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ABSTRACT

(Aim) Chinese sign language is an essential tool for hearing-impaired to live, learn and communicate in deaf
communities. Moreover, Chinese sign language plays a significant role in speech therapy and rehabilitation.
Chinese sign language identification can provide convenience for those hearing impaired people and eliminate
the communication barrier between the deaf community and the rest of society. Similar to the research of many
biomedical image processing (such as automatic chest radiograph processing, diagnosis of chest radiological
images, etc.), with the rapid development of artificial intelligence, especially deep learning technologies and
algorithms, sign language image recognition ushered in the spring. This study aims to propose a novel sign
language image recognition method based on an optimized convolutional neural network. (Method) Three dif-
ferent combinations of blocks: Conv-BN-ReLU-Pooling, Conv-BN-ReLU, Conv-BN-ReLU-BN were employed,
including some advanced technologies such as batch normalization, dropout, and Leaky ReLU. We proposed an
optimized convolutional neural network to identify 1320 sign language images, which was called as CNN-CB
method. Totally ten runs were implemented with the hold-out randomly set for each run. (Results) The results
indicate that our CNN-CB method gained an overall accuracy of 94.88± 0.99%. (Conclusion) Our CNN-CB
method is superior to thirteen state-of-the-art methods: eight traditional machine learning approaches and five
modern convolutional neural network approaches.
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1 Introduction

According to statistics, there are hundreds of millions of deaf people in the world, and there
are more than 27.9 million deaf people in China [1]. As a visual language, sign language plays
an important role in the life of most deaf people. It is an essential tool for them to live, learn
and communicate in deaf communities all over the word. Sign language, like vocal language, is
naturally produced and expresses information according to its own grammatical rules [2]. Experts
in sign language use the term “phonology” to refer to the study of the structure and composition
of gestures. Signs in sign language have five basic components: hand shape, movement, position,
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direction and non-manual features [3]. However, fewer people can understand sign language
because of its complexity. This leads to a real communication barrier between the deaf community
and the rest of society. At present, two solutions are being tried to solve the problem. One method
is to convert speech into text for the deaf to see, namely, intelligent speech recognition, such as
seeing of iFLYTEK. Another method is to convert sign language into text or speech, namely sign
language recognition, which is what we want to discuss.

Sign Language Recognition (SLR) automatically converts sign language into text, speech
and so on by computer technology, which involves computer vision, pattern recognition, human-
computer interaction, etc. It has important research significance and application value. Some early
efforts on SLR can be dated back to the 1990s. According to the different acquisition methods
of sign language data, there are two main categories of the SLR system: sensor-based and vision-
based. The former needs to use devices equipped with sensors to extract the shape and motion of
gestures, the latter obtains images and videos from the camera [4]. From the research object, sign
language recognition can be divided into finger spelling recognition, isolated word recognition and
continuous sentence recognition.

Among traditional machine learning models, Hidden Markov Models (HMM) are widely
employed in sign language recognition, and literature [5–7] have introduced them. In addition,
Support Vector Machines (SVM) are also the most commonly adopted method for sign language
recognition. Literature [8–11] all mentioned the content of sign language recognition by support
vector machine alone or in combination. Traditional manual feature extraction and classification
are two important components of traditional machine learning models, in literature [12–14],
some classical algorithms of images processing and recognition were discussed diffusely. In recent
years, modern convolutional neural networks have been diffusely applied in the field of image
recognition [15,16]. Vision-based sign language image recognition occupies a large proportion
of sign language recognition. Literature [17–22] have a different description of this. The deep
neural network owns the ability of self-learning and self-organization, with the power of com-
puting enhancing, it can achieve better performance. Furthermore, some other design methods
are mentioned in researches [23–29]. Dynamic Time Warping (DTW), Long Short-Term Memory
(LSTM) [30], BLSTM-3D ResNet [31], k-nearest neighbor (k-NN), skin color modeling, random
forest, extreme learning machine (ELM) and key-frame-based center editing method are all very
classic and effective. Although many different algorithms and approaches were proposed, they all
have some limitations and application scenarios. Thus, it is not easy to give the comparisons and
evaluations scientifically.

