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ABSTRACT

This paper proposes a personalized comprehensive cloud-based method for heterogeneous multi-attribute group

decision-making (MAGDM), inwhich the evaluations of alternatives on attributes are represented by LTs (linguistic

terms), PLTSs (probabilistic linguistic term sets) and LHFSs (linguistic hesitant fuzzy sets). As an e�ective tool

to describe LTs, cloud model is used to quantify the qualitative evaluations. Firstly, the regulation parameters of

entropy and hyper entropy are de�ned, and they are further incorporated into the transformation process from LTs

to clouds for re�ecting the di�erent personalities of decision-makers (DMs). To tackle the evaluation information

in the form of PLTSs and LHFSs, PLTS and LHFS are transformed into comprehensive cloud of PLTS (C-PLTS)

and comprehensive cloud of LHFS (C-LHFS), respectively. Moreover, DMs’ weights are calculated based on the

regulation parameters of entropy and hyper entropy. Next, we put forward cloud almost stochastic dominance

(CASD) relationship and CASD degree to compare clouds. In addition, by considering three perspectives, a

comprehensive tri-objective programing model is constructed to determine the attribute weights. Thereby, a

personalized comprehensive cloud-based method is put forward for heterogeneous MAGDM. The validity of

the proposed method is demonstrated with a site selection example of emergency medical waste disposal in

COVID-19. Finally, sensitivity and comparison analyses are provided to show the e�ectiveness, stability, �exibility

and superiorities of the proposed method.
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1 Introduction

Multi-attribute group decision-making (MAGDM) refers to a decision situation where a group

of decision-makers (DMs) provide their own opinions on a given set of alternatives under a set

of attributes, and then select the optimal alternative(s) by aggregating their opinions [1–6]. Since

the real-life MAGDM problems often involve multiple different types of attributes, it is not easy

for DMs to evaluate all attributes in only one form of evaluation information, which results in

the appearance of heterogeneous MAGDM. In heterogeneous MAGDM process, the evaluations

of different attributes can be expressed by qualitative and quantitative forms. For example, when

a customer selects a car, a real number or an interval number can be used to evaluate its price,
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but a LT (linguistic term) or its extended forms will be preferred than quantitative value to

evaluate its safety. Due to the growing uncertainty of actual decision-making environments, it

is more convenient and �exible for DMs to employ qualitative forms, e.g., LT, PLTS (proba-

bilistic linguistic term set), LHFS (linguistic hesitant fuzzy set), to characterize the evaluation

information of alternatives on attributes. Both PLTS and LHFS are two important extensions

of LT. PLTS, proposed by Pang et al. [7], consists of LTs and their corresponding probabilities.

LHFS, initiated by Meng et al. [8], contains LTs and their corresponding memberships. For

example, a group of DMs are invited to select a site for emergency medical waste disposal

during the outbreak of COVID-19. Five attributes, i.e., geographical location, equipment, process

technologies, disposal capacity and transport capacity, are chosen to evaluate the alternatives.

LTs are suitable to evaluate the geographical location. Since the evaluations for equipment and

process technologies are divided into two parts: LTs and corresponding probabilities, PLTSs are

suitable to evaluate the equipment and process technologies. Besides, it is easy for DMs to

evaluate the disposal capacity and the transportation capacity by using LHFSs. Therefore, the site

selection of emergency medical waste disposal is a typical problem of heterogeneous MAGDM

with different types of qualitative evaluations. Currently, many scholars have studied heteroge-

neous MAGDM problems. Yu et al. [1] developed a fusion method based on trust and behavior

analysis for heterogeneous MAGDM scenarios. Liu et al. [9] proposed a new axiomatic design-

based mathematical programming method for heterogeneous MAGDM with linguistic fuzzy truth

degrees. Gao et al. [10] provided a consensus model for heterogeneous MAGDM with several

attribute sets. Wan et al. [11] initiated a new prospect theory based method for heterogeneous

MAGDM with hybrid fuzzy truth degrees of alternative comparisons. With the in-depth study of

previous literature, many heterogeneous MAGDM problems have been effectively solved. However,

there is little research on heterogeneous MAGDM with multiple qualitative forms (especially LT,

PLTS and LHFS). To �ll the gap, this paper intends to use LTs, PLTSs and LHFSs to portray

heterogeneous evaluations.

Qualitative evaluations are not easy to be computed directly, especially when DMs use diverse

forms of qualitative evaluations. At present, some models have been developed to deal with the

calculations of qualitative evaluations, such as linguistic symbolic model [12], two-tuple linguistic

model [13], cloud model [14,15]. Linguistic symbolic model and two-tuple linguistic model deal

with LTs by converting them into real numbers. Cloud model proposed by Li et al. [14,15] is

a more effective tool to describe qualitative concepts since it has strong power in capturing the

fuzziness and randomness of LTs, simultaneously. Based on the probability theory and fuzzy set

theory, the cloud model utilizes three numerical characteristics, i.e., mathematical expectation Ex,

entropy En and hyper entropy He, to realize the nimble and effective inter-transformation between

qualitative evaluations and quantitative values. Cloud model has attracted extensive attention from

scholars and has been successfully applied to various �elds, such as behavioral analysis [16],

arti�cial intelligence [17,18], system assessment [19], data mining [20], knowledge discovery [21]

and decision-making [22–34], etc.

Although the above mentioned cloud-based methods [22–32] are ef�cient in handing various

practical decision-making problems, there still exist some defects as follows:

(1) Some previous studies [22–27,29,31,32] depicted the evaluations only with a single qualita-

tive form, which might limit their applications in practical decision-making problems.

(2) Few studies took DMs’ personalities into account during the transformation process. Wang

et al. [24] introduced overlap parameter into the transformation process to re�ect the DMs’
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personality and preference. But the determination of overlap parameter is a little subjective,

which may lead to unreasonable decision results.

(3) The comprehensive clouds in existing approaches [23,32] may cause the loss and distortion

of evaluation information.

(4) Methods in [22,24,26,29,32] used the expected score values of clouds to rank the alter-

natives, while methods in [23,27,30,33,34] utilized the closeness coef�cient and priority

vector to rank the alternatives. However, the expected score values of clouds sometimes are

unstable since the expected score values are generated randomly. The closeness coef�cient

and priority vector depend on the distances between clouds, but different de�nitions of

distance between clouds usually generate different ranking results.

To overcome the above limitations, this paper develops a personalized comprehensive cloud-

based method for heterogeneous MAGDM, in which the evaluations of alternatives on attributes

are represented as LTs, PLTSs and LHFSs. Regulation parameters of entropy and hyper entropy

are proposed to re�ect the DMs’ personalities. Two approaches are put forward to transform

PLTS and LHFS into comprehensive cloud of PLTS (C-PLTS) and comprehensive cloud of

LHFS (C-LHFS), respectively. The cloud almost stochastic dominance (CASD) relationship and

CASD degree are initiated to compare clouds and further rank the alternatives. In addition, a

novel approach is presented to obtain DMs’ weights and a comprehensive tri-objective programing

model is constructed to determine the attribute weights. The proposed method is employed to the

site selection of emergency medical waste disposal in COVID-19. Compared with existing studies,

the major contributions of this paper are highlighted in the following four aspects:

(1) Regulation parameters of entropy and hyper entropy are de�ned objectively. By incorporat-

ing regulation parameters into the transformation process, DMs’ personalities are re�ected

well. Moreover, DMs’ weights are objectively determined based on the proposed regulation

parameters.

(2) From the perspectives of probability and membership degree, two approaches are put for-

ward to transform PLTS and LHFS into C-PLTS and C-LHFS, respectively. The modi�ed

ratios of LTs decrease the loss and distortion of evaluation information.

(3) CASD relationship and CASD degree are de�ned and used to compare clouds. Based on

the proposed comparison approach for clouds, the alternatives are ranked and the ranking

results are stable and effective.

(4) A comprehensive tri-objective programing model is constructed to determine the attribute

weights. In this model, three perspectives are considered, including differentiation between

evaluation values, relationship between attributes and the amount of information contained

in evaluation values. The setting of balance coef�cients enables DMs to make a tradeoff

in the three perspectives, which can improve the �exibility of the proposed method.

