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ABSTRACT

In order to overcome the typical limitations of numerical simulation methods used to estimate the production of
low-permeability reservoirs, in this study, a new data-driven approach is proposed for the case of water-driven
hypo-permeable reservoirs. In particular, given the bottlenecks of traditional recurrent neural networks in hand-
ling time series data, a neural network with long and short-term memory is used for such a purpose. This method
can reduce the time required to solve a large number of partial differential equations. As such, it can therefore
significantly improve the efficiency in predicting the needed production performances. Practical examples about
water-driven hypotonic reservoirs are provided to demonstrate the correctness of the method and its ability to
meet the requirements for practical reservoir applications.
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1 Introduction

Predicting well capacity in low-permeability reservoirs is a key part of field development management
and the basis for optimally adjusting later development plans [1,2]. Oil field development is a complex
system engineering task involving multiple scales, multiple physical fields, high nonlinearity, and several
uncertainties. Therefore, production forecasting is a long-term problem and a difficult subject to master.
In recent years, several researchers have investigated oil production using traditional methods such as
petroleum reservoir engineering and numerical simulation of reservoirs [3,4].

In traditional reservoir design methods, the prediction of response time is mostly based on statistical
production regimes. Only production or water injection data are used for reservoir production prediction.
The accuracy of their estimation is low [5]. However, due to the limitations of the traditional numerical
simulation methods for reservoirs. Only the flow field of porous media can be established according to
physical rules. And due to factors such as grid shape, resolution, etc., lengthy dynamic simulation time is
required. History matching is difficult. Therefore, there is a need for a prediction method for the
development of water-driven low-permeability reservoirs that may increase efficiency and at the same
time improve prediction accuracy [6].

Machine learning (ML) has grown in importance as artificial intelligence techniques have advanced over
the past 20 years [7–9]. It is now widely used to study various subsurface and porous media models,
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especially in the oil exploration and production industries [10,11]. Especially in the oil exploration and
production industry. ML techniques are also used in other sectors. Such as integrated re-observation and
investigation of geological and environmental problems [12–14]. Forward neural networks (FNN),
support vector machines (SVM), and radial basis functions (RBF) are capable of solving a wide range of
complex problems and achieving the required prediction accuracy. However, when using such methods
for point data prediction. It is often necessary to use different data rather than continuous data in order to
make it valid (i.e., time series) [15]. In contrast to FNNs, recurrent neural networks (RNNs) have a
“recursive” loop. This is a self-link from one node to its own time span. Thus, an implicit network is
formed, which can be utilized to analyze inputs of any order. Moreover, information is propagated both
backward and forward in the network. The RNN is allowed to teach at different time stages using
backward transmission methods. This is referred to as learning “backward transmission”. Due to the
presence of numerous backward transmission defects. On the other hand, gradients are no longer evident.

A deep learning based strategy was utilized in this study. Neural networks were used to predict long- and
short-term memory neural networks for low-permeability oil field production [16]. By adding gating
structures to a single self-loop structure. This approach replicates the signaling of real neurons, allowing
the storage of longer-term sequential information [17]. Due to this advantage, LSTM has gained
prominence in the discipline of artificial intelligence and deep learning. It has been used in various fields.
Nelson and colleagues used LSTM networks to predict stock values based on historical and technical
analysis data. With few exceptions, their results outperformed the baseline [18]. Zhao et al. [19] created a
data-driven model, the LSTM-fully connected neural network to predict PM2.5 concentrations at a given
air quality location by evaluating data from three sources: atmospheric quality data, meteorological data,
and weather data. This strategy produces better prediction results compared to the findings of artificial
neural network methods. LSTM can be used in combination with other deep learning methods, such as
convolutional neural networks, to obtain greater results. Du et al. [20] proposed a technique based on
convolutional resident LSTM to predict urban traffic flow. The technique is based on convolutional-
resident LSTM. By merging LSTM cells with convolutional-resident network. The spatio-temporal
characteristics of the multichannel matrix are investigated for the first time. The results show that this
strategy largely outperforms existing DL-based prediction methods. Kamrava et al. [21] and colleagues
used LSTM to predict complex matrices. All elements of this application show that LSTM performs well.
It was shown to be able to extract not only dynamic changes from the data but also to represent
correlations between time series.

This work uses deep LSTM models to predict crude oil production regimes in complex situations
including low-permeability water-driven reservoirs, which are discussed in this paper. For greater clarity,
we use data-driven techniques to address this problem. This avoids the need for additional flow
simulations. The proposed model is able to predict the future trends of these variables based on their past
patterns. Section 2 discusses RNNs and LSTMs, as well as their composition and mathematical
formulation. For deep LSTM model building, Section 3 and Section 4 provide detailed methods and
application examples, respectively. Section 5 summarizes the important findings in a concise manner.

