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ABSTRACT

A structural displacement field reconstruction method is proposed to aim at the problems of deformation mon-
itoring and displacement field reconstruction of flexible plate-like structures in the aerospace field. This method
combines the deep neural network model of the cross-layer connection structure with the fiber grating sensor
network. This paper first introduces the principle of strain detection of fiber grating sensor, studies the mapping
relationship between strain and displacement, and proposes a strain-displacement conversion model based on an
improved neural network. Then the intelligent structure deformation monitoring system is built. By controlling
the stepping distance of the motor to produce different deformations of the plate structure, the strain information
and real displacement information are obtained based on the high-density fiber grating sensor network and the
dial indicator array. Finally, based on the deformation prediction model obtained by training, the displacement
field reconstruction of the structure under different deformation states is realized. Experimental results show that
the mean absolute error of the deformation of the measuring points obtained by this method is less than
0.032 mm. This method is feasible in theory and practice and can be applied to the deformation monitoring
of aerospace vehicle structures.
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1 Introduction

The flexible plate structure is widely used in the aerospace field. This structure has the characteristics of
large span, lightweight, and low rigidity [1]. It is susceptible to vibration and deformation due to the influence
of the external environment during the working process, which further affects the safety and stability of the
flight system [2,3]. Therefore, the deformation monitoring of aerospace structures is critical, which can
effectively improve reliability [4,5]. The camera method is a traditional deformation monitoring
technology, which mainly obtains the deformation parameters of the structure by taking an image of the
measured structure and then processing the image [6,7]. However, this method has disadvantages such as
susceptibility to environmental influences and poor anti-vibration interference. Measuring with resistance
strain gauge is to measure the structural strain based on the principle that the resistance value changes
with strain by pasting the resistance strain gauge on the structure’s surface. This method has the
disadvantages of being susceptible to noise interference and complicated configuration system. Compared
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with the above methods, fiber grating sensors have the advantages of high sensitivity, lightweight, and anti-
noise interference, which are widely used in structural health monitoring [8,9]. At the same time, sensor
networks can be constructed with space-division multiplexing and wavelength division multiplexing [10–
12]. The sensor network constructed by fiber grating sensors is pasted on the surface of a large flexible
structure, and the morphology of the structure can be reconstructed by monitoring the sensor information.

At present, scholars have carried out certain researches on morphological reconstruction methods of
large-scale flexible structures. Foss et al. [13] proposed the modal conversion method for the first time,
which established the displacement reconstruction equation through structural modal and strain. Static
experiments on a supporting plate verify that fewer sensors can obtain a more extensive range of
structural deformation [13]. The modal conversion method needs to analyze the modals in all directions
of the structure, so the model error has a more significant influence on the effect of the reconstruction
algorithm. Tessler et al. [14] proposed the inverse finite element method, which constructed the functional
relationship between structural strain and displacement through the principle of variational weighted least
squares, realized the transformation of the strain field and the displacement field, and achieved the
displacement field reconstruction through experiments. It is challenging to construct their functional
relationship for complex structures, so the inverse finite element method is only suitable for more
superficial structures. Based on the classical beam theory, Ko et al. [15,16] used a piecewise linear
function or a nonlinear function to express the surface strain field of the structure by segmenting the
structure at equal intervals and realized the reconstruction of the displacement field of the structure
through the displacement distribution function and extended it to different structures. The Ko
displacement theory reconstruction method requires many sensors to ensure the accuracy of deformation
reconstruction, At the same time, the strain measurement in different directions requires multiple sets of
sensors. Zhu et al. proposed a deformation reconstruction algorithm based on curvature information to
realize the structural reconstruction of solar panels [17]. The curvature reconstruction method will
accumulate the error value in the calculation process, and the reconstruction error is relatively large.
Therefore, under the premise of ensuring the accuracy of the reconstruction, the method of structural
morphology reconstruction needs to develop in a direction that does not depend on structural attributes.
Deformation reconstruction using the neural network method can eliminate the constraints of constructing
structural models and complex transformation equations. Baldwin et al. [18] used neural network
methods to conduct deformation experiments on unilaterally fixed branch structures and achieved good
structural deformation reconstruction results. Mao et al. [19] used a simplified neural network to construct
a linear mapping method of strain and displacement and realized the deformation reconstruction of
complex flexible structures based on the fiber grating sensor array.

