles wl = (2l+1)π i
2 − δ and w−1 = −(2l+1)π i

2 − δ of the function f (w) , an expression for hm (w) is
obtained as follows:

hm (w)=−
m−1∑
l=0

rl
w−wl

−
m−1∑
l=0

rl
w−w−l

=−
m−1∑
l=0

(−1)l+1i

w−
[

(2l+1)π i
2 − δ

] −m−1∑
l=0

(−1)li

w−
[−(2l+1)π i

2 − δ
]

=−
m−1∑
l=0

(−1)li

⎛
⎝ −1

[w+ δ]− (2l+1)π i
2

) + 1

[w+ δ]+ (2l+1)π i
2

)
⎞
⎠

=−
m−1∑
l=0

(−1)li

⎛
⎝ − (2l+ 1)π i

[w+ δ]2+ (2l+1)2π2

4

⎞
⎠

=
m−1∑
l=0

(−1)l+1 4 (2l+ 1)π

4 (w+ δ)2+ (2l+ 1)2 π2
.

Computing the derivatives yields

h(1)
m (w)=

m−1∑
l=0

(−1)l 32 (2l+ 1)π [w+ δ]{
4 (w+ δ)2+ (2l+ 1)2 π2

}2 , (23)

h(2)
m (w)=

m−1∑
l=0

(−1)l 32 (2l+ 1)π
[
(2l+ 1)2 π2− 12 (w+ δ)2

]
{
4 (w+ δ)2+ (2l+ 1)2 π2

}3 . (24)

At the saddle point z−1,

h(0)
m

(
z−1

)
=

m−1∑
l=0

(−1)l+1 4 (2l+ 1)π

4
(
1
z + δ

)2+ (2l+ 1)2 π2
, (25)

h(1)
m

(
z−1

)
=

m−1∑
l=0

(−1)l 32 (2l+ 1)π
(
1
z + δ

)
{
4
(
1
z + δ

)2+ (2l+ 1)2 π2

}2 , (26)

h(2)
m

(
z−1

)
=

m−1∑
l=0

(−1)l 32 (2l+ 1)π

(
(2l+ 1)2 π2− 12

(
1
z + δ

)2)
{
4
(
1
z + δ

)2+ (2l+ 1)2 π2

}3 . (27)
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From Theorem 2.2,

Tn (nz+ 1;λ)=− (λ)−
1
2
∑ r

ke
wknz

wn+1
k

� (n+ 1,wknz )+ (nz)n√
λ

∞∑
k=0

f (k)
(
z−1)+ h(k)

m
(
z−1)

k!
Pk (n)

(nz)k
. (28)

Keeping only the first three terms of the infinite sum in (28) and using Pk (n) in Eq. (11),

f (k)
(
z−1) given in Eqs. (13)–(15) and h(k)

m
(
z−1) given Eqs. (25)–(27) with wk = ±(2k+1)π i

2 − δ, rk =
(−1)k+1i√

λ
and (−1)ki√

λ
,k= 0, 1, . . . ,m− 1, the desired asymptotic formula is obtained.

The accuracy of the asymptotic formula obtained in Eq. (18) is shown in Fig. 2. The accu-
racy of the approximation in the oscillatory region is better that that the of the formula in
Eq. (5).

Figure 2: Solid lines represent Tn (nx+ 1;λ) for several values of n, whereas dashed lines represent
the right-hand side of Eq. (18) with z≡ x, both normalized by the factor

(
1+ ∣∣ x

α

∣∣n)−1
where we

choose α = 0.2. (a) n= 7 and λ= 4 (b) n= 14 and λ= 9

Remark 2.4. Taking λ = 1, Theorem 2.1 and Theorem 2.3, respectively, will give uniform
approximationformula and an asypmtotic expansion with enlarged region of validity which are
same formulas as those obtained in [17] for the tangent polynomials.