In this paper, an optimized convolutional neural network with combination blocks (CNN-CB)
for Chinese Sign language identification was proposed. Different combinations of blocks were
tried. This convolutional neural network is fully optimized on each block. Besides, advanced tech-
nologies of batch normalization, dropout, and Leaky ReLU were introduced to achieve excellent
performance. In the experiments, we compared pooling methods, activation functions, dropout rate
and different permutations of combination blocks, respectively. Finally, we compared the proposed
method with the 13 state-of-the-art methods, and the results show that our method is superior.

2 Dataset

Although Chinese sign language is divided into gesture sign language and fingerspelling sign
language, fingerspelling sign language is the most certain, which can be used as the element of
Pinyin words. On the contrary, gesture sign language has local differences and is not unique.
Therefore, images of Chinese fingerspelling sign language are employed in our data set, including
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a total of 1320 images and 30 categories. Here, thirty categories include the letters a to z, and the
two-syllable letters zh, ch, sh, and ng. Meanwhile, each category has 44 images from volunteers.
Every image was preprocessed with size of 256× 256. As shown in Fig. 1, a sample that contains
all categories is demonstrated. Besides, to help understand and focus on the abbreviated words, a
list of abbreviations is shown in Table 1.

Figure 1: A sample of Chinese sign language

Table 1: A list of abbreviations

Abbreviation Full name

Adam Adaptive momentum estimation
AP Average Pooling
BN Batch Normalization
CB Combination Blocks
CL Convolutional Layer
CNN Convolutional Neural Network
DA Data Augmentation
DTW Dynamic Time Warping
ELM Extreme Learning Machine
FCL Fully Connected Layer

(Continued)
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Table 1 (continued)

Abbreviation Full name

HMM Hidden Markov Models
LReLU Leaky Rectified Linear Unit
MP Max Pooling
MSD Mean and Standard Deviation
OA Overall Accuracy
PReLU Parametric Rectified Linear Unit
ReLU Rectified Linear Unit
ResNet Residual Neural Network
RMSprop Root Mean Square prop
SGD Stochastic Gradient Descent
SGDM SGD with Momentum
SLR Sign Language Recognition
SP Stochastic Pooling
SVM Support Vector Machines
WE Wavelet Entropy

3 Methodology

3.1 Convolutional Layer
Many neurons have been found to have a small local receptive field in the visual cortex,

responding only to visual stimuli within a limited area of the visual field. The receptive fields of
different neurons overlap to form a complete field of vision. Different neurons respond to different
parts of the field, like lines at different angles, and different neurons in the same receiving field
respond to different parts of the field. Some neurons have a larger receptive field and respond to
complex patterns made up of low-level patterns. This structure enables the visual cortex to detect
all the complex and simple patterns in the field of vision. The above research results contributed to
the emergence of neurocognitive machines, which eventually developed into convolutional neural
networks (CNN) [32].

The convolutional layer (CL) is the most important part of convolutional neural network [33].
More convolutional layers are used to obtain deeper feature information. After many convolutions,
features in the image can be extracted. Through a simple instance, Fig. 2 illustrates the process
of convolution operation: input a 4× 4 image, after two 2× 2 convolution kernels carry out
convolution operation, it becomes a 3× 3 feature image. The convolution layer slides over the
input layer with a step of 1.

Compute the input of the first convolutional layer nerve o11:

conv(input,fliter)= i11× h11+ i12× h12+ i21× h21+ i22× h22

The calculation method of the neurons is the same. After all the outputs are calculated, the
whole output graph is obtained. Generally, we use more convolutional layers to obtain deeper
feature information.

The convolutional layer has such feature as “incomplete connection and parameter sharing”,
which greatly reduces network parameters, ensures network sparsity and prevents over-fitting.
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Figure 2: The process of convolution operation

3.2 Pooling Layer
Adjacent pixels in the image tend to have similar values, so usually adjacent output pixels in

the convolution layer also have similar values. This means that most of the information contained
in the output of the convolution layer is redudent. Therefore, it is believed that image features
can be represented at a higher level of abstraction. The pooling layer solves this problem. The
role of the pooling layer is to reduce the number of output values by reducing the size of the
input or reducing the dimensionality.

Pooling layer is usually sandwiched between continuous convolutional layers, which is used to
compress the amount of the parameters, reduce over-fitting and improve robustness. Its specific
operation is basically the same as that of the convolutional layer, except that the convolution
kernel of the pooling layer only takes the maximum or average value of the corresponding
position [34]. Therefore, the pooling layer can also be divided into Max Pooling (MP), Average
Pooling (AP) and Stochastic Pooling (SP), etc. [35–37]. Max Pooling and Average Pooling are
widely used. Because the size of the convolution kernel can be reduced through pooling and the
corresponding features can be retained, it is mainly used for dimensionality reduction [38,39].