The remainder of this paper is organized as follows: Section 2 brie�y introduces some

concepts related to LTs and reviews cloud model as well as almost �rst-degree stochastic domi-

nance (AFSD). Section 3 describes the heterogeneous MAGDM problem and develops two novel

transformation approaches from PLTS and LHFS to comprehensive clouds. In Section 4, a per-

sonalized comprehensive cloud-based method is proposed for heterogeneous MAGDM problem.

A numerical example and sensitivity analyses are conducted to illustrate the proposed method

in Section 5. Section 6 performs some comparison analyses to explain the superiorities of the

proposed method. Some conclusions are summarized in Section 7.
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2 Preliminaries

This section brie�y introduces some concepts related to LTs and reviews cloud model as well

as AFSD.

2.1 LT and Some Related Concepts

Let S = {si| i= 1, 2, . . . , 2τ + 1} be a �nite and completely ordered discrete term set with odd

cardinality [35], where τ is a nonnegative integer, and si represents a possible value for a LT. The

set S is a linguistic term set (LTS) if si, sj ∈ S satisfy the following properties:

(i) Ordered set: si ≤ sj if and only if i≤ j;

(ii) Negation operation: neg(si)= sj, if i+ j= 2τ + 1.

In linguistic evaluation scales, the absolute deviation of semantics between any two adjacent

LTs may increase, decrease or remain unchanged with increasing linguistic subscripts. To re�ect

various semantics deviation, linguistic scale functions (LSFs) [22] are used to �exibly portray

evaluation scales according to speci�c semantic situations.

De�nition 1. [22,36] Let si ∈ S be a LT. When θi ∈ [0, 1] is a numerical value, the LSF is

mapped from si to θi (i= 1, 2, · · · , 2τ + 1) as follows:

F : si → θi, (i= 1, 2, · · · , 2τ + 1)

where 0≤ θ1 < θ2 < · · ·< θ2τ+1 ≤ 1. θi represents the evaluation of DM when he/she chooses the

LT si. As a result, the function F describes the semantics of si (i = 1, 2, · · · , 2τ + 1). LSFs are

strictly monotonously increasing with respect to the subscript i.

Three kinds of LSFs are shown below:

LSF1: F(si)= θi =
i− 1

2τ
, (i= 1, 2, · · · , 2τ + 1) (1)

In LFS1, the absolute deviation between adjacent LTs remains unchanged with increasing

linguistic subscripts. Take τ = 3 as an example, and the LTs are graphically shown in Fig. 1.
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0.67 38.071.0

Figure 1: LSF1 (τ = 3)

LSF2: F(si)= θi =















aτ − aτ−i+1

2(aτ − 1)
, (i= 1, 2, . . . , τ + 1)

aτ + ai−τ−1− 2

2(aτ − 1)
, (i= τ + 2, τ + 3, · · · , 2τ + 1)

. (2)

Lots of experimental studies [37] have illustrated that a generally lies in the interval

[1.36, 1.4]. Moreover, a also can be determined by a subjective approach [22]. In LFS2, the

absolute deviation between adjacent LTs gradually increases from the middle of the given LTs to

both ends. If we take τ = 3 and set a= 1.36, the LTs are graphically shown in Fig. 2.
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Figure 2: LSF2 (τ = 3, a= 1.36)

LSF3: F(si)= θi =











τα − (τ − i+ 1)α

2τα
, (i= 1, 2, . . . , τ + 1)

τβ + (i− τ − 1)β

2τβ
, (i= τ + 2, τ + 3, · · · , 2τ + 1)

. (3)

LSF3 is de�ned based on prospect theory’s value function and the DMs’ different sensation

for the absolute deviation between adjacent linguistic subscripts. α and β (α,β ∈ [0, 1]) represent

the curvature of the subjective value function for gain and loss, respectively [38]. LSF3 reduces

to LSF1 when α = β = 1. The absolute deviation between adjacent LTs gradually decreases from

the middle of the given LTs to both ends. If we take τ = 3 and set α = β = 0.8, the LTs are

graphically shown in Fig. 3.
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Figure 3: LSF3 (τ = 3, α = β = 0.8)

In order to save all of the given information and facilitate calculation, the aforesaid functions

can be extended into F∗ : S̃→ R+, where F∗(si) = θi is a continuous and strictly monotonously

increasing function.

De�nition 2. [7] Let S = {si|i= 1, 2, . . . , 2τ + 1} be a LTS. A PLTS L(p) can be de�ned as

L(p) =
{

s(l)(p(l))|s(l) ∈S,p(l) ≥ 0, i= 1, 2, . . . ,#L(p),
∑#L(p)

l=1
p(l) ≤ 1

}

, where s(l)(p(l)) is the LT s(l)

associated with the probability p(l), and #L(p) denotes the number of all different LTs in L(p).

If
∑#L(p)

l=1
p(l) < 1, then p̃(l) = p(l)/

∑#L(p)

l=1
p(l) is used to normalize the PLTS.

In this paper, it is assumed that all PLTSs have already been normalized.

De�nition 3. [8] Let S= {si|i= 1, 2, . . . , 2τ+1} be a LTS. A LHFS LH in S is de�ned as LH =
{(s(l), lh(s(l)))|s(l) ∈ S}, where lh(s(l))= {r1, r2, . . . , r#lh(s(l))} is a set with #lh(s(l)) values in (0, 1] and

denotes the possible membership degrees of the element s(l) ∈ S to the set LH . #LH denotes the

number of all different LTs in LH, and #lh(s(l)) represents the count of real numbers in lh(s(l)).

2.2 Cloud Model

De�nition 4. [14] Let U be the universe of discourse and T be a qualitative concept in U . If

x ∈U is a random instantiation of concept T that satis�es x∼N(Ex,En′2) and En′∼N(En,He2),
and y ∈ [0, 1] is the certainty degree of x belonging to T that satis�es y= exp(− (x−Ex)2

2(En′)2
), then the

distribution of x in the universe U is de�ned as a normal cloud, and (x,y) represents a cloud

drop.
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For simplicity, normal cloud is called as cloud hereafter. The degree of certainty of x

belonging to concept T is a probability distribution rather than a �xed number. Hence, ∀x ∈U ,

y= exp(− (x−Ex)2
2(En′)2

) is a one-to-many mapping.

There are two kinds of uncertainty: randomness and fuzziness. Randomness refers to the

uncertainty contained in an event that has a clear de�nition but do not necessarily occur.

Fuzziness refers to the uncertainty contained in an event that has appeared but it is dif�cult

to de�ne it accurately [39]. There is a practical demand to describe fuzziness and randomness

inherent in LTs simultaneously. Cloud can perfectly depict the overall quantitative properties of

a concept through three numerical characteristics: mathematical expectation Ex, entropy En and

hyper entropy He, where Ex is the mathematical expectation of cloud drops belonging to a

concept in the universe, and En re�ects the uncertainty measurement of a qualitative concept,

including randomness and fuzziness. From the perspective of probability theory, En is similar

to standard variance of random variables. From the point of fuzzy set theory, En represents

the scope in which cloud drops are accepted by the concept, and it indicates the support set

of the concept with membership degrees larger than 0. As a result, En re�ects randomness and

fuzziness of a qualitative concept and their correlation, simultaneously. He represents the degree

of uncertainty of En, i.e., the second-order entropy of the entropy [15,40]. A cloud can be

described by Ex, En, He, and denoted by C = (Ex,En,He).
De�nition 5. [15] Given two clouds C1 = (Ex1,En1,He1) and C2 = (Ex2,En2,He2), some

operations of clouds are de�ned as follows:

(1) C1+C2 = (Ex1+Ex2,

√

En21+En22,

√

He21+He22);

(2) C1−C2 = (Ex1−Ex2,

√

En21+En22,

√

He21+He22);

(3) γC1 = (γEx1,
√
γEn1,

√
γHe1), (γ ≥ 0).