Deep learning originates from the research of artificial neural networks. The concept of deep learning
was first proposed by Professor Hinton in 2006 [20]. It can deeply mine the characteristics of data
through multiple hidden layers. Its main models include convolutional neural network, recurrent neural
network, and recursive neural network [21]. Deep learning is used to approximate a non-linear mapping
from input to output to achieve prediction results and has adaptive solid and generalization capabilities.
However, the traditional neural network structure will degenerate as the number of layers deepens [22].
Therefore, this article will propose a morphological reconstruction technology based on a deep neural
network algorithm of cross-layer connection, which can obtain the deformation by establishing the
relationship between the strain and displacement of the structure, which is not affected by the error of the
structure model.

The aim of the study reported in this paper was to demonstrate the feasibility of the proposed flexible
structure reconstruction algorithm based on an improved neural network. The rest of this paper is
organized as follows. The next section describes the strain detection principle of the fiber grating sensor,
the improved neural network model, and how to establish the mapping relationship between sensor strain
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and displacement. The following section of the paper then describes a series of structural deformation tests
and structural reconstruction model comparison tests employed to demonstrate the feasibility of the
reconstruction algorithm proposed in this paper. The last section opens a brief discussion of possible
further improvements of the reconstruction model in this paper and concludes some of the advantages of
the model.

2 Deep Learning Reconstruction Algorithm

2.1 Principle of Fiber Bragg Grating Strain Sensing
The grating in the fiber grating sensor can be regarded as a narrow-band filter. When light beams with

different wavelengths pass through the fiber grating, they will be reflected if their center wavelength meets
the grating conditions; otherwise, they will generally pass through the fiber grating. The peak of the reflected
light spectrum appears in the center wavelength region of the grating, which is called the Bragg wavelength
[23]. Therefore, the reflected light must follow the Bragg condition, which satisfies the Eq. (1) [24].

�B ¼ 2neff� (1)

where neff represents the effective refractive index of fiber grating; Λ represents refractive index change
period; λB represents the central wavelength of reflected light.

To avoid the influence of temperature on the experimental results, a temperature sensor was arranged at
the edge of the sensor network for temperature compensation when building the sensor network. The
experimental data shows that the temperature is constant during the experiment, so the influence of
temperature on the central wavelength of the fiber grating can be ignored, and the relationship between
the change of the central wavelength and the strain can be obtained as Eq. (2) [25]

e ¼ D�B

ð1� PeÞ�B
(2)

where Pe and λB are constants. The center wavelength change of the fiber grating has a linear relationship
with the axial strain. Therefore, after studying the mapping relationship between strain and displacement,
the structural displacement can be calculated by the change in the center wavelength of the sensor.

2.2 Principles of Deep Learning Algorithms
A depth neural network is a non-linear mapping. The neurons in the same layer are not connected, and

the neurons in adjacent network layers are fully connected. Suppose the input data is x = {IN1, IN2 ⋅ ⋅ ⋅ INn},
the output data is y = {OUT1, OUT2, OUT3, ⋅ ⋅ ⋅ , OUTm}. The network structure model is shown in Fig. 1.
However, as the number of layers increases, the expression ability of this structure will decrease. A neural
network with a residual structure can avoid this problem. The residual structure includes the identity branch
and the residual branch. When the network reaches the optimum, if it continues to deepen the network, the
residual branch parameters will learn to be 0 to prevent model degradation. The residual structure is mostly
used in convolutional neural networks. This paper improves the fully connected neural network structure
based on the idea of residual learning and proposes a cross-layer connected neural network structure. The
improved network structure is shown in Fig. 2. In Fig. 2, f(*) is the feature mapping from layer l − 2 to
layer l. As shown in the network structure in Fig. 2, l can be 4 (Hidden layer 3) or 6 (Hidden layer 5).