Pooling is typically carried out through relatively simple maximum, minimum, or average
operations. As shown in Figs. 3 and 4, an example of max pooling with a pool size of 2 and an
average pooling sample with the same parameters are given as follows.

Figure 3: An example of max pooling

Average pooling is realized by averaging the values in the field, which can restrain the variance
increase of estimated values due to the limitation of neighborhood size, and is characterized by
better background retention effect. Max pooling is achieved by taking the maximum value of
feature in the neighborhood, which can suppress the phenomenon of estimated mean caused by
network parameter errors and better extract texture information. In this paper, we compared the
two methods to extract feature information.
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Figure 4: An example of average pooling

Additionally, in stochastic pooling, the elements in the feature map are randomly selected
based on their probability values. Stochastic pooling ensures that neurons with non-maximum
response values in the feature map can enter the next layer for extraction. Thus, it makes
stochastic pooling have stronger generalization ability and avoid over-fitting. As shown in Fig. 5,
an example of SP was provided, which demonstrated the whole process from the original map to
generating a probability map and finally gaining stochastic pooling output.

Figure 5: An example of stochastic pooling

3.3 Batch Normalization
In the process of deep network training, internal covariate shift changes data distribution of

internal nodes due to changes in network parameters [40]. This requires the upper-layer network to
constantly adjust to the change of input data distribution, but will lead to the decrease of network
learning speed, network training process is prone to fall into gradient saturation zone, slowing
down the network convergence speed [41]. Batch normalization (BN) can solve this problem by
smoothing and optimizing the solution space, regularization is achieved.

The BN approach, which greatly accelerates models training while maintaining predictive
accuracy, has been adopted as a standard model layer by some good models. The training of deep
neural networks often requires repeated initialization of debugging parameters, and the utilization
of small learning rate parameters results in slow training. In addition, the saturated nonlinear
model, the function derivative tends to 0 in the saturated region, also makes the model difficult to
train. Before the nonlinear layer, the BN method stabilizes the input distribution of each layer by
controlling the mean and variance of input distribution of each layer, thus promoting the training
effect.

The BN is a step that converts the input of mini-batch into approximate normal distribution
by using standardized variables. Take a mini-batch with a capacity of N as sample set X , and
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calculate each single example in turn.

μbatch=
1
n

n∑
i=1

xi (1)

σ 2
batch =

1
n

n∑
i=1

(xi−μbatch)
2 (2)

x̂i = xi−μbatch√
σ 2

batch+ δ
(3)

yi = αx̂i+ γ (4)

The denominator of Eq. (3) δ is a smoothing term, which is used to avoid zero-error in the
case of minimal variance. Observe the first three steps, normalize the input data into standardized
variables with mean 0 and variance approximately 1, and then perform scaling and shifting
through linear transformation of Eq. (4). Learn the appropriate scale of scaling and translation
through the parameter training of α and γ to restore model expression, then get the batch norm
output of mini-batch. After the training, the parameter α and γ are learned.

The expectation after transformation is:

M(x̂i)= 1√
σ 2

batch+ δ
M(x−μbatch)=

1√
σ 2

batch+ δ
[M(x)−μbatch]= 0 (5)

The variance after transformation is:

Var(x̂i)=M{[x̂i−M(x̂i)]2} =M{x̂i2− 2x̂iM(x̂i)+ [M(x̂i)]2}
=M(x̂i2)− 2[M(x̂i)]2+ [M(x̂i)]2 =M(x̂i2)− [M(x̂i)]2

=M

⎡⎣( x−μbatch√
σ 2

batch+ δ

)2
⎤⎦= 1√

σ 2
batch+ δ

M[(x−μbatch)
2]

= μ2
batch

μ2
batch+ δ

≈ 1 (6)

Due to the small value of the smoothing factor δ, the mean value of the transformed result
is 0 and the variance is close to 1.

The two learnable parameters α and γ was introduced in BN. The introduction of these two
parameters is to restore the expression ability of the data itself and perform linear transformation
on normalized data. In particular, when α2 = σ 2 and γ =μ, can achieve identity transformation
and retain the distribution information of the original input features.