3 Approximation of Higher-Order Apostol-Tangent Polynomials

Higher-order Apostol-tangent polynomials are defined by the generating function(
2

λe2w+ 1

)m
ezw =

∞∑
n=0

Tm
n (z;λ)

wn

n!
, |w|< π

2
when λ= 1

and |w|< π when λ �= 1: λεC � {0} (29)

In this section, it is shown that the method in Section 2 can be extended to obtain asymptotic
expansion of the Apostol-tangent polynomials of order m.
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Theorem 3.1 For λεC\ {0} , and zεC\ {0} such that
∣∣Imz−1

∣∣ <
π−Argλ

2 and
∣∣z−1

∣∣ <∣∣z−1− (
π i
2 − δ

)∣∣ and n,m≥ 1, the Apostol-tangent polynomials of order m satisfy

Tm
n (nz+m;λ)= nnznsechm

(
z−1+ δ

)
(√

λ
)m

{
1− m

(
m− (m+ 1) sech2

(
z−1+ δ

))
2nz2

+O
(

1
n2

)}
, (30)

when δ = (logλ) /2 and the logarithm is taken to be the principal branch.

Proof . Applying the Cauchy Integral Formula to Eq. (29),

Tm
n (z;λ)= n!

2π i

∫
C

2mezw(
eIn(λ)+2w+ 1

)m dw
wn+1 , (31)

where C is a circle about 0 with radius less than |π−In(λ)|
2 . With

(
2e(δ+w)

)m
(cosh (w+ δ))m =(

e2δ+2w+ 1
)m

, it follows from Eq. (31) that

Tm
n (z;λ)= n!

2π i
(√

λ
)m

∫
C
f (w)

ezw

ewm
dw
wn+1

(32)

where λm = (
elog(λ)/2)m = eδm and f (w)= 1

coshm(w+δ)
. The function f (w) is a meromorphic function

with poles of order m at the zeros of coshm(w + δ) which are given by wj = (2j+ 1) π i
2 − δ, j =

0,±1,±2, · · · . It follows that by taking z �−→ nz an letting nz→∞ with fixed z,

Tm
n (nz+m;λ)= n!

2π i
(√

λ
)m

∫
C
f (w)en(zw−logw) dw

wn
. (33)

Likewise, the approximations of Tm
n (nz+m;λ) can be obtained by expanding f (w) around the

saddle point w= z−1. Using Lemma 1, Lemma 2, and Theorem 1 of [9],

Tm
n (nz+m;λ)= (nz)n(√

λ
)m

∞∑
k=0

f (k)(z−1)

k!
Pk(n)

(nz)k
, (34)

where Pk(n) are the polynomials given in Eqs. (11) and (12). The derivative of f (k)
(
z−1) for k=

0, 1, 2 are given by

f (0)
(
z−1)= f (z−1

)
= sechm

(
z−1+ δ

)
, (35)

f (1)
(
z−1

)
=−m tanh

(
z−1+ δ

)
sechm

(
z−1+ δ

)
, (36)

f (2)
(
z−1

)
=m sechm

(
z−1+ δ

)(
m− (m+ 1) sech2

(
z−1+ δ

))
. (37)
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Expanding the sum in (34) and keeping only the first three terms give

Tm
n (nz+m;λ)= (nz)n(√

λ
)m

[
v
(
z−1

)
0!

+ v(1)
(
z−1

)
1!

p1 (n)
nz

+ v(2)
(
z−1

)
2!

p2 (n)

(nz)2
+O

(
1
n2

)]

= nnzn(√
λ
)m

⎧⎨
⎩sechm

(
1
z
+ δ

)
−
msechm

(
1
z + δ

)(
m− (m+ 1) sech2

(
1
z + δ

))
2nz2

+O
(
1
n2

)⎫⎬
⎭

=
nnzn

(
sechm

(
1
z + δ

))
(√

λ
)m

⎧⎨
⎩1−

m
(
m− (m+ 1) sech2

(
1
z + δ

))
2nz2

+O
(
1
n2

)⎫⎬
⎭ .

The accuracy of the asymptotic formula obtained in Eq. (30) is shown in Fig. 3.