A neural network needs an activation function to be able to fit any nonlinear function [26]. The ReLU
function alleviates the problem of gradient disappearance, makes the neural network have appropriate
sparsity, and improves the network training speed. Its expression is shown in Eq. (3) [27]. Therefore, in
the model proposed in this paper, ReLU is used as the activation function, and the normalization layer is
added to reduce the mutual influence caused by the uneven data distribution of adjacent layers, enhancing
the generalization ability of the network and playing a regularization role [28].
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gðxÞ ¼ x x. 0
0 x � 0

�
(3)

The specific structure of the cross-layer connection is shown in Fig. 3, the identity connection is mainly
reflected in the identity branch and activation function. This connection structure is mostly used in
convolutional neural networks, and rarely directly applied in artificial neural networks. In this paper, after
improving part of the neural network structure to a cross-layer structure, the overall structure model can
be regarded as a single hidden layer neural network structure based on adding a cross-layer structure. It
can be explained that there must be an error value between the output of the single hidden layer neural
network and the real output and adding a cross-layer connection between the hidden layer and the output
layer can reduce the error value. Due to the existence of the identity connection, the error value will not
further deteriorate after the cross-layer connection is added.

In Fig. 3, xi(i = 1, 2,…, l,…L) is the input of the next layer and the output of the previous layer, h is the
output before the activation function, wi(i = 1, 2,…, l,…L) is the weight and bi(i = 1, 2,…, l,…L) is the bias.
The expanded form of f(*) after ignoring the conversion parameters during normalization can be expressed as
follows:

f ð�Þ ¼ f ðxl�2; fwig; fbigÞ (4)

where xl−2 is the input of the layer l − 1,{xi} and {bi} are the weight set and bias set when i = l, l − 1.

Figure 1: Conventional deep neural network

Figure 2: Improved structure diagram of deep neural network
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Figure 3: Concrete structure of cross-layer connection

As can be seen from Fig. 3, the number of neurons in the l − 2 layer is equal to the number of neurons in
the l layer and the corresponding connection weight is 1. The output of the l layer can be expressed as

xl ¼ gðxl�2 þ hÞ (5)

h can be expressed as

h ¼ f ðxl�2; wl�1; wl; bl�1; blÞ (6)

Combining Eqs. (5) and (6) can be obtained

xl ¼ xl�2 þ f ðxl�2; wl�1; wl; bl�1; blÞ (7)

Assuming that the network structure has L layers, the output of the L − 1 layer can be expressed as

xL�1 ¼ xL�3 þ f ðxL�3; wL�2; wL�1; bL�2; bL�1Þ

¼ x1 þ
XL�3

j¼1

f ðxj; wjþ1; wjþ2; bjþ1; bjþ2Þ
(8)

After adding the cross-layer structure to the single hidden layer neural network structure, the cross-layer
structure part only needs to learn the difference between the hidden layer output of the single hidden layer
neural network structure and the cross-layer structure output.

Dx ¼
XL�3

j¼1

f ðxj; wjþ1; wjþ2; bjþ1; bjþ2Þ (9)

The output value of the last layer is

xL ¼ wLxL�1 þ bL (10)

Based on the above formula, the relationship between the input and output of the improved neural
network model can be expressed as

y ¼ wLðw1xþ b1 þ DxÞ þ bL (11)

where x is the input of the first layer.

