BIOCELL
2022 46(8): 1925-1933

K Tech Science Press

MDA-TOEPGA: A novel method to identify miRNA-disease
association based on two-objective evolutionary programming

genetic algorithm

Buwen CAOM; Jiawer LUO?*; SalNaN XTAO!'?; XiaNGgjuN ZHOU!

! College of Information and Electronic Engineering, Hunan City University, Yiyang, 413000, China

2 College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China

Key words: MiRNA functional module, MiRNA-disease association, Two-objective, Evolutionary programming genetic algorithm

Abstract: The association between miRNA and disease has attracted more and more attention. Until now, existing methods

for identifying miRNA related disease mainly rely on top-ranked association model, which may not provide a full landscape

of association between miRNA and disease. Hence there is strong need of new computational method to identify the

associations from miRNA group view. In this paper, we proposed a framework, MDA-TOEPGA, to identify miRNA-

disease association based on two-objective evolutionary programming genetic algorithm, which identifies latent miRNA-

disease associations from the view of functional module. To understand the miRNA functional module in diseases, the
case study is presented. We have been compared MDA-TOEPGA with several state-of-the-art functional module

algorithm. Experimental results showed that our method cannot only outperform classical algorithms, such as K-means,
IK-means, MCODE, HC-PIN, and ClusterONE, but can also achieve an ideal overall performance in terms of a
composite score consisting of f1, Sensitivity, and Accuracy. Altogether, our study showed that MDA-TOEPGA is a

promising method to investigate miRNA-disease association from the landscapes of functional module.

Introduction

MicroRNAs (miRNAs) are small non-coding RNAs of
approximately 22 nucleotides in length that play critical
roles in various types of biological processes and complex
diseases, including cancer (Fujii, 2018; He et al., 2017). Over
the past few years, numerous models have been developed
for miRNA-disease association prediction (Yu and Wang,
2021; Chen et al., 2012, 2017b, 2019a, 2019b, 2019¢; Wang
et al.,, 2019). For example, Chen et al. (2020b) proposed a
neoteric Bayesian model combining kernel-based nonlinear
dimensionality reduction, matrix factorization and binary
classification. The AUCs of 0.9132, 0.8708, 0.9008 + 0.0044 in
global and local leave-one-out and five-fold cross validation,
experimental results on three human cancers showed the
effectiveness of the proposed method. In Chen et al. (2021), a
new computational model named neighborhood constraint
matrix completion for miRNA-disease association prediction
was presented to predict potential miRNA-disease
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associations based on the known miRNA-disease associations
and integrated disease (miRNA) similarity. It provided a
novel idea of utilizing similarity information to assist the
prediction of miRNA-disease. Chen et al. (2020a) proposed a
rule-based inference method by collecting five categories of
features, experimental results demonstrated the performance
of the proposed method. In addition, several other models
have been introduced to discover the latent miRNA-disease
association.

By integrating the association probability obtained from
matrix decomposition through sparse learning method, the
miRNA functional similarity, the disease semantic similarity,
and the Gaussian interaction profile kernel similarity for
diseases and miRNAs into a heterogeneous network (Chen et
al., 2018c), a computational model of matrix decomposition
and heterogeneous graph inference is introduced to predict
the miRNA-disease association. In Chen et al. (2019b), a
computational framework integrating ensemble learning and
dimensionality reduction was developed to infer potential
miRNA-disease association, the performance evaluation and
case studies demonstrated the effectiveness of the proposed
method. A computational model of laplacian regularized
sparse subspace learning for miRNA-disease association
prediction from another viewpoint (Chen et al., 2017a). Based
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on the known miRNA-disease associations, integrated miRNA
similarity and integrated disease similarity (Chen et al., 2018b),
a novel computational model of bipartite network projection
was developed to predict the miRNA-disease, experimental
results showed the satisfied performance. However, some top-
ranked miRNAs are difficult to reveal the association between
miRNAs and diseases. A couple of studies have demonstrated
that miRNAs are often clustered in the genome, while
miRNAs in one cluster are often co-expressed to a large
extent (Baskerville and Bartel, 2005). Similar to co-expressed
genes, they are likely to have some similar functions and
participate in similar life processes. Therefore, a great
biological significance study is to combine these miRNAs in
the same cluster (i.e, module) according to the association
between miRNAs and some disease.