2 Fundamental Principles and Methods

This section provides a quick introduction to the components and mechanism of RNN and LSTM, which
may be used as a starting point for a more in-depth understanding of the suggested methodology.

2.1 Recurrent Neural Networks
It is suited for processing data having a temporal or sequential structure, as well as for processing data

with different inputs and outputs. It has the capability of selectively sending information via sequential steps
while processing sequential data one element at a time, as seen above. Acyclicity may be determined by
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unfolding the network as a deep neural network with one layer of time steps and weights that are shared
across time steps. Furthermore, the hidden unit’s output containing stored information is sent to the
hidden unit as part of its input at the next time step, which is then transferred back to the hidden unit.
Nodes with cyclic edges receive input data points at the given time t, as well as hidden unit values h(t-1)
from past states at the given time t. Without a doubt, such an action can efficiently preserve information
from the previous stage in order to maintain track of the connections between data, hence improving the
capacity to learn from and extract information from sequential data sets. The forward transfer in a basic
RNN is mathematically regulated by the equation that follows (Fig. 1):

h tð Þ ¼ rh Wxx tð Þ þWhx t�1ð Þ þ bh
� �

(1)

y tð Þ ¼ ry Wyh tð Þ þ by
� �

(2)

where bh and by are bias parameters representing an offset, rh and ry are activation functions to introduce
nonlinearity such as tanh and rectified linear unit (ReLU) given by:

tanh xð Þ ¼ ex � e�x

ex þ e�x
(3)

ReLU xð Þ ¼ max 0; xð Þ (4)

Figure 1: A simple unfolded RNN illustrated across time steps with one input unit, one hidden unit, and one
output unit [22]

2.2 Long Short-Term Memory
Although the structure of RNN allows information from previous steps to be continuously retained and

influence the operation of subsequent steps, when the location of previous relevant information is very far
away from the current computation step, the memory module (single tanh layer or sigmoid layer) in the
model cannot effectively preserve the historical information for a long time due to the influence of
constant input data and is prone to proble The memory module of an LSTM RNN differs from that of a
normal RNN. LSTM can efficiently update and convey vital information in time series while successfully
maintaining long-range information by applying a well-thought-out gate structure and memory unit state.
Gates in the interaction layer can add, delete, and update information in the processor state using the
hidden state from the previous step and the input from the current step, and the updated processor state
and hidden state are transferred backward. The model can do single-factor prediction of a single indicator,
multi-factor prediction of a single indicator, and multi-factor prediction of a single indicator in addition to
end-to-end prediction. You can make predictions from start to finish using the LSTM model, and you can
do single-factor prediction of a single indicator, multi-factor prediction of a single indicator, and multi-
factor prediction of many indications all at once (Fig. 2).
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Figure 2: LSTM model

The specific procedures of LSTM neural network at time step t are as follows:

(a) Decide what information should be discarded from the previous cell state Ct-1 in the forget
gate ft.

ft ¼ r Wf xt þ Uf ht�1 þ bf
� �

(5)

(b) Identify what information of input xt should be stored into the cell state Ct in the input gate, where the
input information it and the candidate cell state eCt should be updated.

it ¼ r Wixt þ Uiht�1 þ bið Þ (6)

Ct ¼ tanh Wcxt þ Ucht�1 þ bcð Þ (7)

(c) Update the cell state of the present time step Ct, which combine the candidate memory Ct and the
long-term memory Ct-1.

Ct ¼ ft � Ct�1 þ it � Ct (8)

(d) Confirm the outcome ht in the output gate where the output information ot and the cell state Ct is
used.

rt ¼ r Woxt þ Uoht�1 þ boð Þ (9)

ht ¼ ot � tanh Ctð Þ (10)

A negative correlation between variables may be detrimental to the accuracy of model prediction in
machine learning tasks. It is possible to reduce extraneous variables, increase model accuracy, and avoid
the overmatching issue through the use of feature selection.

When it comes to feature selection approaches, recursive feature elimination is one of the most popular,
and the basic concept is to utilize a base model (in this study, we use a support vector machine model) to
undertake repeated training rounds. In the first step, training is carried out on all the features, and each
feature is scored for the training outcome, as given in Eq. (1). The scoring procedure for each feature is
also stated in Eq. (1). The features with the lowest scores, i.e., the ones that are considered to be the least
relevant, are eliminated. The remaining features are utilized for the first round of training, and the
procedure is repeated until just the final feature is left in the dataset. Because the order of feature
elimination, i.e., the importance of the features, is such that the first feature eliminated is the least
important and the last feature eliminated is the most important, the first feature eliminated is the least
important and the last feature eliminated is the most important.

ci ¼ x2
i (11)
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3 Methodology

In order to improve the prediction accuracy of the model and eliminate the influence of the magnitude
between the indicators, the input and output data need to be pre-processed. Since the data are more stable and
there are no extreme maximum and minimum values, this paper adopts a normalization process to map them
to the interval [0,1], and the linear transformation equation is:

Xnorm ¼ Xold � Xmin

Xmax � Xmin
(12)

where Xnorm represents the normalized data points inserted in the training process. Xold, Xmin and Xmax are the
real values of the sample data and the lower and upper constraints of these real data corresponding to design
variables or targets, respectively [23].