Suppose the cost function of the network model is

E ¼ 1

2
ky� xLk ¼ 1

2

XnL
k¼1

ðyk � xLkÞ2 (12)

where y is the expected output value and nL is the number of neurons in the last layer.
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The essence of the neural network learning process is to find the appropriate parameters to minimize the cost
function. The Adam algorithm uses the first-order momentum to adjust the update direction of the parameters
and also uses the second-order momentum to adjust the learning rate of different parameters [29]. Therefore,
this paper uses Adam gradient descent algorithm to optimize the parameters of the entire model.

According to the chain derivation rule, the partial derivative of the total error to the weight of the cross-
layer structure can be obtained

@E

@wl
¼ dlþ2 � ð1þ @

@xl
f ðxl; fwg; fbgÞÞ � @

@wl
f ðxl�2; fwg; fbgÞ (13)

where δl+2 represents the error generated by the output of the l + 2 layer; the partial derivative of each layer
bias can also be obtained according to the chain derivation rule.

In the backpropagation, the gradient descent method is used to update the weight and bias of each layer,
so that the error between the output of the network model and the true value is as small as possible.

2.3 Establish the Mapping Relationship between Strain and Displacement
In 2.1, the central wavelength of the fiber grating sensor has a linear relationship with the axial strain,

and then the mapping relationship between the axial strain of the sensor and the structural displacement can
be established to obtain the displacement information of the structure through the central wavelength of the
sensor. This paper uses the deep learning algorithm with the powerful ability to approximate nonlinear
functions in 2.2 to establish the mapping relationship between the center wavelength of the sensor and
the structural displacement. The center wavelength of the sensor is used as the input of the deep learning
algorithm, and the displacement information of the structure is used as the output. The deflection curve
method calculates the curvature information of the finite point by establishing the equation between the
structural strain and the curvature and then calculates the deflection angle of the corresponding point
through the curvature after continuous processing, and finally determines the structural displacement
according to the deflection angle. The neural network structure model established in this paper can
directly learn the corresponding relationship between the strain and displacement of the structure, without
the need to deal with complex processes such as structure curvature and deflection angle. The mapping
relationship between structural strain and displacement is shown in Fig. 4.

Figure 4: Mapping diagram of strain and displacement

3 Experimental Verification

3.1 Experimental Procedure
Taking the plate structure as the experimental object, the displacement field of this structure subjected to

external load is reconstructed. The experimental flowchart is shown in Fig. 5. First, an intelligent structural
strain monitoring system is built based on the fiber Bragg grating sensor array. Based on this system,
grouping experiments with different loads are carried out. The plate-shaped structure is loaded by
controlling the motor compression spring, and its deformation causes the center wavelength of the fiber
grating sensor to change. The wavelength information of the fiber Bragg grating sensor array is
transmitted back to the high-precision demodulator for demodulation, and the demodulated information is
transmitted to the computer for processing and calculation to obtain the wavelength offset. The
wavelength offset is converted into strain information according to Eq. (2). The real deformation of the
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discrete points of this structure is measured by a dial indicator. Then, the proposed improved neural network
reconstruction model is used to train and learn the relationship between the strain and the real deformation of
the discrete points of this structure. Finally, the data that the model has not learned is passed into the model to
obtain the predicted value of this structural discrete point shape variable. Cubic spline interpolation is used
for the predicted value to obtain the deformation of the entire displacement field to obtain a visual
reconstruction of this structure.