2.3 AFSD

The AFSD is used to compare two stochastic variables. It was proposed by Leshno and

Levy [41]. Let X1 and X2 be two stochastic variables, where G1(x) and G2(x) denote two cumu-

lative distribution functions, respectively. Let Ω = {x|G1(x) > G2(x)}, Θ = {x|G2(x) > G1(x)} and

||G1(x)−G2(x)|| =
∫

Ω
G1(x)−G2(x)dx+

∫

Θ
G2(x)−G1(x)dx. Then, AFSD is de�ned below:

De�nition 6. [41,42] For 0 < δ < 0.5, X1 dominates X2 by δ−AFSD if and only if
∫

Ω
G1(x)−G2(x)dx≤ δ||G1(x)−G2(x)||, where ||G1(x)−G2(x)|| corresponds to the area between

G1 and G2,
∫

Ω
G1(x)−G2(x)dx corresponds to the area that G1 is greater than G2, and δ denotes

the degree of �rst-degree stochastic dominance violation allowed.

3 Heterogeneous MAGDM Problem and Comprehensive Cloud

This section describes the heterogeneous MAGDM problem and introduces the improved

transformation approach between LT and cloud in detail. Particularly, we developed two novel

transformation approaches from PLTS and LHFS to comprehensive clouds.

3.1 Description for Heterogeneous MAGDM Problem

A heterogeneous MAGDM problem is to �nd the best solution from all feasible alternatives

assessed on multiple attributes by a group of DMs. The evaluation attributes in heterogeneous

MAGDM can be classed into several subsets which are expressed by different kinds of forms.
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For a heterogeneous MAGDM problem, suppose that DMs de (e= 1, 2, · · · ,k) have to select

the optimal alternative(s) from a group of alternatives xu (u = 1, 2 · · · ,m) or rank these alter-

natives based on attributes yv (v = 1, 2 · · · ,n). Denote an alternative set by X = {x1,x2, · · · ,xm},
an attribute set by Y = {y1,y2, · · · ,yn}, and a DM set by D = {d1,d2, · · · ,dk}. Denote Y1 =
{y1,y2, · · · ,yv1},Y2 = {yv1+1,yv1+2, · · · ,yv2}, Y3 = {yv2+1,yv2+2, · · · ,yv3}, respectively, where 1≤ v1 ≤
v2 ≤ v3 ≤ n. Namely, Y is divided into three subsets Yt (t = 1, 2, 3), where Yt (t = 1, 2, 3) are

attribute subsets in which attribute values are expressed with LTs, PLTSs and LHFSs respectively.

Yt ∩ Yl = ∅ (t, l = 1, 2, 3; t 6= l), ∪3
t=1Yt = Y , where ∅ is an empty set. Denote M = {1, 2, · · · ,m},

N1 = {1, 2, · · · , v1},N2 = {v1 + 1, v1 + 2, · · · , v2}, N3 = {v2 + 1, v2 + 2, · · · ,n}, N = {1, 2, · · · ,n} and

K = {1, 2, · · · ,k}. Denote the DM weight vector by v= (̟1,̟2, · · · ,̟k)
T , where ̟e is the weight

of DM de, satisfying that 0 ≤ ̟e ≤ 1 (e = 1, 2, · · · ,k) and
∑k

e=1̟e = 1. Denote the attribute

weight vector by w = (w1,w2, · · · ,wn)T , where wv is the weight of attribute yv, satisfying that

0≤wv ≤ 1 (v= 1, 2, · · · ,n) and
∑n

v=1wv = 1 [43].

Let reuv be the evaluation of an alternative xu on attribute yv given by DM de. If v ∈N1, r
e
uv

is a LT, denoted by si(si ∈ S); If v ∈ N2, r
e
uv is a PLTS, denoted by L(p) = {s(l)(p(l))|s(l) ∈S}; If

v ∈N3, r
e
uv is a LHFS, denoted by LH = {(s(l), lh(s(l)))|s(l) ∈ S}. After normalizing, the individual

original normalized evaluation matrix Re = (reuv)m×n can be obtained as

Re = (reuv)m×n =
(

reuv
)

m×n =

y1 y2 · · · yn
x1
x2
...

xm











re11 re12 · · · re1n
re21 re22 · · · re2n
...

...
...

...

rem1 rem2 · · · remn











(e= 1, 2, · · · ,k) (4)

3.2 Transformation between LT and Cloud

Generally, two kinds of approaches have been proposed for transformation from LTs to

clouds so far. One is based on the golden radio [44], and the other is based on the LSF [22].

Wang et al. [24] introduced a parameter named overlapping degree into the transformation

approach [22] to determining the degree of overlap between two adjacent clouds. With the

parameter ε ∈ [εmin, εmax], DMs could express their preference for the degree of overlap between

two adjacent clouds. However, after processing the calculation formulae for three numerical

characteristics, a problem emerges. That is, once the LSF and some related parameters are �xed

in [24], D(Exi,i+1) = Exi+1−Exi
3

, D(Exi−1,i+1) = Exi+1−Exi−1

6
and D(Exi−1,i) = Exi−Exi−1

3
are three

�xed values. It is easy to see that the values of Eni and Hei are linearly dependent on
εmax+εmin

2

and
εmax−εmin

6
, respectively. However, the determination of overlapping degree is entirely based

on the subjective preference of DMs, which means the determination of Eni and Hei is also

subjective. To overcome the above defects, two regulation parameters ς and ζ for entropy and

hyper entropy are proposed in this paper. We improve the transformation approach in [24] by

replacing
εmax+εmin

2
(
εmax−εmin

6
) with ς (ζ ) during the transformation process. Signi�cantly, the

determination of ς and ζ is totally objective and logical. The speci�c approaches to determining

ς and ζ are stated in Sections 3.2.1 and 3.2.2.

Let S = {si| i= 1, 2, · · · , 2τ + 1} be a LTS, L(p) = {s(l)(p(l))| s(l) ∈S} be a normalized PLTS,

and LH = {(s(l), lh(s(l)))|s(l) ∈ S} be a LHFS. L(p)euv = {s(l)euv (p
(l)e
uv )} denotes the evaluation of an

alternative xu on attribute yv (v ∈ N2) given by the DM de, and #L(p)euv ∈ [1, 2τ + 1] denotes
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the number of all different LTs in L(p)euv. LH
e
uv = {(s(l), lh(s(l))euv)|s(l) ∈ S} indicates the evaluation

of an alternative xu on attribute yv (v ∈ N3) given by the DM de. #LHe
uv ∈ [1, 2τ + 1] signi�es

the number of all different LTs in LHe
uv. #lh(s(l))euv represents the count of real numbers in

lh(s(l))euv = {reuv,1, r
e
uv,2, . . . , r

e
uv,#lh(s(l))euv

}. lh(s(l))euv is a set with #lh(s(l))euv values in (0, 1] and denotes

the possible membership degrees of the element s(l) ∈ S to the set LHe
uv.

3.2.1 Determination of the Regulation Parameter of Entropy

Entropy En re�ects the uncertainty measurement of a qualitative concept, speci�cally ran-

domness and fuzziness. From the perspective of fuzzy set theory, it represents the scope in which

the cloud drops are accepted by the concept. It is common that the more elements are used in

evaluations, the more hesitant the DM is. Hence, for a hesitant DM, larger En should to be

assigned to its LTs. Therefore, the regulation parameter of En should be determined according to

DMs’ hesitant degree.

De�nition 7. For a heterogeneous MAGDM, the average number of LTs used by DM de at

an evaluation in the form of PLTSs or LHFSs, is de�ned as

ηe =
1

m(n− v1)

∑m

u=1

[

∑v2

v=v1+1
#L(p)euv+

∑n

v=v2+1
#LHe

uv

]

. (5)

It is obvious that ηe ∈ [1, 2τ + 1].

De�nition 8. The hesitant degree of DM de is de�ned as

HDe = ηe/(2τ + 1). (6)

Obviously, HDe ∈ [ 1
2τ+1

, 1].

The determination of DM’s hesitant degree is based on the average number of LTs that DM

uses at a single evaluation in the form of PLTSs or LHFSs.