Studies have shown that miRNAs in the same cluster are
more likely to be associated with similar diseases (Lu et al,
2008). Recently, the influence of miRNA group with similar
expression patterns on disease has attracted more and more
attention (Li et al., 2014b; Li et al.,, 2018). Xu et al. (2011)
developed a functional module identification method for
discovering cooperative miRNAs, which has been widely
used in various cancers. Zhang et al. (2012) constructed a
miRNA synergistic regulatory network in small cell lung
cancer and identified a network module including three
miRNAs of hsa-let-7¢, hsa-let-7b and hsa-let-7d. Liang et al.
(2014a) identified synergistic miRNA regulatory modules by
overlapping neighbor nodes expansion in ovarian, breast
and thyroid cancer. In Zhao ef al. (2013), a miRNA-miRNA
synergistic network was constructed in colorectal cancer and
eight functional modules containing miRNAs that could
execute some specific function in colorectal cancer. Shao
et al. (2019) investigated the miRNA-miRNA cooperative
pan-caner network and found the potential of pan-caner
miRNA-miRNA cooperative regulation. It helps the
discovery of tumorigenesis principles and development of
anticancer drugs. Yang and Wan (2020) developed a
computational approach to mine miRNA regulatory
modules by executing link clustering on experimentally
verified miRNA-target interactions. The experimental results
on three types of cancer data sets from TCGA showed that
the detected miRNA regulatory modules exhibit the
effectiveness of the proposed method. Li et al. (2019)
designed an online miRNA similarity computing platform
based on miRNA-disease association, and the enrichment
analysis of miRNA functional pairs was performed. Hui ef
al. (2017) developed a computational method to discover
multi-disease associated co-functional miRNA pairs and
conducted cross disease analysis on a reconstructed disease-
gene-miRNA tripartite network. The findings provide a new
insight into the effects of various miRNAs on multi-diseases.
Shao et al. (2018) described the principle of miRNA-miRNA
synergistic regulation by studying miRNA-miRNA
synergistic regulation of 18 cancer types, and analyzed the
obvious reconnection of miRNA-miRNA synergistic
regulation between different cancers, it indicated that the
pan-cancer miRNA-miRNA collaborative modules are
helpful to the identification of tumorigeneitc mechanism
and the development of anticancer drugs. Luo et al. (2019)
proposed a rough clustering algorithm to identify miRNA
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regulatory modules, which include regulator (i.e., miRNA)
and its target genes. Experimental results verified the
effectiveness of the method. Nalluri et al. (2017) predicted
the core set of miRNA-miRNA interactions using miRNA-
disease expression profiles based on network inference, and
identified the miRNA- miRNA associations based on the
consistency, and finally obtained pan-cancer miRNA-
miRNA module features. Yang et al. (2017) developed a
clustering method to identify potential miRNA combination
biomarkers. In Min et al. (2016), a two-stage method based
on sparse singular value decomposition (SVD) was proposed
to identify miRNA-gene co-regulation modules for the
integrated analysis of multiple omics data of the same
cancer. The effectiveness of the algorithm was verified by
testing the breast cancer data in TCGA database. Paul and
Madhumita (2020) proposed an algorithm to identify
relevant and functionally consistent miRNA-mRNA
modules in cervical cancer using the knowledge of the
miRNA-miRNA synergistic network. Zhang et al. (2020)
proposed a framework named LMSM to identify LncRNA
related miRNA sponge modules from heterogeneous data,
experimental results showed that LMSM outperformed a
graph clustering-based strategy in identifying breast cancer
related modules. Zhang et al. (2021) developed a tool of
miRSM to infer and analyze miRNA sponge modules in
heterogeneous data including miRNA, IncRNA, mRNA
expression data and putative miRNA-target interactions. We
attempted a novel method to infer miRNA-disease
associations base on the identification of the functional
modules, 243 known disease-related miRNAs were regarded
as the standard sets that analyzed the performance of the
generated miRNA functional modules. The latent
associations between diseases and miRNAs were inferred
based on the similarity of miRNA and the known
associations between miRNAs and diseases (Cao et al.,
2020). From above analysis, the research about miRNA
functional module mainly focus on the combination module
of miRNA and mRNA, co-regulation module of miRNA
and gene, miRNA pairs and synergistic regulatory modules
of miRNA- miRNA for selected cancers. Although the
identification of association between miRNA functional
module and disease has been attempted, our knowledge of
miRNA functional module in disease is still limited. And,
there are interactions existed among miRNAs (Teng et al,
2020), therefore, the association between miRNA functional
module and disease should be further studied.