Step 3.Train the neural network model to get the optimal parameters

Step 4.Model evaluation Step 5.Visual recomposition

Optimal model 
parameters

Step 1.Build a strain monitoring system Step 2.Collect experimental data

Structural 
displacement

Wavelength 
offset

Reconstruction 
model

Figure 5: Experimental flow chart
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The model diagram of the intelligent structural deformation monitoring system built in this experiment is
shown in Fig. 6, mainly composed of a high-density quasi-distributed fiber grating sensing network, a high-
precision demodulator dial indicator. The space division multiplexing and wavelength division multiplexing
techniques are used to arrange a fiber grating sensor network composed of 14 channels on a plate-shaped
structure with a length and width of 600 mm and a thickness of 3 mm. There are 10 sensors in each of
the 8 channels of the network, and 9 sensors in each of the other 6 channels. A total of 134 fiber grating
sensors are used to collect structural strain information. In addition, a temperature sensor is pasted on the
edge of the sensor network to avoid temperature drift. Deploying a high-density quasi-distributed fiber
grating sensing network can obtain more detailed information about structural strain. The strain
characteristics of the structure learned by the reconstruction model are closer to the actual strain of the
entire structure. At the same time, 20 displacement measurement points were selected to measure the real
deformation of the discrete points of the structure for later error evaluation.

3.2 Loading Test
Carry out a loading test on the plate structure, as shown in Fig. 6. The lower-left corner of the plate-like

structure is the origin of coordinates. The horizontal direction is the x-axis, and the vertical direction is the
y-axis. Four different loading methods are used, as shown in Table 1. The following uses serial numbers 1, 2,
3, and 4 to represent the four methods.

Three sets of experiments were carried out for each loading method, and a total of 120 sample data were
collected. The input of the reconstruction model is the structural strain information, and the output is the

Figure 6: Schematic diagram of test system structure

Table 1: Specific information of different loading methods

Serial number 1 2 3 4

Coordinates for step loading (mm) (330, 330) Null (440, 440) (330, 330)

Coordinates for maximum loading (mm) Null (440, 440) (330, 330) (440, 440)
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deformation of the displacement measurement point of the structure. The strain information of the structure
can be directly calculated from the center wavelength offset of the sensor network. Some experimental data
of the center wavelength offset are shown in Fig. 7. A positive offset indicates that the measuring point is in a
stretched state, and a negative offset indicates that the measuring point is in a compressed state. The
deformation of the displacement measuring of the structure point is the difference between the indications
of the dial indicator.

x ¼
x11 . . . x1n
..
. . .

. ..
.

xm1 � � � xmn

0
B@

1
CA (14)

y ¼
y11 . . . y1n
..
. . .

. ..
.

yk1 � � � ykn

0
B@

1
CA (15)

where m represents the number of measurement points of the fiber grating sensor; k represents the number of
displacement measuring points of the dial indicator; n represents the total number of samples.

3.3 Determining the Number of Hidden Layer Nodes
The network model structure in this paper is composed of a single hidden layer neural network and

residual structures. The residual structure is located between the hidden layer and the output layer of the
single hidden layer neural network. The network structure is shown in Fig. 3. The number of hidden
layer nodes in the network model is related to the mapping ability of the network. When the number of
hidden layer nodes is too small, the mapping ability of the network is relatively low, leading to poor
results obtained by the model. When the number of hidden layer nodes increases, the mapping ability of
the network will improve. However, the time spent in the learning process of the network will also
increase, and over-fitting problems may also occur. At present, the academic circles do not have a
complete theoretical system to guide the determination of the number of nodes in the hidden layer, and
most of them use trial and error methods to determine the final number of nodes in the hidden layer.

In order to evaluate the practical effect of the proposed reconstruction model, the mean absolute error
(MAE), the mean square error (MSE), and the average relative error (E) are selected to measure the
reconstruction accuracy. Among them, MAE describes the average value of the deviation between the
predicted value and the true value, which can well reflect the actual situation of the prediction error.

Figure 7: Experimental data of center wavelength offset
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The form of the MSEis the same as the cost function of the reconstructed model, which can well reflect the
loss of the model on the test set. The calculation formulas are

MAE ¼ 1

nk

Xn
i¼1

Xk
j¼1

jbij � bbijj (16)

MSE ¼ 1

nk

Xn
i¼1

Xk
j¼1

ðbij � bbijÞ2 (17)

E ¼ 1

nk

Xn
i¼1

Xk
j¼1

jbij � bbijjbbij (18)

where bij is the predicted value output by the model and b̂ij is the expected value of the model output.