Production data from wells in water flooding low permeability reservoirs is often presented as a time-
series of data. In addition, the LSTM neural network has adequate capability to perform good capacity
prediction by first employing a long and short-term memory neural network for history matching before
utilizing the LSTM neural network itself. Each time step during the history matching phase involves
training the model with production series data as input characteristics and then comparing the results. At
this point, only the production history of the first time step is known, and the expected production for the
subsequent time step will be determined using the estimated values from the prior model, which will
serve as the output of the previous model. To examine the error between the fitted data and the
corresponding points of the original data, the sum squared error (SSE) is employed in this work. the sum
squared error (SSE) is calculated by Eq. (7).

SSE ¼
XN
i¼1

xexp;i � xhistory;i
� �

(13)

where Xexp represents the predicted value and Xhistory represents the true historical value. the closer the SSE is
to 0, the better the model selection and fit, and the more successful the data prediction.

4 Example Application

This paper presents an analysis of production data generated by a conventional numerical simulator,
which is utilized to build a production forecast model. In this study, production data for a water flooding
low-permeability block is used as experimental data for a total of 84 months, from January 2012 to
December 2018. The training set, which contains data from January 2012 to December 2016, the
validation set, which contains data from January 2017 to December 2017, and the test set, which contains
data from January 2018 to December 2018, are the three datasets used.

For starters, the parameters of the LSTM neural network are randomly selected and initialized. In this
example, the number of neural network layers is one, the time series step is twelve months, the number
of neurons is forty, the number of network gates is forty-eight, and the number of training cycles is three
thousand and one hundred. When that, the model is trained using the training data, and the model is
prepared for validation after the training phase is done, as shown in the following diagram (Fig. 3).

It was necessary to shut in the wells A1 and A2 in this block for a period of time in 2013. This was the point
in time when the data was absent, the training samples were noisy, and the model was having some impact on the
outcome. The prediction effect, on the other hand, is extremely good when the production is maintained
indefinitely. When there are two consecutive switch-off wells, and the duration between the two switch-off
wells is short, it can be observed that there is a big offset between the anticipated value and real value in this
case, and the prediction is not very accurate. Predicted values and real values closely overlapped for the
period from January 2014 to October 2017, and the prediction was more accurate in these circumstances.

FDMP, 2022, vol.18, no.5 1525



The SSE of this training is depicted in Figs. 4 and 5. As the training cycle progresses, it can be seen that
the SSE of this training lowers progressively. The final SSE is around 0.0005, which falls within a suitable
error range and is within the acceptable error range for engineering applications, according to the results. In
conclusion, the data-driven long and short term memory neural network reservoir simulation method can
more accurately and quickly predict the future production dynamics of oil wells by fitting the production
history more accurately and quickly, and the prediction accuracy meets the requirements of the mine site.

Figure 3: Matching of daily oil production rate of well A1

Figure 4: Matching of the daily oil production rate of well A2

Figure 5: SSE
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5 Conclusion

The use of an LSTM-based prediction model to estimate the permeability of low-permeability reservoirs
is proposed in this work. The model, which is based on data, allows engineers and decision-makers to obtain
reservoir capacity information ahead of time, supporting them in developing low-permeability reservoir
development plans that are better managed and regulated.

(1) It is possible to successfully fix the deficiencies of traditional reservoir engineering and reservoir
numerical simulation approaches by utilizing a data-driven approach to low permeability
reservoir production forecast, making it a helpful tool for reservoir development evaluation. (2)
As a result, deep learning techniques are employed to train the model, which is based on the
reservoir’s physical static property field as well as its dynamic production data, allowing it to
achieve the goal of rapid reservoir development.

(2) When compared to conventional fully connected and conventional recurrent neural networks, the long
and short-term memory neural network is a unique recurrent neural network that can better obtain
information and perform the output of water flooding low-permeability oil fields than the other two types.

(3) According to the application findings of three algorithms, using long and short-term memory neural
networks for oilfield production prediction is a good way. However, practical applications such as
long-term prediction and parameter inversion still have significant limits, and future work will
merge traditional reservoir numerical modeling with data-driven methods even more.

Funding Statement: The authors received no specific funding for this study.
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