A great deal of experimental research has demonstrated that regulation parameter ς generally

lies in [1, 2]. In fact, if the hesitant degree HDe is 1
2τ+1

, it means that only one LT is used by DM

de at each evaluation in the form of PLTSs or LHFSs. In this situation, DM de is regarded as

a decisive and con�dent person. Accordingly, it is appropriate for DM de to take 1 as the value

of ς . The more the LTs used by DM de, the bigger the value of ς is. Based on this premise, the

regulation parameter ς of entropy is de�ned as follows:

De�nition 9. Let ρ1 = 1+ 2τ
2τ+1

. The regulation parameter of entropy for DM de is de�ned as

ς e = logρ1

(

ηe

2τ + 1
+

2τ

2τ + 1

)

+ 1= logρ1

(

HDe+
2τ

2τ + 1

)

+ 1, (7)

where ηe ∈ [1, 2τ + 1], HDe ∈ [ 1
2τ+1

, 1]. Clearly, it holds that ς e ∈ [1, 2].

In the following, an example is given to illustrate how to determine the value of ς .

Example 1. Let S= {si| i= 1, 2, · · · , 7} be a LTS. There are three alternatives x1, x2 and x3. In

order to select the optimal alternative, DM de gives evaluations for x1, x2, x3 on three attributes
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y1, y2, y3. The evaluations for y1, y2 and y3 are expressed in the forms of LT, PLTS and LHFS,

respectively. DM de gives an evaluation matrix as follows:

Calculate the average number of LTs used by DM de at an evaluation in the form of PLTSs

or LHFSs by Eq. (5):

ηe =
1

3× 2
× [(2+ 2)+ (3+ 1)+ (1+ 1)]= 1.6667

Calculate the hesitant degree of DM de by Eq. (6):

HDe =
1.6667

7
= 0.2381

Then, the value of ς e is calculated by Eq. (7):

ς e = log1+0.8571(0.2381+ 0.8571)+ 1= 1.1470

3.2.2 Determination of the Regulation Parameter of Hyper Entropy

Hyper entropy He represents the degree of uncertainty of En, i.e., the second-order entropy

of the entropy. The larger He is, the thicker the cloud is, and the wider the distribution of

membership is. Thus, on the one hand, the information entropy as a very important concept to

measure the uncertainty in evaluation information provided by DMs, the larger it is, the larger

He should be. On the other hand, membership degree as an index to measure the degree that

an element belongs to a certain concept, the lower it is, the larger the indeterminacy degree is.

Furthermore, the larger indeterminacy degree in the decision matrix provided by DM, the larger

He should to be. With the above analysis, the regulation parameter of He should be determined

according to indeterminacy degree and information entropy.

De�nition 10. [45] The information entropy of L(p) is de�ned as follows:

H(L(p))=−log2z
∑#L(p)

l=1
(p(l))log2(p

(l)), (8)

where z is a constant that is set to 1.28 in this paper as [45] sets. It is easily seen that H(L(p)) ∈
[0, log2z · log2(2τ + 1)].

De�nition 11. The information entropy of DM de is de�ned as follows:

He =−
log2z

m(v2− v1)

∑m

u=1

∑v2

v=v1+1

∑#L(p)euv

l=1
(p(l))log2(p

(l)), (9)

where z is a constant that is set to 1.28 in this paper as [45] sets. Obviously, He ∈ [0, log2z ·
log2(2τ + 1)].

The closer the memberships for corresponding LTs are to 0, the larger indeterminacy degree

DMs have for corresponding LT.
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De�nition 12. The indeterminacy degree of LH = {(s(l), lh(s(l)))|s(l) ∈ S} is de�ned as follows:

ID(LH)=
1

#LH

∑#LH

l=1





1

#lh(s(l))

∑

r∈lh(s(l))

(1− r)



 . (10)

Clearly, it holds that ID(LH) ∈ [0, 1).

De�nition 13. The indeterminacy degree of DM de is de�ned as follows:

IDe =
1

m(n− v2)

∑m

u=1

∑n

v=v2+1







1

#LHe
uv

∑#LHe
uv

l=1





1

#lh(s(l))euv

∑

reuv∈lh(s(l))euv

(1− reuv)











. (11)

It is easily seen that IDe ∈ [0, 1).

De�nition 14. Let ρ2 = 1+ log2z · log2(2τ + 1). The regulation parameter of hyper entropy for

DM de is de�ned as

ζ e =
1

2
[logρ2(H

e+ 1)+ log2(ID
e+ 1)], (12)

where He ∈ [0, log2z · log2(2τ + 1)], IDe ∈ [0, 1). Obviously, ζ e ∈ [0, 1).

Take τ = 3 as an example. The graphical representation for the regulation parameter of hyper

entropy is shown in Fig. 4.

Figure 4: Graphical representation for the regulation parameter of hyper entropy (τ = 3)

Example 2. Following Example 1, the value of ζ e can be calculated as follows:

Calculate the information entropy of each evaluation in the form of PLTSs by Eq. (8):

H({s6(0.1), s7(0.9)})=−log21.28× (0.1× log20.1+ 0.9× log20.9)= 0.1670,

H({s3(0.1), s4(0.2), s5(0.7)})=−log21.28× (0.1× log20.1+ 0.2× log20.2+ 0.7× log20.7)= 0.4120,

H({s4(1)})=−log21.28× (1× log21)= 0
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Calculate the information entropy of DM de by Eq. (9):

He =
1

3
× (0.1670+ 0.4120+ 0)= 0.1930

Calculate the indeterminacy degree of each evaluation in the form of LHFSs by Eq. (10):

ID({s3(0.8, 0.9), s4(0.6)})=
1

2
×{

1

2
× [(1− 0.8)+ (1− 0.9)]+ (1− 0.6)} = 0.275,

ID({s5(0.7)})= 1− 0.7= 0.3,

ID({s1(0.8)})= 1− 0.8= 0.2

Calculate the indeterminacy degree of DM de by Eq. (11):

IDe =
1

3
× (0.275+ 0.3+ 0.2)= 0.2583

Then, the value of ζ e is calculated by Eq. (12):

ζ e =
1

2
× [log1.9998(0.1930+ 1)+ log2(0.2583+ 1)]= 0.2931

3.2.3 Speci�c Procedures for Transformation between LT and Cloud

De�nition 15. [46] Let S = {si|i= 1, 2, . . . , 2τ + 1} be a LTS, where τ is a positive integer.

A valid universe [Xmin,Xmax] is provided by DMs. Then, a LT si (i = 1, 2, . . . , 2τ + 1) can be

represented by the normal cloud Ci = (Exi,Eni,Hei).
Then, the speci�c transformation procedures are shown as follows:

(1) Calculate ς and ζ .

Determination approaches for ς and ζ are shown in Sections 3.2.1 and 3.2.2.

(2) Calculate θi.

Map si to θi using LSFs.

LSF2 Eq. (2) is adopted in this paper, where a= 1.36.

(3) Calculate Exi.

Exi =Xmin+ θi(Xmax−Xmin). (13)

(4) Calculate Eni.

Let (x,y) be a cloud drop, where x∼N(Ex,En′2). According to 3σ principle of the normal

distribution, 99.7% cloud drops of Ci should be located in the interval [Exi−1,Exi+1]. However,

since the distances between Exi and Exi−1 are different from the distances between Exi and Exi+1,
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the entropy of Ci (i= 2, 3, · · · , 2τ) are different for the right side and the left side. For simplicity,

Eni (i= 2, 3, · · · , 2τ) take the mean value of ςEni and ςEni.

Eni =



























ςEni = ς
Exi+1−Exi

3
, i= 1

ς
Eni+Eni

2
= ς

Exi+1−Exi−1

6
, 2≤ i≤ 2τ

ςEni = ς
Exi−Exi−1

3
, i= 2τ + 1

, (14)

where ςEni = ς Exi−Exi−1

3
, ςEni = ς Exi+1−Exi

3
, ςEni denotes Eni for the left side, and ςEni denotes

Eni for the right side.