Inspired by Shao et al. (2019), we developed a novel
method for miRNA-disease association identification called
two-objective evolutionary programming genetic algorithm
(MDA-TOEPGA) from the viewpoint of functional module
based on network topological properties, ie., size and the
average shortest path (ASP). First, the common network
topological characteristics of known miRNAs relating to
certain disease were analyzed in miRNA similarity network,
and then the objective function was formulated according the
distribution of the network topological features. Finally, the
proposed algorithm was described, and implemented in
miRNA functional network (Liang et al. 2014a), similar to
Shao et al. (2019), MDA-TOEPGA mainly consists of
three steps, population initialization, subgraph mutation and



PREDICT MICRORNA-DISEASE ASSOCIATIONS BY TOEPGA

subgraph selection operation. The experiment results showed
that our method can not only outperform classical algorithms,
such as K-means, IK-means, MCODE, HC-PIN, and
ClusterOne, but also achieve an ideal overall performance in
terms of a composite score consisting of f1, Sensitivity, and
Accuracy. The case studies of miRNA functional modules
further demonstrated the effectiveness of our method.

Materials and Methods

Data description
According to Liang et al. (2014a); Yang and Wan (2020), the
miRNA functional similarity is computed with 5100 distinct
experimentally confirmed associations between 326 diseases
and 491 miRNAs after eliminating duplicate records, we
obtain the miRNA function interaction network including 484
miRNAs with 24061 interactions. To assess the results of the
identified miRNA functional modules, 326 diseases containing
associated miRNAs are used as a benchmark dataset.
Generally, the dataset (5100 miRNA functional
interaction) acts as the role of data sources; the gold
standard (i.e., 326 diseases) that usually provides the most
reliable evidence for physical interactions are used to
validate the performance of the proposed method, which
can effectively evaluate match rate between the detected
miRNA functional module and those in the gold standards.
For the sake of description, we denote a miRNA functional
interaction network as a simple undirected graph G = (V, E),
where V describes miRNAs in the miRNA functional
interaction network, and E corresponds to an functional
interaction between two different miRNAs. A subgraph S is
described as S = (V\E'), V'CV, E'CE, it is defined as a subset
of G, SCG. MiRNA functional modules are usually supposed
to be subgraphs of miRNA functional interaction networks.

Method overviews

Based on the assumption that miRNAs with similar function
tend to associate with certain disease (Goh et al., 2007; Chen
et al., 2018a), the closer the association is, the more vertices
and edges are displayed in the network, we define the
relative terminologies used in our experiments. For a
subgraph S, the size of a subgraph may be defined as follows
(Shelokar et al., 2013; Cao et al., 2015):

Size(S) = Z (N. + N,) (1)

where N,, N, means the number of edges and nodes in a
subgraph of S, respectively.