Figure 3: Solid lines represent Tm
n (nx+m;λ) for several values of n and m, whereas dashed lines

represent the right-hand side of Eq. (30) with z≡ x, both normalized by the factor
(
1+ ∣∣ x

α

∣∣n)−1

where we choose α = 0.2 (a) m= 7,n= 10 and λ= 5 (b) m= 8,n= 7 and λ= 6

Corollary 3.2. Forz ∈C\ {0} such that ∣∣Imz−1
∣∣< π

2 ,
∣∣z−1

∣∣< ∣∣z−1 − π i
2

∣∣andn,m≥ 1,

Tm
n (nz+m)= nnznsechm

(
z−1

){
1− m(m− (m+ 1) sech2

(
z−1+ δ)

)
2nz2

+O
(
1/n2

)}
. (38)

Proof . This follows from Theorem 3.1 by taking λ = 1. To enlarge the region of validity of
Eq. (30) and obtain an asymptotic expansion valid in a larger region the following theorem will
be used.
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Theorem 3.3. For λ ∈C\ {0} ,m ∈Z+ and z ∈C such that
∣∣z−1

∣∣< ∣∣z−1−wk
∣∣ for all k= l+1, l+

2, · · · , the Apostol-tangent polynomials of order m satisfy

Tm
n (nz+m;λ)= λ−

m
2

⎧⎨
⎩

l∑
k=1

m∑
j−1

e
wknzrkj

[
n∑
s=0

(
n
s

)
(−1)(j−1) 〈j− 1〉s (wk)–(j−1+s)

(
(n− s) !

wn−s+1
k

−� (n− s+ 1,wknz)

wn−s+1
k

)
+ (−1)j 〈j〉n

wj+nk

]
+ (nz)n

∞∑
k=0

f (k)
(
z−1)− h(k)

l

(
z−1)

k!
Pk (n)

(nz)k

}
, (39)

where the polynomisals pk(n) are given in Eq. (12) h(k)

l is the kth derivative of the function hl(w)

given by Eq. (49) and

m∑
j=1

rkj
(w−wk)

j

Are the given principal parts of the Laurent series corresponding to the poles wk, where the
entire function h(z) is determined by f(z).

Proof . With f (w)= cosh−m (w+ δ) , it follows from Mittag-Leffler’s Theorem (see [18,19]) that

f (w)=
l∑

k=1

⎡
⎣ m∑
j=1

rkj
(w−wk)j

+ qk (w)

⎤
⎦+ g (w)

=
l∑

k=1

m∑
j=1

rkj
(w−wk)j

+
l∑

k=1

qk (w)+ g (w)

=
l∑

k=1

m∑
j=1

rkj
(w−wk)j

+ fl (w) , (40)

where

fl (w)=
l∑

k=1

qk (w)+ g (w) ,

qk(w) is a polynomial of w, rkj are residues of f (w) at wk,k= 1, 2, . . . , l. Note that inside the
disk |w|< |wm+1| , fl(w) has no poles.

Recall from Eq. (33),

Tm
n (nz+m;λ)= 1

λ
m
2

n!
2π i

∫
C
f (w) ewnz

dw
wn+1 , (41)

where f (w)= 1/coshm (w+ δ)= sechm (w+ δ) . Substituting Eq. (40) to Eq. (41) gives

Tm
n (nz+m;λ)= 1

λ
m
2

n!
2π i

∫
C

⎛
⎝ l∑
k=1

m∑
j=1

rkj
(w−wk)j

+ fl (w)

⎞
⎠ ewnz

dw
wn+1
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= λ−
m
2
n!
2π i

∫
C

l∑
k=1

m∑
j=1

rkj
(w−wk)j

ewnz
dw
wn+1 +λ−

m
2
n!
2π i

∫
C
fl (w)ewnz

dw
wn+1 .

∣∣∣∣ (42)

Let

Xn,m
l (z)= λ−

m
2
n!
2π i

∫
C
fl(w)ewnz

dw
wn+1 , (43)

Yn,m
l (z)= λ−

m
2
n!
2π i

∫
C

l∑
k=1

m∑
j=1

rkj
(w−wk)j

ewnz
dw
wn+1

= λ−
m
2

l∑
k=1

m∑
j=1

n!
2π i

∫
C

rkj
(w−wk)j

ewnz
dw
wn+1 . (44)

Repeating the process to prove Theorem 3.1 where f (w) there is replaced by fl(w), we have

Xn,m
l (z)= λ−

m
2
n!
2π i

∫
C
fl (w) en(wz−logw) dw

w
. (45)

Assume that z−1 is not a pole of fl (w) . We can expand fl(w) around the saddle point. That
is

fl (w)=
∞∑
k=0

f (k)
l

(
z−1

)
k!