According to the results, the neural network generally uses BN to achieve better training effect
and has the following advantages: i) It allows the network to use saturation activation function,
alleviates the gradient transfer problem; ii) It makes the input data of each layer in the network
relatively stable, and accelerates the speed of model learning; iii) It makes the model less sensitive
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to the parameters in the network, simplifies the parameter turning process, and makes the network
learning more stable. iv) It has a certain regularization effect.

3.4 ReLU, Leaky ReLU and Parametric ReLU
3.4.1 ReLU

Activation function is a function added to an artificial neural network to help the network
learn complex patterns in data. Similar to the neuron-based model in the human brain, the
activation function ultimately determines what to fire into the next neuron.

Rectified linear unit (ReLU) function is a popular activation function in deep learning [42–44].
The illustration of ReLU activation function is shown in Fig. 6.

Figure 6: The illustration of ReLU activation function

The corresponding function expression is:

σy=
{
max(0,y), y≥ 0
0, y< 0

(7)

ReLU itself is a piecewise linear function, but it can continuously approach a nonlinear
function piecewise. Compared with general Sigmoid function and TANH function, ReLU function
has the following advantages: i) ReLU has sparsity, which enables the sparse model to better mine
relevant features and fit training data; ii) Calculations are much faster. ReLU function has only
linear relationships, so it can be computed faster than Sigmoid and TANH; iii) In the region
y>0, the problem of gradient saturation and gradient disappearance does not occur; iv) Low
computational complexity, no exponential operation is required, as long as a threshold value can
be obtained.

3.4.2 Leaky ReLU
In the ReLU function, if the input to the activation function is negative for all sample inputs,

then the neuron can no longer learn, which is called Dead ReLU problem. Leaky rectified linear
unit (LReLU) is an activation function specifically designed to solve the Dead ReLU problem.

Leaky ReLU is very similar to ReLU, with the difference only in the part of the input less
than 0 where the value of ReLU is 0, while the part of the input less than 0 is negative and has
a slight gradient [45]. Fig. 7 shows the function image of Leaky ReLU.

The corresponding function expression is:

f (yi)=
{
yi, yi > 0
ayi, yi ≤ 0 (a is usually 0.01)

(8)



CMES, 2022, vol.132, no.1 103

Figure 7: The illustration of Leaky ReLU

In addition to all the advantages inherited from ReLU, Leaky ReLU has the following
advantages: i) Leaky ReLU adjusts the negative zero gradient problem by giving a very small
linear component of y to a negative input of 0.01y; ii) Leak helps to expand the scope of
ReLU function, usually a value is about 0.01; iii) Leaky ReLU’s function range is negative infinity
to positive infinity. But the result of this function is not consistent. Although it has all the
characteristic of ReLU activation functions, such as computational efficiency, fast convergence,
and no saturation in the positive region.

3.4.3 Parametric ReLU (PReLU)
In LReLU, a is a fixed constant. Parametric ReLU (PReLU) proposed to learn the optimal

value of δ from the data propagation itself through back propagation [46,47]. This provides a
more general rectifier function where the additional computational cost is negligible. By sharing
δ across channels, the number of additional learnable parameters is further reduced (see Fig. 8)

Figure 8: Comparison of Leaky ReLU and Parametric ReLU

Parameter δ is usually a number between 0 and 1, and is usually relatively small.

3.5 Dropout
Since large-scale neural networks are time-consuming and prone to overfitting, the advent

of dropout solves both problems. Dropout came to the fore in 2012, when Hinton wrote about
dropout in a paper. When a complex feedforward neural network is trained on a small dataset,
it is easy to overfit. In order to prevent overfitting, the performance of neural network can be
improved by preventing the interaction of feature detectors [48].
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Dropout typically applies to the output of the full connection layer (FCL) [49]. If there is
over-fitting for the neural network, the neural network discards neurons randomly in a certain
proportion through the dropout layer, so that the network model in each training will be different.
Multiple epochs are equivalent to training multiple models, and each model participated in the
vote on the final result, this not only reduces the scale of the neural network, but also prevents
over-fitting and improves the generalization ability of the model [50,51].