(5) Calculate Hei

Hei =























ζ
Exi+1−Exi

3
, i= 1

ζ
Exi+1−Exi−1

6
, 2≤ i≤ 2τ

ζ
Exi−Exi−1

3
, i= 2τ + 1

. (15)

Based on the above analyses, the corresponding cloud for LT si can be generated by

Algorithm 1.

Algorithm 1: Transform LT into Cloud

Input: A valid universe [Xmin,Xmax], a qualitative LT si in the LTS S= {si|i= 1, 2, . . . , 2τ +1}, and
DM’s decision matrix.

Output: The corresponding cloud Ci = (Exi,Eni,Hei)
1. Calculate ς by Eqs. (5)–(7)

2. Calculate ζ by Eqs. (8)–(12)

3. Calculate θi by Eq. (1) or Eq. (2) or Eq. (3)

4. Calculate Exi by Eq. (13)

5. Calculate Eni by Eq. (14)

6. Calculate Hei by Eq. (15)

7. Return Ci = (Exi,Eni,Hei)

To illustrate the advantages of regulation parameters, an example is given below.

Example 3. Given a universe [Xmin,Xmax] and a LTS S = {si| i= 1, 2, · · · , 7}. For alternatives

x1, x2, x3 regarding three attributes y1, y2, y3, DMs d1, d2 and d3 give their evaluations. The

evaluations for y1, y2 and y3 are expressed in the forms of LT, PLTS and LHFS, respectively.

DMs d1, d2 and d3 give their evaluation matrices as follows:
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Based on Eqs. (5)–(12), the regulation parameters ς and ζ for each DM are calculated as

follows:

ς1 = 1, ζ 1 = 0.0352, ς2 = 1.1470, ζ 2 = 0.2931, ς3 = 1.1470, ζ 3 = 0.6359;

Based on Eqs. (2) and (13)–(15), θi, Exi, Eni, Hei (i = 1, 2, · · · , 7) for DMs d1, d2, d3 are

calculated and the results are shown in Tables 1–3, respectively.

Table 1: Transformation results for DM d1

LT s1 s2 s3 s4 s5 s6 s7

θi 0 0.2197 0.3812 0.5 0.6188 0.7803 1

Exi 0.0000 2.1969 3.8122 5.0000 6.1878 7.8031 10.0000

Eni 0.7323 0.6354 0.4672 0.3959 0.4672 0.6354 0.7323

Hei 0.0258 0.0224 0.0164 0.0139 0.0164 0.0224 0.0258

Table 2: Transformation results for DM d2

LT s1 s2 s3 s4 s5 s6 s7

θi 0 0.2197 0.3812 0.5 0.6188 0.7803 1

Exi 0.0000 2.1969 3.8122 5.0000 6.1878 7.8031 10.0000

Eni 0.8399 0.7288 0.5359 0.4541 0.5359 0.7288 0.8399

Hei 0.2146 0.1862 0.1369 0.1160 0.1369 0.1862 0.2146

Table 3: Transformation results for DM d3

LT s1 s2 s3 s4 s5 s6 s7

θi 0 0.2197 0.3812 0.5 0.6188 0.7803 1

Exi 0.0000 2.1969 3.8122 5.0000 6.1878 7.8031 10.0000

Eni 0.8399 0.7288 0.5359 0.4541 0.5359 0.7288 0.8399

Hei 0.4657 0.4040 0.2971 0.2518 0.2971 0.4040 0.4657

Three sets of cloud generated by DMs d1, d2, d3 are graphically shown in Figs. 5–7,

respectively.

It can be seen from Figs. 5–7 that the cloud drops distribution varies in width and thickness

for different DMs. In previous studies [22,23,25–31,46], clouds for the corresponding LTS are usu-

ally the same for all DMs. However, since different DMs have different personalities, knowledge
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and experience, the width and thickness of clouds for the corresponding LTS should be different

for different DMs. The more sure, con�dent and decisive the DM is for its evaluation matrix, the

more concentrated and thinner the cloud distribution should be, vice versa. Unfortunately, most

previous studies failed to notice this characteristic, whereas this paper suf�ciently takes this char-

acteristic into account. Although the overlap degree is considered in [24] to obtain personalized

cloud sets for DMs, the determination of overlap degree depends on DMs’ subjective intuition.

This defect is overcome in this paper. The regulation parameters are determined according to

the evaluation matrix given by DM, which means the determination of regulation parameters is

objective and logical.

Figure 5: Clouds for the LTs used by d1

Figure 6: Clouds for the LTs used by d2

Figure 7: Clouds for the LTs used by d3

3.3 Transformation from PLTS and LHFS to Comprehensive Clouds

In this sub-section, two approaches are brought forward to transform PLTS and LHFS into

comprehensive clouds, respectively.
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3.3.1 Transformation from PLTS to Comprehensive Cloud

De�nition 16. Let S= {si|i= 1, 2, . . . , 2τ + 1} be a LTS. The valid universe is [Xmin,Xmax]. Let

L(p)= {s(l)(p(l))|s(l) ∈S} be a normalized PLTS. The cloud Cs(l)(Exs(l) ,Ens(l) ,Hes(l)) represents LT

s(l) ∈ S. Then, CL(p)(ExL(p),EnL(p),HeL(p)) can be de�ned as C-PLTS, which is characterized by

three numerical characteristics ExL(p), EnL(p) and HeL(p).

De�nition 17. [24] Given a cloud C = (Ex,En,He), if (x,y) is a cloud drop of C, x satis�es

x∼N(Ex,En′2) and En′∼N(En,He2). Then, the normal curve (NC) of all cloud drops can be

de�ned as f = exp(− (x−Ex)2
2En2

).

In this paper, g= 1√
2πEn

exp(− (x−Ex)2
2En2

) is utilized to represent the probability density function

curve (PDFC) of C.

The speci�c procedures to determine ExL(p), EnL(p), HeL(p) of C-PLTS are as follows:

(1) Let Cs(l) be the corresponding clouds for s(l) (l = 1, 2, . . . ,#L(p)), Cs(l)(p(l)) be Cs(l) with

corresponding probability p(l) and χl,l+1 ∈ [Exs(l) ,Exs(l+1) ] be the abscissa value of intersec-

tion point between the PDFCs of Cs(l)(p(l)) and Cs(l+1)(p(l+1)). If Exs(l) + 3Ens(l) > Exs(l+1) −
3Ens(l+1) (l ∈ {1, 2, . . . ,#L(p)− 1}), then Eq. (16) is used to calculate the value of χl,l+1.

p(l)
1

√
2πEns(l)

exp(−
(χl,l+1−Exs(l))

2

2(Ens(l))
2

)=p(l+1) 1
√
2πEns(l+1)

exp(−
(χl,l+1−Exs(l+1))

2

2(Ens(l+1))
2

),

(χl,l+1 ∈ [Exs(l) ,Exs(l+1) ]). (16)

(2) Use Eq. (17) to calculate the area for the PDFC of Cs(l)(p(l)) from lower limit to upper

limit, which can be denoted by As(l) .

As(l) =



































p(l) 1√
2πEx

s(l)

∫ χl,l+1

Ex
s(l)

−3En
s(l)

exp

(

− (x−Ex
s(l)
)2

2(En
s(l)
)2

)

dx, l = 1

p(l) 1√
2πEx

s(l)

∫ χl,l+1

χl−1,l
exp

(

− (x−Ex
s(l)
)2

2(En
s(l)
)2

)

dx, l ∈ {2, 3, . . . ,#L(p)− 1}

p(l) 1√
2πEx

s(l)

∫ Ex
s(l)

+3En
s(l)

χl−1,l
exp

(

− (x−Ex
s(l)
)2

2(En
s(l)
)2

)

dx, l =#L(p).

(17)

If Exs(l−1) + 3Ens(l−1) ≤ Exs(l) − 3Ens(l) (l ∈ {2, 3, . . . ,#L(p)}) (Exs(l) + 3Ens(l) ≤ Exs(l+1) −
3Ens(l+1) (l ∈ {1, 2, . . . ,#L(p) − 1})), then Exs(l) − 3Ens(l) (Exs(l) + 3Ens(l)) is substituted for χl−1,l

(χl,l+1).