(
w−z−1

)k
,
∣∣∣w−z−1

∣∣∣< r (46)

where r is the distance from z−1 to the nearest singularity of fl (w) . Substitute Eq. (46) to Eq. (43)

Xn,m
l (z)= λ−

m
2
n!
2π i

∫
C

∞∑
k=0

f (k)
l

(
z−1

)
k!

(
w−z−1

)k
ewnz

dw
wn+1

= λ−
m
2 (nz)n

∞∑
k=0

f (k)
l

(
z−1

)
k!

1
(nz)n

n!
2π i

∫
C

(
w−z−1

)k
ewnz

dw
wn+1

= λ−
m
2 (nz)n

∞∑
k=0

f (k)
l

(
z−1)
k!

uk (n,z) ,

where

uk (n,z)= 1
(nz)n

n!
2π i

∫
C

(
w−z−1

)k
ewnz

dw
wn+1 .

It follows from Lemma 1 [9] that

uk (n,z)= pk (n)

(nz)k
, (47)
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where pk(n) are the polynomials in Eqs. (11) and (12). Thus,

Xn,m
l (z)= λ−

m
2 (nz)n

∞∑
k=0

f (k)
l

(
z−1)
k!

pk (n)

(nz)k
, (48)

valid for m ∈ Z+,z ∈ C\ {0} such that
∣∣z−1

∣∣ <
∣∣z−1−wj

∣∣ for j = l + 1, l + 2, . . . given the first 2l
poles of f (w) . From Eq. (40),

fl (w)= f (w)−
l∑

k=1

m∑
j=1

rkj
(w−wk)j

.

This gives

f (k)
l (w)= f k (w)− h(k)

l (w) ,

where

hl (w)=−
l∑

k=1

m∑
j=1

rkj
(w−wk)j

. (49)

The expansion of Xn,m
l (z) in Eq. (48) becomes

Xn,m
l (z)= λ−

m
2 (nz)n

∞∑
k=0

f (k)
l

(
z−1)− h(k)

l

(
z−1)

k!
pk (n)

(nz)k
,

∣∣∣∣ (50)

valid for
∣∣z−1

∣∣< ∣∣z−1−wj
∣∣ , j= l+ 1, l+ 2, . . . and z �= 0. This range of validity is larger than that

in Theorem 2.1 and Theorem 3.1.

On the other hand, to obtain an expansion for Yn,m
l (z) , shift the integration contour in

Eq. (44) by w=wk+ t. Then dw= dt and

Yn,m
l (z)= λ−

m
2

l∑
k=1

m∑
j=1

n!
2π i

∫
C′

rkj
tj
e(wk+t)nz

dt

(wk+ t)n+1

= λ−
m
2

l∑
k=1

m∑
j=1

ewknzrkj
n!
2π i

∫
C′

etnz

tj
dt

(wk+ t)n+1
, (51)

where C′ : t=−wk+Reiθ ,−π < θ ≤ π is a circle with radius R and center at −wk. Note that 0 is
not on the w′

ks. This C
′ is the image of C : w=Reiθ through the shift w=wk+ t. Note that∫ z

0
etxdx= etx

t

∣∣∣∣z0 = etz

t
− 1
t
,

giving

etz

t
=
∫ z

0
etxdx+ 1

t
.
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Similarly,∫ 2

0

etx

tj−1 dx=
etx

tj

∣∣∣∣z0 = etz

tj
− 1
t
.

so that

etz

tj
=
∫ z

0

etx

tj−1 +
1
tj
.

It follows that

etnz

tj
=
∫ nz

0

etx

tj−1 +
1
tj
.

Then Eq. (51) becomes

Y
n,m
l (z)= λ−

m
2

l∑
k=1

m∑
j=1

ewknzrkj
n!
2π i

∫
C′

(∫ nz

0

etx

tj−1 dx+
1
tj

)
dt

(wk+ t)n+1 . (52)

First, we compute

n!
2π i

∫
C′

etx

tj−1

dt

(wk+ t)n+1 = n!
2π i

∫
C′
etxt−(j−1) dt

(wk+ t)n+1

= dn

dtn

(
etxt−(j−1)

) ∣∣∣∣t=−wk . (53)

Note that when j = 1, the RHS of Eq. (53) is xn. For j ≥ 1, we use the Leibniz rule for
differentiation.