In the training process of each iteration, we randomly throw away part of the neurons.
In view of the network nodes in each layer is set to eliminate neural network of probability,
the frame for the dotted neurons are discarded, and then deleted from the node in and out of
attachment, finally get a node less, smaller networks, then the network structure in this training
will be simplifies. The schematic diagram of dropout was shown in Fig. 9.

Figure 9: Schematic diagram of dropout

In addition, according to the traditional dropout theory, it should discard several pixels on
the feature map. However, this approach is not very effective in CNN, and an important reason
is the similarity between adjacent pixels. Because not only are they very close in terms of the
input values, but they have similar neighbors, similar receptive fields, and the same convolution
kernel. The feature map of CNN is a three-dimensional matrix composed of width, height and
channel number. Therefore, in CNN, we can also randomly discard the channel as a unit, which
can increase the modeling ability of other channels and reduce the co-adaptation problem among
channels.

In the training model stage, it is inevitable to add a probabilistic process to each unit of the
training network, and the corresponding formulas are as follows:

t(l)i ∼Bernoulli(p) (9)

Ỹ(l) = t(l)∗Y(l) (10)

z(l+1)
j =W(l+1)

j Ỹ(l) +b(l+1)
j (11)

y(l+1)
j = f(z(l+1)

j ) (12)

In the above formulas, ∗ is an element-level multiplication, for any layer l, t(l)i is a vector
of independent Bernoulli random variable. The probability p of each variable is 1, and f is any
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activation function. This method is equivalent to taking the appearance network from the large
network, and the backpropagation is to do the back propagation of the current sub-network.

During the test, the weights were scaled to W (l)
test = pW (l) . Generally speaking, ||W ||2 ≤ c is limited

in the backpropagation, when c is usually 2, 3, 4, which can limit the weight, that is Max-norm
regularization. By using dropout, learning rate can be increased appropriately.

Furthermore, there are a few points to note: i) Generally, when the dropout rate is 0.5,
dropout has the strongest regularization effect, that is to say, p(1− p) will be maximized at p= 0.5.
ii) We need to scale W using the dropout rate during testing. The weight of the dropout network
is equivalent to scaling the weight of the dropout network by a factor of (1− p). In a dropout
network, nodes are not dropped during testing, which is equivalent to a normal network, and
therefore requires (1− p) times scaling [51].

3.6 Proposed Network: CNN-CB
In this paper, a nine-layer convolutional neural network with combination blocks (CNN-CB)

was built to identify Chinese sign language, which contains seven convolutional layers with blocks
and two fullyconnected layers. As shown in Fig. 10, there are three types of combination blocks:
Conv-BN-ReLU-Pooling (Block A), Conv-BN-ReLU (Block B), Conv-BN-ReLU-BN (Block C).
Here, Block A is a traditional combination, mainly used to verify and examine the location of
pooling operations. Block B is a comparative combination, mainly used to observe the effect of
different ReLU functions and difference between whether there is a pooling operation. Block C
is an innovative combination that introduces a double BN structure, mainly used to observe the
positive significance it brings. In each block, batch normalization, ReLU and pooling all played
their respective roles and improved the overall performance. We fine-tuned the hyperparameters to
optimize the CNN model. Hyperparameters of convolutional layers with combination blocks was
demonstrated in Table 2, here, the values of filters, filter size and stride were listed. Meanwhile,
we set padding values as “same”. The probability of dropout rate was set to 0.4 and softmax
function was applied.

Figure 10: Architecture of the proposed network
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Table 2: Hyperparameters of convolutional layers with combination blocks

Layer Filter size Filters Stride

Layer1 (Block A) 3× 3 16 2
Layer2 (Block A) 3× 3 32 2
Layer3 (Block A) 3× 3 64 2
Layer4 (Block B) 3× 3 128 2
Layer5 (Block B) 3× 3 128 2
Layer6 (Block C) 3× 3 256 2
Layer7 (Block C) 3× 3 256 2

3.7 M-Fold Cross-Validation
The larger the amount of data used for model training, the better the trained model will

generally be. Therefore, the division of training set and test set means that we cannot make full
use of the existing data at hand, so the model effect is affected to a certain extent. Cross-validation
is proposed based on this background [52,53].

In M-fold cross validation, the original data is evenly divided into m subspace or folds [54,55].
From the m-folds or groups, for each iteration, one group is selected as validation data and the
remaining (m− 1) groups are selected as training data. This process is repeated m times until each
group is treated as validation and retained as training data. The final accuracy of the model is
calculated by capturing the average accuracy of M-model validation data. A schematic diagram
of M-fold cross-validation was given in Fig. 11.