The average shortest path (ASP) is employed to describe
the tightness of a subgraph. In our experiment, the shortest
path (SP) is evaluated using the Floyd algorithms (Shier,
1981). The subgraph S of the SP is described as follows:

(k) (S) = Wi, k=0
P i A ) ez 1
where de(z,J(S) means the shortest path between each vertex
pair (v;,v;) in a subgraph, then ASP(S) = AVE(dﬁi)VJ(S))
denote the average shortest path between all vertex pairs
(vi, v) in a subgraph.
Motivated by Cao et al. (2015), which presented multi-
objectives (i.e., density, size and characteristic path length)

)
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evolutionary programming method for identifying protein
complexes, the results showed the performance of the method
proposed in Cao et al (2015). Similar to most of reported
biological networks (Cao et al, 2020; Cao et al, 2015; Cao
et al., 2016), the miRNA functional interaction network shows
a scale-free distribution and small world characteristics, which
was analyzed in previous studies. Therefore, we propose
MDA-TOEPGA for identifying miRNA functional modules
from miRNA functional interaction network. First, we
construct the objective function by analyzing diseases in
miRNA functional interaction network. Second, the MDA-
TOEPGA is described in detail. Finally, our proposed method
is performed on miRNA functional interaction network, and
identified miRNA functional modules are evaluated by f;,
Sensitivity, and Accuracy. And, the case studies of miRNA
functional modules are presented. Fig. 1 shows the overall
flowchart for identifying miRNA-diseases association based on
MDA-TOEPGA.

1) Construct Objective Function
Prior to constructing the objective function, we give the relative
problem  description. In  multi-objective  evolutionary
programming process, non-dominant subgraphs are constantly
produced at each iterative process by optimizing the constructed
objective functions (Shelokar et al., 2013; Cao ef al, 2015). In
our study, the non-dominant subgraphs generated from MDA-
TOEPGA are regarded as miRNA functional modules, which
are saved to the predefined variable, Archive.

Given a graph G, the non-dominated subgraphs, which
represent all the connected subgraphs in G, are defined by
two user-defined objectives from the following formulas:

F(S) = (F1 (5),F2 () 3)
where F; (S) = Max.Size

F, (S) = Min.ASP

S.t SeX, F(S)eY
where X denotes the subgraph search space, namely, miRNA
functional module set, Y denotes the objective space, i.e., the
set of the objective function value. The solution to the
problem in Eq. (3) is optimal subgraph set in X, which
describes different trade-off in the objective space Y.

To identify the all possible non-domination subgraphs
from miRNA functional interaction network, the linear
combination of objective function values is executed in each
iterative process of MDA-TOEPGA. Based on the analysis
of the single topological structures and a large number of
experiments, we find that two objectives may make up for

Two-objective description

Construct objective function Parent population initialization
Execute MDA-TOEPGA algorithm Mutation operation
Performance evaluations Selection operation

Case study

FIGURE 1. Overall flowchart for identifying miRNA-diseases
association based on MDA-TOEPGA.
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the shortcoming of single objective, and improve the quality of
identified miRNA functional module. Therefore, we consider
the maximization of all the objective, the formula is
constructed as follows:

F(8) =F () + 1/(F () +1) 4)

We set F, (S)+1 in the denominator to avoid the
condition of the shortest path is zero that a disease is only
associated with a miRNA.

To understand the construction of objective function, we
investigate the distribution of the different network
topological features (ie., Size, ASP) of diseases
corresponding to miRNAs in the miRNA functional
interaction network. The details are shown in Table 1.

As illustrated in Table 1, 326 diseases are all found in
the miRNA function interaction network. Among 326
diseases, the size with diseases between 3 and 10 accounts
for 24.5%, most diseases with size of greater than 10
accounts for 33.5%, and those with size equal to 3 (two
vertices and one edge) only account for 5.8%. From
Table 1, we can clearly analyze that majority diseases are
associated with more miRNAs, and only a few diseases
are related to less miRNAs. Therefore, we strive to find
more potential miRNAs for diseases and provide clues for
disease treatment. In this study, we set the maximum
value of the objective function of size. For ASP, the
distribution of average shortest path indicates that the
diseases of ASP result in a higher ratio, which is set to the
minimum value of the objective function of ASP.