(3) The modi�ed ratio of s(l), denoted by ts(l) , will be calculated by Eq. (18):

ts(l) =
As(l)

∑#L(p)

l=1
As(l)

, (l = 1, 2, . . . ,#L(p)). (18)

(4) According to De�nition 5, three numerical characteristics ExL(p), EnL(p), HeL(p) of C-PLTS

will be obtained as follows:

ExL(p) =
∑#L(p)

l=1
(ts(l) ·Exs(l)), (19)
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EnL(p) =
√

∑#L(p)

l=1
[ts(l) · (Ens(l))2], (20)

HeL(p) =
√

∑#L(p)

l=1
[ts(l) · (Hes(l))2]. (21)

Based on the above analyses, the comprehensive cloud of PLTS L(p)= {s(l)(p(l))|s(l) ∈S} can

be generated by Algorithm 2.

Algorithm 2: Transform PLTS into C-PLTS

Input: L(p)= {s(l)(p(l))|s(l) ∈S} and Cs(l)(Exs(l) ,Ens(l) ,Hes(l))

Output: C-PLTS CL(p)(ExL(p),EnL(p),HeL(p))

1. Calculate χ by Eq. (16)

2. Calculate As(l) by Eq. (17)

3. Calculate ts(l) by Eq. (18)

4. Calculate ExL(p) by Eq. (19)

5. Calculate EnL(p) by Eq. (20)

6. Calculate HeL(p) by Eq. (21)

7. Return CL(p)(ExL(p),EnL(p),HeL(p))

Example 4. Given a LTS S = {si|i= 1, 2, · · · , 7} and a PLTS L(p)= {s4(0.8), s5(0.2)}, C4 =
(5, 0.3959, 0.0396) is the corresponding cloud for LT s4 and C5 = (6.1878, 0.4672, 0.0467) is the cor-

responding cloud for LT s5. The C-PLTS CL(p)(ExL(p),EnL(p),HeL(p)) for L(p)= {s4(0.8), s5(0.2)}
can be obtained as follows:

(1) Based on Eq. (16), the abscissa value of the intersection point χ is obtained:

Let 0.8 × 1√
2π×0.3959

× exp(− (χ4, 5−5)2

2×0.39592
) = 0.2 × 1√

2π×0.4672
× exp(− (χ4, 5−6.1878)2

2×0.46722
) to solve the

abscissa value of the intersection point: χ4, 5 = 5.7788.

(2) Based on Eq. (17), the area for the PDFC of Cs4(0.8) from Ex4− 3En4 to the intersection

point and the area for the PDFC of Cs5(0.2) from the intersection point to Ex5+3En5 are

obtained:

As4 =0.8×
1

√
2π × 0.3959

×
∫ 5.7788

3.8122

exp(−
(x− 5)2

2× 0.39592
)dx= 0.7792,

As5 =0.2×
1

√
2π × 0.4672

×
∫ 7.5893

5.7788

exp(−
(x− 6.1878)2

2× 0.46722
)dx= 0.1616

(3) Based on Eq. (18), the modi�ed ratios of s4 and s5 are obtained:

ts4 =
0.7792

0.7792+ 0.1616
= 0.8282, ts5 =

0.1616

0.7792+ 0.1616
= 0.1718
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(4) Based on Eqs. (19)–(21), three numerical characteristics are obtained:

ExL(p) = 0.8282× 5+ 0.1718× 6.1878= 5.2040,

EnL(p) =
√

0.8282× 0.39592+ 0.1718× 0.46722 = 0.4090

HeL(p) =
√

0.8282× 0.03962+ 0.1718× 0.04672 = 0.0409

Finally, the C-PLTS of L(p)= {s4(0.8), s5(0.2)} is C{s4(0.8),s5(0.2)}(5.2040, 0.4090, 0.0409).

The PDFCs and 5000 cloud drops of Cs4(0.8) and Cs5(0.2) are shown in Fig. 8. The areas for

the PDFCs of Cs4(0.8) and Cs5(0.2) are shown in Fig. 9.

Figure 8: PDFCs and 5000 cloud drops of Cs4(0.8) and Cs5(0.2)

Figure 9: Areas for the PDFCs of Cs4(0.8) and Cs5(0.2)

From L(p)= {s4(0.8), s5(0.2)}, we can know that the proportions of LTs s4 and s5 are 0.8

and 0.2, respectively. If a DM uses L(p)= {s4(0.8), s5(0.2)} to evaluate an alternative, it can be

assumed that the DM uses 5000 cloud drops to express his/her opinion, then he/she will place

4000 cloud drops in the s4 region and 1000 cloud drops in s5 region. However, it can be seen from

Fig. 8 that parts of the 4000 cloud drops belonging to s4 region will overlap with cloud drops

belonging to s5 region, and parts of the 1000 cloud drops belonging to s5 region will overlap with
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cloud drops belonging to s4 region. In order to eliminate the information distortion caused by the

overlapping part, this paper eliminates the overlapped cloud drops from the cloud drops originally

allocated and recalculates the proportions that belong to each region. PLTS contains LTs and

their corresponding probabilities. Thus the intersection point between the PDFC of Cs4(0.8) and

the PDFC of Cs5(0.2) is taken as the boundary to recalculate the proportions of cloud drops

distributed in the two regions, which are shown in Fig. 9. From the perspective of probability, the

C-PLTS is obtained. In the meanwhile, the modi�ed ratios of LTs decrease the loss and distortion

of evaluation information.

3.3.2 Transformation from LHFS to Comprehensive Cloud

De�nition 18. Let S= {si|i= 1, 2, · · · , 2τ + 1} be a LTS. The valid universe is [Xmin,Xmax]. Let

LH = {(s(l), lh(s(l)))|s(l) ∈ S} be a LHFS. The cloud Cs(l)(Exs(l) ,Ens(l) ,Hes(l)) represents LT s(l) ∈
S. Then, CLH(ExLH ,EnLH ,HeLH) can be de�ned as C-LHFS, which is characterized by three

numerical characteristics ExLH , EnLH and HeLH .

The speci�c procedures to determine ExLH , EnLH , HeLH of C-LHFS are as follows:

(1) Let Cs(l) be the corresponding clouds for s(l) (l = 1, 2, . . . ,#LH), C(s(l),lh(s(l))) be Cs(l)

with corresponding average value of membership degrees 1
#lh(s(l))

∑

r∈lh(s(l))
r and χl,l+1 ∈

[Exs(l) ,Exs(l+1) ] be the abscissa value of intersection point between the NCs of C(s(l),lh(s(l)))
and C(s(l+1),lh(s(l+1))). If Exs(l) + 3Ens(l) > Exs(l+1) − 3Ens(l+1) (l ∈ {1, 2, . . . ,#LH − 1}), then

Eq. (22) is used to calculate the value of χl,l+1.





1

#lh(s(l))

∑

r∈lh(s(l))

r



 · exp
(

−
(χl,l+1−Exs(l))

2

2(Ens(l))
2

)

=





1

#lh(s(l+1))

∑

r∈lh(s(l+1))

r



 · exp
(

−
(χl,l+1−Exs(l+1))

2

2(Ens(l+1))
2

)

, (χl,l+1 ∈
[

Exs(l) ,Exs(l+1)

]

). (22)

(2) Use Eq. (23) to calculate the area for the NC of C(s(l),lh(s(l))) from lower limit to upper

limit, which can be denoted by As(l) .

As(l) =



































1√
2πEx

s(l)

∫ χl,l+1

Ex
s(l)

−3En
s(l)

exp

(

− (x−Ex
s(l)
)2

2(En
s(l)
)2

)

dx, l = 1

1√
2πEx

s(l)

∫ χl,l+1

χl−1,l
exp

(

− (x−Ex
s(l)
)2

2(En
s(l)
)2

)

dx, l ∈ {2, 3, · · · ,#LH − 1}

1√
2πEx

s(l)

∫ Ex
s(l)

+3En
s(l)

χl−1,l
exp

(

− (x−Ex
s(l)
)2

2(En
s(l)
)2

)

dx, l =#LH.