Figure 11: The schematic diagram of M-fold cross-validation
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Let’s take m=10 as an example to introduce the steps of the 10-fold cross-validation: i) Divide
all data sets into 10 parts; ii) Take one piece of data as test set and use the other nine pieces
as training set to train the model, and then calculate the mean square error (MSE) of the model
on the test set, denoted as E; iii) The result of an average of 10 trials is the final MSE, the
calculation formula is as follows:

CV(m) = 1
m

m∑
i=1

Ei (13)

The selection of m is the key of the method [56]. The larger m is, the more data of the
training set invested each time, and the smaller the deviation of the model. However, the larger
m is, the greater the correlation of the training set selected each time is, which will lead to the
larger variance of the final test error. In general, as a rule of thumb we usually choose m=5 or
10. The advantage of cross-validation is that it can obtain as much valid information as possible
from limited data, so that it can learn samples from multiple angles and avoid falling into local
extremum. In this process, both training samples and test samples have been learned as much as
possible.

3.8 Optimization Algorithms
Optimization algorithm is the eye of neural network and the basis of its vigorous develop-

ment. Stochastic gradient descent (SGD) is one of the most commonly used algorithms to perform
optimization, and is also the most commonly used method to optimize neural networks so far.
SGD solves the issue of random small batch samples, but it still has some problems such as
adaptive learning rate and easy to get stuck in small gradient points. To suppress the oscillation
of SGD, inertial control can be used in the process of gradient descent, so momentum is added
on the basis of SGD and first-order momentum is introduced, this is the SGD with momentum
(SGDM). SGDM alleviates the issue that the local optimal gradient of SGD is 0, which cannot
be continuously updated and the oscillation amplitude is too large, but it does not completely
solve the problem. When the local gully is deep and the momentum is used up, it will still oscillate
back and forth in the local optimal.

The RMSprop approach avoids the problem of continuous accumulation of second-order
momentum, resulting in an early end to the training process. It utilizes root mean square prop
(RMSprop) to effectively learn multilayer neural networks, and when properly initialized, the
neural network suffers much less loss even for deep networks. It is suitable for non-stationary
targets (both seasonal and periodic).

Adaptive momentum estimation (Adam) is the integrator of SGDM and RMSprop. SGDM
adds first-order momentum on the basis of SGD, and RMSprop adds second-order momentum
on the basis of SGD, Adam uses both the first and second order momenta. It basically solves a
series of problems of gradient descent mentioned before, such as random small sample, adaptive
learning rate, easy to get stuck in a small gradient point and so on.

In general, SGD is the most common optimizer, and Adam and RMSprop are the two most
influential adaptive stochastic algorithms for training deep neural networks. While SGD has no
acceleration effect, momentum is a modified version of SGD, adding the momentum principle.
The latter RMSprop is again an upgrade to momentum, and Adam is again an upgrade to
RMSprop. Adam has a fast convergence speed, while SGDM is slower, but they can converge to
a good point eventually. Adam performed best in the training set, but SGDM did best in the
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verification set. It can be seen that SGDM is better than Adam in training set and verification set
consistency. However, in some cases, the performance of Adam seems to be less than RMSprop,
so it is not that the more advanced the optimizer, the better the results. So, it is necessary to
choose the appropriate algorithm according to the characteristics and requirements of the data
set.

4 Experiments, Results, and Discussions

4.1 Experimental Configuration
This experiment was carried out on a platform with CPU of Core i7, memory of 16 GB

and Windows 10 operating system. Experimental configuration and related parameters were set as
follows: InitialLearnRate was defined as 0.01, MiniBatchSize was defined as 256, LearnRateDrop-
Period was set to 10, LearnRateDropFactor was set to 0.1, meanwhile, we ordered the maximum
epoch as 30 and tested three training algorithms: SGDM, RMSProp and Adam, respectively.
Overall accuracy (OA) was adopted to evaluate the results of experiment, which denotes the
proportion of correct-classify samples in all samples.