2) MDA-TOEPGA Algorithm

Similar to Cao et al. (2015), MDA-TOEPGA mainly consists
of three steps. First, the subgraph population and
preprocesses data are initiated from miRNA function
interaction network. Second, the child population is
generated with the mutation procedure. Finally, MDA-
TOEPGA executes selection operation and produces the
next generation of subgraphs.

There are two sub-stages in the first stage. Firstly,
MDA-TOEPGA initiates subgraph population R with
graph G, namely, one-edge subgraphs from miRNA
function interaction network. Secondly, the overlapping
vertices between subgraph with one edge is judged, if no
overlap exists, these subgraphs will be extracted as non-
dominated subgraphs from R and no longer participate
in subsequent evolutionary programming genetic
operations.

In the second stage, the mutation operation, which is
executed on a subgraph S encoded in a parent individual in
the population R, is performed to generate child subgraph S

TABLE 1

Diseases in the miRNA functional interaction network

Size(S) (%) ASP(S) (%)

S$=3 ASP =120.6
3<S5<10245 ASP > =279.4
S>=10335
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If there exists an overlapping vertex between two parent
subgraphs, the mutation produces child subgraphs by
extending all instances of the parent subgraph S in G by an
edge. If the overlapping vertex number of two subgraphs is
greater than 1, ie, it exists at least one edge between two
subgraphs, mutation will be executed by randomly selecting
an edge (see Algorithm 1). The detailed illustration is
presented in Supplementary file S1. Mutation is applied to
all parent individuals in R to create the child population
Cnext. Every child subgraph in Cnext is assessed using F(S)
in Eq. (4).

In the third stage, a new parent population R with
temporary population RUCnext is constructed. To achieve
it, MDA-TOEPGA ranks all subgraphs in RUCnext
according to Eq. (4) and drops the duplicate subgraphs.
The next generation subgraphs with probability Ps are
finally produced from RUCnext. Notably, MDA-TOEPGA
will generate numerous non-dominated subgraphs during
evolutionary process. To save the non-dominated
subgraphs, an external archive L which is updated at the
end of each generation (see Algorithm 2). When MDA-
TOEPGA has been finished, the output of MDA-
TOEPGA forms the set of non-dominated subgraphs that
are regarded as miRNA functional modules, which are
saved to L. The description of MDA-TOEPGA is
presented in Table 2.

TABLE 2

The description of MDA-TOEPGA

MDA-TOEPGA Algorithm

Input: A undirected graph G = (V, E); //miRNA function
interaction network

Maxlter: the maximum number of iterations;
P,,: mutation probability;
P;: selection probability;

Output: L: Non-dominated subgraph set //miRNA functional
module set

1. Initial R with graph G;

2. L ={ }; //Nondominated subgraph set;

3. Extract nondominated subgraphs with on edge in R and save to L;
4. For (i = 1; i < Maxlter; i+ +)

5. {

6. Cnext = { }, //temporary population variable

7. For each parent subgraph S C R,

8. Call Mutation(Cnext, R, Pm ) to generate child subgraphs,
9. R = RU Cnext,

10. Call UpdateArchive(L, Cnext) to update L,

11. Calculate R with F(S) in Eq. (4), rank them with ascending
order,

12. Remove the duplicated subgraphs, and execute selection
operation with probability, P;

13.}
14. Return L
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The mutation operation (Algorithm 1) is described as
follows:

Algorithm 1 Mutation(Cnext, R, P,,)

Input: R; //parent subgraph set

Output: Cnext; // child subgraph set

1. Total = size(R) X P;

2. While (i < Total j < Total) I/ i # j

3. if|[V=V,NVj|>1 then//S; = (Vi,E),S; = (V},E)