In this paper, the initial value of the number of hidden layer nodes is set to 10, and the number of hidden
layer nodes is increased by 10 before the next experiment. To prevent the contingency of the experimental
results, each experiment was performed 10 times, and the average of the 10 results was taken as the final
result of the experiment. The experimental results are shown in Table 2. When the number of hidden
layer nodes is 10–50, as the number of nodes increases, the error of the model continues to decrease;
when the number of hidden layer nodes is 50–100, the error of the model is relatively stable and the
minimum error is when the number of nodes is 50. Therefore, the number of hidden layer nodes of the
network model is determined to be 50 based on the experimental results.

3.4 Model Evaluation
Each group of experimental data is randomly divided into training data and test data at a ratio of 4:1, and

there is no duplicate data. In order to observe the reconstruction effect of the improved neural network model
proposed in this paper, compare it with decision tree regression and conventional neural network.
Classification And Regression Tree (CART) is a kind of decision tree, which can be used to create a
classification tree, a regression tree, and a model tree. In this paper, we use CART to build a regression
tree with structural strain as input and displacement as output. The variation of the average error value

Table 2: Model error of different hidden layer nodes

Number of hidden layer nodes MAE (mm) MSE

10 0.0383 0.0037

20 0.0285 0.0027

30 0.0273 0.0029

40 0.0252 0.0026

50 0.0226 0.0025

60 0.0236 0.0026

70 0.0242 0.0026

80 0.0229 0.0026

90 0.0231 0.0026

100 0.0228 0.0026
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obtained by CARTwith the depth of the tree is shown in Fig. 8a. It can be seen that the error value reaches the
minimum when the depth is 4, so the depth of the tree is selected as 4.

In order to verify the effectiveness and stability of the improved neural network proposed in this paper,
the three structural reconstruction methods were trained 50 times, respectively. The network structure is
shown in Fig. 4, and the number of hidden layer neurons is 50. Fig. 8b is a graph of the loss curve of the
training set during the one-time training process of the conventional neural network and the cross-layer
neural network. The MAE and MSE of the 50 times are sorted from small to large, respectively, as shown
in Fig. 9, and the total error results are shown in Table 3.

Figure 8: (a) Selection of decision tree depth and (b) Training loss curve of neural network

Figure 9: Error statistics for 50 time; (a) MAE and (b) MSE

Table 3: Error statistics of two models

Algorithm model MAE (mm) MSE

CART 0.0256 0.0061

Normal neural network 0.0255 0.0028

Cross-layer neural network 0.0223 0.0025
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Define the floating ratio η to evaluate the stability index:

g ¼ emax � �e

�e
� 100% (19)

where emax is the maximum error of the sample and �e is the average of the sample error.

It can be seen from Table 3 that theMAE of the CART model for 50 times is 0.0256 mm, the maximum
value is 0.0465 mm, and the floating ratio is 78.43%. The MAE of 50 times of the conventional neural
network model is 0.0255 mm, the maximum is 0.0426 mm, and the floating ratio is 78.43%. The MAE of
50 times of cross-layer neural network model is 0.0223 mm, the maximum is 0.0264 mm, and the
floating ratio is 25.11%. It can be seen that the two evaluation indicators of the cross-layer neural
network model are better than CART and the conventional neural network model, with high accuracy and
more stability.

3.5 Displacement Field Reconstruction
The test data is reconstructed based on three different reconstruction models, and the inversion effect of

the displacement field of the structure is experimentally verified. Table 4 shows the average error statistics of
the four different loading methods. Fig. 10 shows the reconstruction results of the test data of the second set
of experiments under different loading methods and the visualization renderings of the reconstruction results
of the cross-layer connection neural network model.