4.2 Statistical Results
Our CNNCB model was employed via 10 runs with 10-fold cross-validation, in which

three combination blocks: Conv-BN-ReLU-Pooling, Conv-BN-ReLU, Conv-BN-ReLU-BN were
adopted. The results over 10 runs are displayed in Table 3. As can be seen, the MSD (mean
and standard deviation) is 94.88± 0.99%, the highest accuracy reaches to 96.48% and the lowest
accuracy is about 93.36%, respectively. It indicates that the results are steady and effective.

Table 3: The results over 10 runs

Run Accuracy

1 93.36
2 94.53
3 93.75
4 94.92
5 95.70
6 94.92
7 94.92
8 94.14
9 96.09
10 96.48
MSD 94.88± 0.99

4.3 Pooling Method Comparison
In the experiment, we replaced the average pooling (AP) in block A with max pooling

(MP) method. Meanwhile, we kept all the other settings unchanged. The results of 10 runs of
max pooling are as follows: 92.97%, 93.75%, 92.58%, 94.14%, 94.14%, 94.14%, 93.75%, 93.75%,
94.53%, and 95.70%. The MSD of max pooling is 93.95 ± 0. 85%. The comparison against AP
and MP is shown in Fig. 12. It demonstrates that AP is relatively superior to MP in term of
identification accuracy.
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Figure 12: The comparison against AP and MP

4.4 Dropout Comparison
According to existing experience, the dropout rate is generally set to 0.5. Therefore, we varied

the dropout rate around 0.5 as the comparison. The results of 10 runs under different dropout
rates are demonstrated in Fig. 13. It can be seen that when the dropout rate is 0.4, the overall
accuracy rate reaches its peak, which gives the best performance. Setting the dropout rate to 0.5
does not work well in this experiment. When the dropout rate is 0.5, 0.6 and 0.7, the overall
accuracy are 91.72± 0.80%, 93.59± 1.72% and 91.88± 1.01%, respectively. Among them, the
result of setting dropout rate to 0.6 is close to the highest accuracy rate. Therefore, the optimal
dropout rate is 0.4.

Figure 13: Effect under different dropout rates
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4.5 ReLU vs. Leaky ReLU
In the experiment, we compared the effects of ReLU and Leaky ReLU. The results were

presented in Fig. 14. It can be observed that in ten runs Leaky ReLU is superior to ReLU. ReLU
reaches average accuracy of 92.30± 0.59%, which is low than the average accuracy of Leaky
ReLU about 2.5 percentage point. The reason is that ReLU cannot fix the issue of zero-downside
while Leaky ReLU can solve the issue of dead neurons by adopting the small negative gradient
flow. Thus, the data distribution was corrected and the information of negative axis will not be
lost, which enhances performance and achieves better accuracy.

Figure 14: Leaky ReLU vs. ReLU

4.6 Block Comparison
In this experiment, we compared our combination blocks method with other four model of

combination blocks: 2(Block A-Block B)-1(Block B)-2(Block C), 3(Block A)-2(Block B)-1(Block
C), 2(Block A)-1(Block C)-1(Block A)-2(Block B), and 3(Block A)-4(Block B). The results were
presented in Table 4. It can be observed that our method achieved superior performance than
all other methods. Meanwhile, we can draw three conclusions: (i) After introducing the Batch
Normalization technology twice in one block, the overall performance and effect are much better.
That is, Block C played a more significant role. As can be seen in Table 3, Model1 reached MSD
94.88± 0.99%, which is superior to Model5 87.42± 1.41%. (ii) The double BN structure should
be placed in the back convolutional layer. We can observe that Block C is set to last position
in Model1, Model2 and Model3. Thus, the performance brought by this structure is significantly
better than the way that Block C is placed in the middle in Model4. (iii) Put the pooling operation
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in front. That is, there should be no other modules before Block A. Obviously, the performance
degradation of Model2 and Model4 is mainly due to the appearance of other blocks before
Block A.

Table 4: Comparison of different combination blocks

Model of combination blocks MSD

Model1:3(Block A)-2(Block B)-2(Block C) (proposed) 94.88± 0.99
Model2:2(Block A-Block B)-1(Block B)-2(Block C) 88.79± 1.45
Model3:3(Block A)-2(Block B)-1(Block C) 93.32± 1.42
Model4:2(Block A)-1(Block C)-1(Block A)-2(Block B) 88.24± 1.96
Model5:3(Block A)-4(Block B) 87.42± 1.41

The reason why our proposed method is the best among all five methods lies in the following
two points: (i) The batch normalization technology was employed, which normalized the latest
inputs with a mini batch, thus, the input layer was evenly distributed. The introduction of
dual BN technology strengthens this effect, which can better prevent the problem of gradient
disappearance and accelerate learning convergence. (ii) The pooling layer can be used to achieve
dimensionality reduction and reduce the overfitting and computational burden of activation maps
due to too many features. Put the pooling operation in the front convolutional layer to achieve
dimensionality reduction as soon as possible, and the effect is better. In addition, pooling also
helps to maintain invariance-to-translation.