4. { Shuffle the set V and mutate S; by one vertex in V with
equal probability,

5 if [E=ENEj]|>1then//|[V=V,NVj|>2

6. mutate S; with one edge randomly selected from E

7.  endif

8. }

9. endif

10. Cnext = Cnext U S;,

11. Return Cnext

The update operation of archive (Algorithm 2) is
described as follows:

Algorithm 2 UpdateArchive(L, Cnext)

Input: Cnext; //child subgraph set;

Output: L, Cnext

1. While (i < size(Cnext)&&j < size(Cnext))

2.4

3. if|[V=V,NVj| =0 then// S = (Vi,E),S; = (V}, E)
3. {Add(S;, L)

4. Del( S;, Cnext) ;// delete subgraph S; from Cnext
5}

6. }

7. endif

Results and Discussions

In this section, we first analyze the influence of P,, P; on
MDA-TOEPGA and then compare MDA-TOEPGA with
some state-of-the-art methods. Finally, the case study of
miRNA function module is thereby
identifying the latent association between miRNA and disease.
All experimental results were executed by running MDA-
TOEPGA for 50 generations and 10 times on each set of
parameters. In this study, the values of f1 from each set test
outperforms to state-of-the-art methods. To highlight the
effectiveness of experiment results, we consider the maximum
values of f1 described below over 10 times. MDA-TOEPGA
requires only three input parameters, ie., Py, Ps, and MaxlIter.
In particular, MaxIter refers to the maximum iteration times.
P, P represent the probability of mutation and selection,
respectively. In our study, we set P,, = 0.1, P, =0.9.

presented, and

Impact of parameter P,,, P
In MDA-TOEPGA, the parameter of P,,, P, are important
factors to the performance of identifying miRNA functional
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module. To investigate the impacts of P,, Ps; on the
performance of pur proposed method, we first study how
the algorithm behaves in terms of f1 and let P,, P, €
[0.1,0.9] with a 0.1 increment. The detailed experimental
results with different values of P,, P; are described in
Fig. 2. Notably, when P,, = 0.1, the value of f1 increases
gradually until P = 0.9 with the increment in Py, such that
the highest value (0.332) of fl1 is achieved. With the
increases in selection probability, more child subgraphs will
be generated, which will aid in discovering more miRNA
functional modules. As shown in Fig. 2, although all aspects
show that the f 1 increases from 0.1 to 0.9 of P, except for
P, = 0.1 and P, = 0.7, the performance of identifying
miRNA functional module are all below the obtained value
of P,, = 0.1, P; = 09. The possible reason is that when
mutation probability has a low value, MDA-TOEPGA
detects more miRNA functional modules matched with
benchmark dataset. A higher value of P, affects the
accuracy of the detected miRNA functional modules.

In this study, the mutation probability is set to 0.1,
whereas selection probability is set to 0.9.

Comparison with other methods
We compare the results of MDR-TOEPGA with those
methods. In our experiments, we consider IK-means
algorithm (Cao et al.,, 2020a) and its classical method (i.e.,
K-means), which were used to detect miRNA functional
module. In addition, the other module algorithms, such as
MCODE (Jin et al.,, 2015), HC-PIN (Wang et al, 2011),
ClusterOne (Nepusz et al, 2012), are also executed in the
miRNA function interaction network. For the above
methods, we consider only functional modules with size
greater than or equal to 2 by eliminating singletons in our
study. And, for each algorithm with which we compared
our study, we set the corresponding parameters suggested
by the authors to achieve the configuration corresponding to
the best results for the mentioned method. The results are
listed in Table 3, and the highest value of each evaluation
metric is in bold.