(23)

If Exs(l−1) + 3Ens(l−1) ≤ Exs(l) − 3Ens(l) (l ∈ {2, 3, · · · ,#LH}) (Exs(l) + 3Ens(l) ≤ Exs(l+1) −
3Ens(l+1) (l ∈ {1, 2, . . . ,#LH − 1})), then Exs(l) − 3Ens(l) (Exs(l) + 3Ens(l)) is substituted for χl−1,l

(χl,l+1).
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(3) The modi�ed ratio of s(l), denoted by ts(l) , will be calculated by Eq. (24):

ts(l) =
As(l)

∑#LH
l=1 As(l)

, (l = 1, 2, · · · ,#LH). (24)

(4) According to De�nition 5, three numerical characteristics ExLH , EnLH , HeLH of C-LHFS

will be obtained as follows:

ExLH =
∑#LH

l=1
ts(l) ·Exs(l) , (25)

EnLH =
√

∑#LH

l=1
[ts(l) · (Ens(l))2], (26)

HeLH =
√

∑#LH

l=1
[ts(l) · (Hes(l))2]. (27)

Based on the above analyses, the comprehensive cloud of LHFS LH = {(s(l), lh(s(l)))|s(l) ∈ S}
can be generated by Algorithm 3.

Algorithm 3: Transform LHFS into C-LHFS

Input: LH = {(s(l), lh(s(l)))|s(l) ∈ S} and Cs(l)(Exs(l) ,Ens(l) ,Hes(l))

Output: C-LHFS CLH(ExLH ,EnLH ,HeLH)

1. Calculate χ by Eq. (22)

2. Calculate As(l) by Eq. (23)

3. Calculate ts(l) by Eq. (24)

4. Calculate ExLH by Eq. (25)

5. Calculate EnLH by Eq. (26)

6. Calculate HeLH by Eq. (27)

7. Return CLH(ExLH ,EnLH ,HeLH)

Example 5. Given a LTS S = {si|i= 1, 2, · · · , 7} and a LHFS LH= {(s5, 0.6), (s6, 0.9)}, C5 =
(6.1878, 0.4672, 0.0467) is the corresponding cloud for the LT s5 and C6 = (7.8031, 0.6354, 0.0635)
is the corresponding cloud for the LT s6. The C-LHFS CLH(ExLH ,EnLH ,HeLH) for

LH= {(s5, 0.6), (s6, 0.9)} can be obtained as follows:

(1) Based on Eq. (22), the abscissa value of the intersection point χ is obtained:

Let 0.6 × exp

(

− (χ5,6−6.1878)2

2×0.46722

)

= 0.9 × exp(− (χ5,6−7.8031)2

2×0.63542
) to solve the abscissa value of the

intersection point: χ5,6 = 6.7966.

(2) Based on Eq. (23), the area for the NC of C(s5,0.6) from Ex5 − 3En5 to the intersection

point and the area for the NC of C(s6,0.9) from the intersection point to Ex6 + 3En6 are

obtained:
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As5 =
1

√
2π × 0.4672

×
∫ 6.7966

4.7862

exp(−
(x− 6.1878)2

2× 0.46722
)dx= 0.9024,

As6 =
1

√
2π × 0.6354

×
∫ 9.7092

6.7966

exp(−
(x− 7.8031)2

2× 0.63542
)dx= 0.9421

(3) Based on Eq. (24), the modi�ed ratios of s5 and s6 are obtained:

ts5 =
0.9024

0.9024+ 0.9421
= 0.4892, ts6 =

0.9421

0.9024+ 0.9421
= 0.5108

(4) Based on Eqs. (25)–(27), three numerical characteristics are obtained:

ExLH = 0.4892× 6.1878+ 0.5108× 7.8031= 7.0128,

EnLH =
√

0.4892× 0.46722+ 0.5108× 0.63542 = 0.5594,

HeLH =
√

0.4892× 0.04672+ 0.5108× 0.06352 = 0.0559

Finally, the C-LHFS of LH= {(s5, 0.6), (s6, 0.9)} is C{(s5,0.6),(s6,0.9)} = (7.0128, 0.5594, 0.0559).
The NCs and 5000 cloud drops of C(s5,0.6) and C(s6,0.9) are shown in Fig. 10. The areas for

the PDFCs of C(s5,0.6) and C(s6,0.9) are shown in Fig. 11.

Figure 10: NCs and 5000 cloud drops of C(s5,0.6) and C(s6,0.9)

Figure 11: Areas for the PDFCs of C(s5,0.6) and C(s6,0.9)
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From LH= {(s5, 0.6), (s6, 0.9)}, we can know that the membership degrees of LTs s5 and s6 are

0.6 and 0.9 respectively. If a DM uses LH= {(s5, 0.6), (s6, 0.9)} to evaluate an alternative, it can

be assumed that the DM uses 5000 cloud drops to express his/her opinion, then he/she will place

2500 cloud drops in the s5 region and 2500 cloud drops in s6 region. Since the membership degree

of LT s5 is 0.6, the maximum membership degree of cloud drops belonging to s5 region should be

adjusted to 0.6. For the same reason, the maximum membership degree of cloud drops belonging

to s6 region should be adjusted to 0.9. Similar to the process of C-PLTS, parts of the 2500 cloud

drops belonging to s5 region will overlap with cloud drops belonging to s6 region, and parts of

the 2500 cloud drops belonging to s6 region will overlap with cloud drops belonging to s5 region,

which can be seen from Fig. 10. In order to eliminate the information distortion caused by the

overlapping part, this paper eliminates the overlapped cloud drops from the cloud drops originally

allocated and recalculates the proportions that belong to each region. LHFS contains LTs and

their corresponding membership degree. Thus the intersection point between the NC of C(s5,0.6)
and the NC of C(s6,0.9) is taken as the boundary to recalculate the proportions of cloud drops

distributed in the two regions, which are shown in Fig. 11. From the perspective of membership

degree, the C-LHFS is obtained. In the meanwhile, the modi�ed ratios of LTs decrease the loss

and distortion of evaluation information.

Up till now, heterogeneous MAGDM matrices in which attribute values are expressed with

LTs, PLTSs and LHFSs can be transformed into homogeneous MAGDM cloud matrices. For

simplicity, homogeneous MAGDM cloud matrix is called as cloud matrix hereafter. Then, the

individual cloud matrix Ce = (Ce
uv)m×n can be elicited as

Ce = (Ce
uv)m×n =

y1 y2 · · · yn

x1

x2
...

xm













Ce
11 Ce

12 · · · Ce
1n

Ce
21 Ce

22 · · · Ce
2n

...
...

...
...

Ce
m1 Ce

m2 · · · Ce
mn













(e= 1, 2, · · · ,k). (28)

4 Cloud-Based Heterogeneous MAGDM

In this section, some related techniques are introduced, such as the comparison approach for

clouds, the determination approaches of DM weight vector and attribute weight vector. Signi�-

cantly, a personalized comprehensive cloud-based method for heterogeneous MAGDM problem is

proposed.

4.1 Determination of DMWeight Vector

As mentioned above, the regulation parameter ς of entropy is determined according to DMs’

hesitant degree and the regulation parameter ζ of hyper entropy is determined according to DMs’

indeterminacy degree and information entropy. Therefore, the larger the two parameters are, the

smaller weight should be given to the DM. Assume that there are a series of regulation parameters

ς e ∈ [1, 2] of entropy and a series of regulation parameters ζ e ∈ [0, 1) of hyper entropy for DM

de. Based on the regulation parameters ς e and ζ e, the weight of DM de can be calculated by

̟e =
3− ς e− ζ e

∑k
e=1 (3− ς e− ζ e)

(e= 1, 2, · · · ,k). (29)
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Solving Eq. (29), the DM weight vector v= (̟1,̟2, · · · ,̟k)
T is obtained.

Example 6. Following Example 3, ς1 = 1, ζ 1 = 0.0352; ς2 = 1.1470, ζ 2 = 0.2931; ς3 = 1.1470,

ζ 3 = 0.6359.

By Eq. (29), the DM weight vector v= (̟1,̟2,̟3)
T = (0.4144, 0.3290, 0.2567)T is obtained.