4.7 Comparison to State-of-the-Art Methods
In this experiment, our CNN-CB method was compared with some traditional machine learn-

ing methods: HCRF [57], HMM [58], SVM-HMM [59], GLCM-MGSVM [60], WE+SVM [61],
HMI-RBF-SVM [62], FSVM [63], WE-kSVM [64]. As can be seen in Table 5, our method
is eventually superior to all eight state-of-the-art methods. Additionally, some modern CNN
methods: 6L CNN-LReLU [21], eight-Layer CNN [22], AlexNet-DA-Adam [65], 9L-CNN [66],
CNN7-DA [67] were compared with our method. The results were displayed in Table 6. It can
be observed that our CNN-CB method also achieved superior performance. Intuitively shown in
Fig. 15, our method has achieved a significant lead.

The reason why our CNN-CB method gives the best overall accuracy among all Chinese sign
language identification approaches lies in one point. An optimized CNN with combination blocks,
including advanced techniques such as batch normalization, pooling, Leaky ReLU, dropout, was
employed. Among them, BN can evenly distribute the input layer and avoid gradient disap-
pearance. Adopting dual BN promotes the effect and speeds up learning convergence. Pooling
operation achieves dimensionality reduction, which decreases burden of computation and reduces
the overfitting. The utilization of Leaky ReLU can fix the issue of “dead neurons” and correct
the data distribution. The dropout technology can not only shrink the scale of neural network,
but also ameliorate the ability of generalization. Particularly, different combinations of blocks:
Conv-BN-ReLU-Pooling, Conv-BN-ReLU, Conv-BN-ReLU-BN enhance performance and achieve
better accuracy.
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Table 5: Comparison with traditional machine learning methods

Method Images Overall accuracy

HCRF [57] 12960 78.00%
HMM [58] 2700 83.77%
SVM-HMM [59] 300 85.14%
GLCM-MGSVM [60] 450 85.3%
WE+SVM [61] 450 85.69 ± 0.59%
HMI-RBF-SVM [62] 1320 86.47 ± 1.15%
FSVM [63] 720 86.7%
WE-kSVM [64] 510 88.76 ± 0.59%
CNN-CB (Ours) 1320 94.88± 0.99%

Table 6: Comparison with modern CNN methods

Method Images Overall accuracy

6L CNN-LReLU [21] 1320 88.10 ± 1.48%
eight-Layer CNN [22] 1320 89.32% ± 1.07%
AlexNet-DA-Adam [65] 1320 89.48 ± 1.16%
9L-CNN [66] 1320 89.69± 2.10%
CNN7-DA [67] 1320 91.99 ± 1.21%
CNN-CB (Ours) 1320 94.88± 0.99%

Figure 15: Comparison to state-of-the-art methods
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5 Conclusion

In this study, an optimized convolutional neural network with combination blocks was
proposed to identify Chinese sign language. Three different combinations of blocks: Conv-BN-
ReLU-Pooling, Conv-BN-ReLU, Conv-BN-ReLU-BN were adopted, including batch normaliza-
tion, pooling, ReLU and dropout techniques. The results displayed that our CNN-CB method
gained an overall accuracy of 94.88± 0.99%, which is superior to thirteen state-of-the-art meth-
ods: eight traditional machine learning approaches and five modern convolutional neural network
approaches.

Meanwhile, there are some weaknesses in our approach. First of all, our dataset including
1320 images is relatively insufficient, which needs to be extended further more. Next, more
probable combinations can be tested and more advanced technologies can be tried.

Thus, in the future, more Chinese sign language images should be obtained to avoid over-
fitting and improve the training performance. Furthermore, research on Chinese sign language
video recognition should be on the agenda. Data augmentation technique and optimized training
models should be focused on. Moreover, some advanced deep learning network models such as
ResNet, DenseNet, SqueezeNet can be tried.
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