This gives

dn

dtn

(
etxt−(j−1)

)
=

n∑
s=0

(
n
s

)
xn−setx

ds

dts
t−(j−1)

∣∣∣∣∣∣t=−wk
. (54)

It can be computed that

ds

dts
t−(j−1) = (−1)s (j− 1) j (j+ 1) . . . (j− 1+ (s− 1)) t−(j−1+s)

= (−1)s 〈j− 1〉s t−(j−1+s),

where 〈j− 1〉s denotes the rising factorial of j− 1 with increment s. Then Eq. (54) becomes

dn

dtn

(
etxt−(j−1)

)
=

n∑
s=0

(
n
s

)
xn−se−wkx (−1)s 〈j− 1〉s (−wk)−(j−1+s)

=
n∑
s=0

(
n
s

)
xn−se−wkx (−1)(j−1) 〈j− 1〉s (wk)−(j−1+s) .
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Thus, Eq. (53) can be written

n!
2π i

∫
C′

etx

tj−1

dt

(wk+ t)n+1
=

n∑
s=0

(
n
s

)
xn−se−wkx (−1)(j−1) 〈j− 1〉s (wk)−(j−1+s) , (55)

while

n!
2π i

∫
C′
t−j

dt

(wk+ t)n+1 = dn

dtn
(
t−j

) ∣∣∣∣∣∣t=−wk
= (−1)n 〈j〉n (−wk)−j−n

= (−1)j 〈j〉n (wk)
−(j+n)

= (−1)j 〈j〉n
wj+nk

. (56)

Note also that∫ nz

0
xn−se−wkxdx=

∫ nz

0
tn−se−wkxdt.

Now the incomplete gamma function

� (a, z)=
∫ ∞

z
e−tta−1dt,

gives

� (n− s+ 1,wkz)=
∫ ∞

wkz
e−ttn−sdt.

Let η = t
wk

. Then t= ηwk and wkdη= dt. Moreover, t=∞⇐⇒ η =∞; t=wkz⇐⇒ η = z.

Consequently,

� (n− s+ 1,wkz)=
∫ ∞

z
e−wkη (wkη)η−s wkdη

� (n− s+ 1,wkz)

wn−s+1
k

=
∫ ∞

0
e−wkηηn−sdη

=
∫ ∞

0
e−wkηηn−sdn−

∫ z

0
e−wkηηn−sdη

or∫ z

0
e−wkηηn−sdη =

∫ ∞

0
e−wkηηn−sdη− � (n− s+ 1.wkz)

wn−s+1
k

.
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Take note z �−→ nz. Then∫ nz

0
e−wkηηn−sdη=

∫ ∞

0
e−wkηηn−sdη− � (n− s+ 1,wknz)

wn−s+1
k

. (57)

Substituting Eqs. (55) and (56) to Eq. (52) yields

Yn,m
l (z)= λ−

m
2

l∑
k=1

m∑
j=1

ewknzrkj

[(∫ nz

0

n∑
s=0

(
n
s

)
xn−se−wkx (−1)(j−1) 〈j− 1〉s (wk)−(j−1+s)

)
dx

+(−1)j 〈j〉n
wj+nk

]

= λ−
m
2

l∑
k=1

m∑
j=1

ewknzrkj

[
n∑
s=0

(
n
s

)
(−1)(j−1) 〈j− 1〉s (wk)−(j−1+s)

(∫ nz

0
xn−se−wkx

)
dx

]

+ (−1)j 〈j〉n
wj+nk

]. (58)

Using Eq. (57) into Eq. (58) we have

Yn,m
l (z)= λ−

m
2

l∑
k=1

m∑
j=1

ewknzrkj

[
n∑
s=0

(
n
s

)
(−1)(j−1) 〈j− 1〉s (wk)−(j−1+s)

(∫ ∞

0
e−wkttn−sdt

−Γ (n− s+ 1,wknz)

wn−s+1
k

)
+ (−1)j 〈j〉n

wj+nk

]
. (59)

Since∫ ∞

0
tn−se−wktdt= (n− s) !

wn−s+1
k

, n≥ s, (60)

we can write Eq. (59) as follows:

Yn,m
l (z)= λ−

m
2

l∑
k=1

m∑
j=1

ewknzrkj

[
n∑
s=0

(
n
s

)
(−1)(j−1) 〈j− 1〉s (wk)−(j−1+s)