As shown in Table 4, the error of the displacement prediction value of the structure discrete point output
by the cross-layer neural network is smaller than CARTand the conventional neural network prediction value
error under different stress loading conditions. TheMAE of the four cases of the cross-layer neural network is
0.0217 mm, which is better than the 0.0265 mm of CART and the 0.0262 mm of the conventional neural
network; the E is 4.09%, which is better than the 4.87% of CART and the 5.3% of the conventional
neural network. Due to the existence of the identity branch, the cross-layer neural network only needs to
learn the difference between input and output instead of directly learning the complex mapping
relationship between input and output. This feature makes it easier to learn compared to the original

Table 4: Statistics of average error of different loading force modes

Different loading modes of loads Algorithm model MAE (mm) MSE E (%)

1 CART 0.0355 0.0198 3.31

Normal network 0.0369 0.0076 4.26

Cross-layer network 0.0312 0.0077 3.65

2 CART 0.0202 0.0016 12.19

Normal network 0.0192 0.001 13.40

Cross-layer network 0.0179 0.001 10.08

3 CART 0.0287 0.0016 2.47

Normal network 0.0196 0.0006 1.61

Cross-layer network 0.0151 0.0003 1.20

4 CART 0.0217 0.0009 1.51

Normal network 0.0292 0.0016 1.92

Cross-layer network 0.0229 0.0012 1.46
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neural network structure. The experimental results show that the MAE of the cross-layer neural network
under four different stress conditions is less than 0.032 mm, and all the error indicators are better than the
conventional neural network. It is verified that overlaying a cross-layer structure on a single hidden layer
network is more effective than simply overlaying a fully connected layer.

Reconstruction results of different loading modes

Visualization results of different loading modes

Mode 1 Mode 2

Mode 3 Mode 4

Figure 10: Reconstruction result display
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4 Discussion

In this paper, an intelligent structural deformation monitoring platform based on the fiber Bragg grating
sensor array is built for the flat structure on the aerospace vehicle, and a cross-layer connection deep neural
network reconstruction model is proposed. The structure deformation experiments under different stresses
are carried out on the platform, and the structure displacement field is reconstructed using the proposed
reconstruction model. The novelty of this paper is that the idea of residual learning is applied to the
conventional fully connected neural network to obtain an improved neural network structure, and this
model is applied to the reconstruction of flexible structures.

Compared with the other traditional structural reconstruction models introduced in the introduction, the
reconstruction model proposed in this paper establishes the mapping relationship between structural strain
and displacement, and obtains displacement information directly from the collected strain information,
without the need to establish complex conversion equations. The experimental results show that the
reconstruction algorithm obtained by improving the conventional fully connected neural network based
on the idea of residual learning is better than the conventional neural network and decision tree
regression algorithm. As shown in the experimental results in Fig. 9, although the reconstruction error of
several experiments of the decision tree regression algorithm is better than that of the improved neural
network model proposed in this paper, its total average error and overall stability are worse. The
limitation of the improved neural network structure is that the number of neurons in the first and last
layers of each cross-layer structure is the same so that the output of the first layer can be used as the
input of the tail layer. Therefore, we can take the limitation of the number of neurons in the cross-layer
structure as the next research question for further research.

5 Conclusions

Based on the conventional neural network, this paper proposes a cross-layer connection neural network
reconstruction model based on the idea of residual learning. The reconstruction effect of the cross-layer
network model is better than that of CART and conventional neural network, and we can conclude that it
has the following advantages:

(1) Higher accuracy and better stability. Compared with the conventional neural network, due to the addition
of a cross-layer structure, the learning of the entire network structure is more accessible, and the
reconstruction accuracy is improved. In addition, the stability of the learning ability is also improved.

(2) Wider scope of application. The improved deep neural network effectively solves network
degradation caused by the superposition of network layers after adding a cross-layer structure.
When the measured structure is broad and many fiber Bragg grating sensors are needed for
measurement, a more complex network structure is needed to learn the correspondence between
strain and displacement. Compared with the conventional neural network structure, the cross-
layer connection network structure proposed in this paper is more applicable.
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