As shown in Table 3, MDA-TOEPGA achieves the
satisfied experimental results on the miRNA function

04

pm=0.1

—+— pm=0.2
1 pm=0.3
——— pm=0.4

#— pm=0.5
—+— pm=0.6
| | —¢—pm=0.7
—— pm=0.8
—¥— pm=0.9

Ps

FIGURE 2. Values of f1 for different values of P,,, P, in miRNA
function interaction network, with a 0.1 increment.
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TABLE 3
Results of six algorithms in miRNA function interaction network using disease as benchmark dataset
Algorithms Number Precision Recall f Sensitivity Accuracy
K-means 7 0.714 0.086 0.153 0.791 0.194
IK-means 7 0.42 0.061 0.107 0.904 0.228
MCODE 21 1 0.089 0.163 0.808 0.214
HC-PIN 16 1 0.077 0.142 0.533 0.177
ClusterOne 10 1 0.074 0.137 0.909 0.264
MDA-TOEPGA 351 0.340 0.320 0.332 0.855 0.253

interaction network. In particular, our method achieved the
highest f1 of 0.332 which is significantly superior to the
other methods. MDA-TOEPGA also detects 351 miRNA
functional modules, which is beneficial for obtaining high
Recall of 0.320. We also note that ClusterOne achieves the
maximum Precision of 1, which results in the best
Sensitivity and Accuracy of 0.909 and 0.264. Although K-
means achieves the third highest value of f1, which is 0.153,
the number of the miRNA functional module is the lowest
at 7 among the all methods. Similarly, IK-means achieves
the minimum f1 of 0.107, however, the value of Sensitivity
is 0.904, which is top 2, only lower than ClusterOne.
MCODE achieves the highest value of Precision of 1, and
the number of the miRNA functional module is 21, which is
ranked top 2 among all algorithms.

To show the overall identification performance of
algorithm, the composite score of f1, Sensitivity, and
Accuracy is used to analyze the global performance of
different methods and to highlight the overall performance
of our proposed method (Cao ef al, 2020; Nepusz et al,
2012; Cao et al, 2016). Fig. 3 presents the comparison
results of the six algorithms for the miRNA function
interaction network using the benchmark dataset of disease.
The composite score of fl, Sensitivity, and Accuracy
obtained by MDR-TOEPGA is 1.440, which are 2.65%,
1.62%, 2.15%, 6.90%, 0.99% higher that the five other
methods, respectively. It further demonstrates that our
proposed method has the best overall performance over the
other algorithms in detecting the miRNA functional modules.

Case studies

Two different types of case studies were implemented to
demonstrate the performance of MDA-TOEPGA for the
miRNA-disease association prediction. All of them have
shown excellent results. The first case study is hsa-mir-16
included in three functional modules, which are #344(hsa-
mir-16, hsa-mir-320a), #265(hsa-mir-16, hsa-mir-625),
#329(hsa-mir-135b, hsa-mir-16), respectively. For each
miRNA in above three functional modules, they are related
to some common diseases, such as Breast Neoplasms and
Colorectal Neoplasms. Hsa-mir-16 is important miRNA
associating with 49 diseases, such as Acute Lung Injury,
Adrenocortical Carcinoma, Amyloidosis, etc. Notably,
although the three other miRNAs, i.e., hsa-mir-320a, hsa-
mir-625, hsa-mir-135b, are associating with 15 diseases,
10 diseases, and 17 diseases, respectively, there is no

associations between the three miRNAs and ACTH-
Secreting Pituitary Adenoma, Acute Lung Injury (http://
www.cuilab.cn/hmdd) and other diseases.

From the three miRNA functional modules identified by
our method, we can infer the latent association between above
miRNAs except for hsa-mir-16 and above-mentioned
diseases, which provides valuable clues for biologists.
Furthermore, we can clearly see that the three miRNAs
(hsa-mir-320a, hsa-mir-625, hsa-mir-135b) are independent
functional modules formed by hsa-mir-16. By virtue of the
similarity of functional modules, we may infer hsa-mir-16 is
associated with other diseases, for example, hsa-mir-625
may be closely related to Ischemia and Stomach Neoplasms,
hsa-mir-320a is likely to be associated with Osteosarcoma.