(
(n− s) !

wn−s+1
k

−� (n− s+ 1,wknz)

wn−s+1
k

)
+ (−1)j 〈j〉n

wj+nk

]
. (61)

Substituting Eqs. (52) and (61) into Eq. (44) we have

Tm
n (nz+m;λ)= λ−

m
2

⎧⎨
⎩

l∑
k=1

m∑
j=1

ewknzrkj

[
n∑
s=0

(
n
s

)
(−1)(j−1) 〈j− 1〉s (wk)−(j−1+s)

(
(n− s) !

wn−s+1
k
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−Γ (n− s+ 1,wknz)

wn−s+1
k

)
+ (−1)j 〈j〉n

wj+nk

]
+ (nz)n

∞∑
k=0

f (k)
(
z−1)− h(k)

l

(
z−1)

k!
pk (n)

(nz)k

}

The comparison of the accuracy of the asymptotic formula obtained in Eq. (30) and Eq. (39)
is shown in Fig. 4.

(a) (b)

Figure 4: Solid lines in (a) and (b) represent Tn
m(nx+m;A) for n= 3,m= 3, whereas dashed lines

in (a) and (b) represent the right hand side of Eqs. (30) and (39), respectively, with z≡ x, both
normalized by the factor

(
1+ ∣∣x

a

∣∣n)−1
where we choose a = 0.5 (a) n = 3,m = 3 and λ = 3 (b)

n= 3,m= 3 and λ= 3

valid for m ∈ Z+, z ∈ C\{0} such that |z−1| <
∣∣z−1–wk

∣∣ for all k = l + 1, l + 2, . . . , where the

polynomials pk(n) are given in Eq. (12) and h(k)
l is the kth derivative of hl (w) given by Eq. (49).

Note that if m= 1, Eq. (61) reduces to

Yn
l (z)= λ−

1
2

⎛
⎝−

l∑
k=1

ewknzrkj
wn+1
k

Γ (n+ 1,wknz)

⎞
⎠ ,

since 〈1〉0 = 1 and 〈0〉1 = 0. This is exactly the first term Eq. (28).

Corollary 3.4. For z ∈C\{0} such that |z−1|< ∣∣z−1–wk
∣∣ for all k= l+1, l+2, . . . ,m,n∈Z+, the

tangent polynomials of order m satisfy,

Tm
n (nz+m)=

l∑
k=1

m∑
j=1

ewknzrkj

[
n∑
s=0

(
n
s

)
(−1)(j−1) 〈j− 1〉s (wk)−(j−1+s)

(
(n− s) !

wn−s+1
k

− � (n− s+ 1,wknz)

wn−s+1
k

)

+(−1)j 〈j〉n
wj+nk

]
+ (nz)n

∞∑
k=0

f (k)
(
z−1)− h(k)

l

(
z−1)

k!
pk (n)

(nz)k
, (62)
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where wk = (2k+ 1) π i
2 , the polynomials pk (n) are given in Eq. (12), h(k)

l is the kth derivative of
the function hl (w) given by Eq. (49) and

m∑
j=1

rkj
(w−wk)j

are the given principal parts of the Laurent series corresponding to the poles wk.

Proof . This follows from Theorem 3.3 by taking λ= 1.

4 Conclusion

The saddle-point method and the use of hyperbolic functions are shown to give good
approximations to the Apostol-tangent polynomials. Uniform approximations of the Apostol-
tangent polynomials and of higher-order Apostol-tangent polynomials are derived. Moreover,
approximation formulas with larger region of validity are obtained. The computations to derive
the approximation formulas with larger region of validity for the case of Apostol-tangent poly-
nomials of order m are quite tedious and the formulas obtained are original. Corollaries are
being stated to explicitly give the corresponding formulas for the special case λ = 1 and can
be used as check formulas of the general case. It will be interesting also to investigate if the
methods used in the paper will be applicable to the Apostol-tangent-Bernoulli polynomials and
Apostol-tangent-Genocchi polynomials of higher order.

For future research work, one may try to investigate more properties of Apostol-tangent
and higher order Apostol-tangent polynomials and establish q-analogues of these polynomials
(see [20–22]).
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