MDA-TOEPGA predicts the module #308(hsa-mir-1,
hsa-mir-132, hsa-mir-765). Coronary Artery Disease is
associated with the disease of has-mir-765 and hsa-mir-1,
however, the association between hsa- mir-132 and
Coronary Artery Disease has not yet been validated (http://
www.cuilab.cn/hmdd). Similar to above-mentioned analysis,
we may infer that hsa-mir-132 is likely to be related to
Coronary Artery Disease. And, Coronary Artery Disease

—
[ Sensitivity
(| Accuracy

Composite Score
o ) ) N
- > »

o
N

0

MiRNA Functional Interaction Network

FIGURE 3. Results comparison of the six algorithms in miRNA
function interaction network using disease as benchmark dataset.
Columns correspond to the following algorithms, K-means, IK-
means, MCODE, HC-PIN, ClusterOne, and MDA-TOEPGA from
left to right. Various colors of the same column denote the
individual components of the composite score of the algorithm
(cyan = f1, bule = Sensitivity, purple = Accuracy). The total height
of each column is the value of the composite score for a special
algorithm. Large scores show the clustering result is better.
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(CAD) is the most common type of heart disease. It is the
leading cause of death in the United States in both men and
women. From the analysis of the module #308, it is
beneficial to extend the understanding of CAD and seek the
cause of CAD in many dimensions, thereby reducing the
pain of patients.

Conclusion

The investigation for latent miRNA-disease association
identification would help us understand the pathogenesis of
disease and promote the treatment of disease. Until now,
exiting methods for identifying miRNA related disease mainly
rely on top-ranked association model, which may not provide
a full landscape of association between miRNA and disease. In
this paper, we developed a model of identifying MiRNA-
Disease Association based on Two-Objective Evolutionary
Programming Genetic Algorithm (MDA-TOEPGA), which
identifies latent miRNA-disease associations from the view
of functional module. In model of MDA-TOEPGA, 5100
distinct experimentally confirmed associations between 326
diseases and 491 miRNAs were refined to construct the
miRNA function interaction network including 484
miRNAs with 24061 interactions. To assess the results of
the identified miRNA functional modules, 326 diseases
containing associated miRNAs are used as a benchmark
dataset. The superiority and effectiveness of MDA-
TOEPGA have been demonstrated by comparison with five
state-of-the-art techniques in terms of fI, Sensitivity, and
Accuracy and case studies.

Most of these modules display a significant association
between miRNAs and disease. These associations can help
in exploring the development of new drugs and further
providing clinical treatments with more effective clues. In
future work, our approach will be applied to study other
types of biological associations, such as microbe-disease
association, circRNA-disease association, cancer hallmark-
gene associations.
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PREDICT MICRORNA-DISEASE ASSOCIATIONS BY TOEPGA

Supplementary file S1-Muatation and selection operator
Fig. S1(a) shows an example of mutation through an edge. In
Fig. S1(a), when the vertex number of two subgraphs is 1, the
parent subgraph “P;—P,“ in level 1 creates two child
subgraphs “P,—P;—P;”, “P;—P,—P;” by an edge “P;—P3”,
“P,—P5”, respectively.

If the overlapping vertex number of two subgraphs is
greater than 1, ie., it exists at least one edge between two
subgraphs, mutation will be executed by randomly selecting

Py-P; Py-Ps P>-P;s  Py-Ps level 1
PrPPs Py-Ps-Ps P-P-p, level2
Py
- level 3 P, Py
(@)

Py
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an edge. In Fig. SI(b), for subgraph §;,S,, the three
subgraphs below are reasonable child subgraphs.

In Fig. S1(a), only one subgraph is present in level 3
because the other two subgraphs are removed. Notably,
MDA-TOEPGA  will generate some nondominated
subgraphs during evolutionary process, such as “P,—Ps” in
level 1 in Fig. Sl(a). In order to save the nondominated
subgraphs, MDA-TOEPGA applies an external archive
which is updated at the end of each generation.

Py P
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P FIGURE S1. Illustration of mutation
(b) operation.
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