De�nition 19. [22] Assume that ℵ is the set of all clouds and Ce(Exe,Ene,Hee) (e= 1, 2, · · · ,k)
is a subset of ℵ. A mapping CWAA: ℵm→ℵ is de�ned as the cloud-weighted arithmetic averaging

(CWAA) operator so that the following is true:

CWAAv(C1,C2, · · · ,Ck)=
k
∑

e=1

̟eC
e, (30)

where v = (̟1,̟2, · · · ,̟k)
T is the associated weight vector of Ce(Exe,Ene,Hee) satisfying that

0≤̟e ≤ 1 and
∑k

e=1̟e = 1.

Based on Eqs. (29) and (30) and basic operations of clouds in De�nition 5, the individual

cloud matrices Ce = (Ce
uv)m×n (e = 1, 2, · · · ,k) can be aggregated into a collective cloud matrix

Cg = (Cg
uv)m×n as

Cg = (Cg
uv)m×n =

y1 y2 · · · yn

x1
x2
...

xm













Ce
11 Ce

12 · · · Ce
1n

Ce
21 Ce

22 · · · Ce
2n

...
...

...
...

Ce
m1 Ce

m2 · · · Ce
mn













. (31)

4.2 Pairwise Comparisons of Clouds

The evaluations from DMs have been transformed to clouds. As mentioned above, if (x,y)

is a cloud drop of C = (Ex,En,He), it is easily known that g = 1√
2πEn

exp(− (x−Ex)2
2En2

) is the

PDFC of C. Let C1 = (Ex1,En1,He1) and C2 = (Ex2,En2,He2) be two clouds, then gC1
=

1√
2πEn1

exp(− (x−Ex1)2
2En1

2 ) and gC2
= 1√

2πEn2
exp (− (x−Ex2)2

2En2
2 ) are the PDFCs for C1 and C2. GC1

(x)

and GC2
(x) are the corresponding distribution functions respectively. Motivated by the comparison

approach for linguistic distributions in [42], a new comparison approach for clouds is presented

in the following.

4.2.1 CASD Relationship

According to the characteristics of cloud, AFSD theory is used to compare the dominance

relationship between clouds with characteristics Ex, En in C = (Ex,En,He).
De�nition 20. Let Ω = {x|GC1

(x) >GC2
(x)}, Θ = {x|GC2

(x) >GC1
(x)}, and ||GC1

(x)−GC2
(x)|| =

∫

Ω
GC1

(x)−GC2
(x) dx+

∫

Θ
GC2

(x)−GC1
(x) dx. Let

D21 =
∫

Ω
GC1

(x)−GC2
(x)dx

||GC1
(x)−GC2

(x)||
. (32)
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If D21 < 0.5, then C1 CASD C2. It is easily seen that D12 = 1−D21. Thus, if D12 > 0.5, C1

CASD C2 can be obtained as well.

4.2.2 CASD Degree

As mentioned above, the CASD relationship is adapted to compare two clouds. However, this

relationship cannot quantify the degree for one cloud over another. To quantify the dominance

degree, CASD degree is put forward.

Let µ1 be the threshold for the deviation between Ex1 and Ex2, µ2 be the threshold for

the deviation between En1 and En2, and µ3 be the threshold for the deviation between He1 and

He2. Let q12 denote the CASD degree for C1 over C2. If C1 CASD C2, q12 can be calculated by

dividing into the cases in Table 4. If C1 CASD C2, but Ex1, Ex2, En1, En2, He1 and He2 do

not satisfy cases in Table 4, then q12 = 0.5. If C1 CASD C2 is not veri�ed, then q12 = 1− q21.

Table 4: Calculation approach of CASD degree

Case Comparison for characteristics CASD degree

Case 1 Ex1−Ex2 ≥µ1 q12 = 1

Case 2.1 µ1 >Ex1−Ex2 > 0

En2−En1 ≥µ2
q12 = 0.5×

{

1+
∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
× [0.5× (1+ 1)]

}

= 0.5+ 0.5×
∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣

Case 2.2.1 µ1 >Ex1−Ex2 > 0

µ2 >En2−En1 > 0

He2 −He1 ≥µ3

q12 = 0.5×
{

1+
∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
×
[

0.5×
(

1+
∣

∣

∣

En1−En2
µ2

∣

∣

∣
× (0.5× (1+ 1))

)]}

= 0.5+ 0.25×
∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
+ 0.25×

∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
×
∣

∣

∣

En1−En2
µ2

∣

∣

∣

Case 2.2.2
µ1 >Ex1−Ex2 > 0

µ2 >En2−En1 > 0

µ3 >He2−He1 > 0

q12= 0.5×
{

1+
∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
×
[

0.5×
(

1+
∣

∣

∣

En1−En2
µ2

∣

∣

∣
×
(

0.5

×
(

1+
∣

∣

∣

He1−He2
µ3

∣

∣

∣

)))]}

= 0.5+ 0.25×
∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
+ 0.125

×
∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
×
∣

∣

∣

En1−En2
µ2

∣

∣

∣
+ 0.125×

∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
×
∣

∣

∣

En1−En2
µ2

∣

∣

∣

×
∣

∣

∣

He1−He2
µ3

∣

∣

∣

Case 2.2.3 µ1 >Ex1−Ex2 > 0

µ2 >En2−En1 > 0

µ3 >He1−He2 ≥ 0

q12= 0.5×
{

1+
∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
×
[

0.5×
(

1+
∣

∣

∣

En1−En2
µ2

∣

∣

∣

×
(

0.5×
(

1−
∣

∣

∣

He1−He2
µ3

∣

∣

∣

)))]}

= 0.5+ 0.25×
∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
+ 0.125×

∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
×
∣

∣

∣

En1−En2
µ2

∣

∣

∣

−0.125×
∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
×
∣

∣

∣

En1−En2
µ2

∣

∣

∣
×
∣

∣

∣

He1−He2
µ3

∣

∣

∣

Case 2.2.4 µ1 >Ex1−Ex2 > 0

µ2 >En2−En1 > 0

He1 −He2 ≥µ3

q12= 0.5×
{

1+
∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
×
[

0.5×
(

1+
∣

∣

∣

En1−En2
µ2

∣

∣

∣

×(0.5× (1− 1)))]} =0.5+ 0.5×
∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣

Case 2.3
µ1 >Ex1−Ex2 > 0

µ2 >En1−En2 ≥ 0

q12= 0.5×
{

1+
∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
×
[

0.5× (1−
∣

∣

∣

En1−En2
µ2

∣

∣

∣

)]}

= 0.5+0.25×
∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
− 0.25×

∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
×
∣

∣

∣

En1−En2
µ2

∣

∣

∣

Case 2.4 µ1 >Ex1−Ex2 > 0

En1 −En2 ≥µ2
q12 = 0.5×

{

1+
∣

∣

∣

Ex1−Ex2
µ1

∣

∣

∣
× [0.5× (1− 1)]

}

= 0.5

To rank the alternatives and select the optimal alternative, the comparison approach for clouds

is applied to the collective cloudmatrix. Alternatives xu (u= 1, 2, · · · ,m) are compared in pair on
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each attribute yv (v = 1, 2, · · · ,n). In this paper, the values of µ1, µ2 and µ3 are determined as

follows:

µ1 =
2

m(m+ 1)

m
∑

u=1

m
∑

o=u+1

d(Exu,Exo), (33)

µ2 =
2

m(m+ 1)

m
∑

u=1

m
∑

o=u+1

d(Enu,Eno), (34)

µ3 =
2

m(m+ 1)

m
∑

u=1

m
∑

o=u+1

d(Heu,Heo), (35)

Based on the comparison approach mentioned above, the CASD degree for the alternatives

xu over xo (u,o = 1, 2, · · · ,m; u 6= o) with respect to attributes yv can be calculated, denoted by

quo,v. At the same time, the collective CASD degree matrix Qv = (quo,v)m×m on each attribute yv
is obtained:

Qv = (quo,v)m×m =

x1 x2 · · · xm
x1
x2
...

xm











− q12,v · · · q1m,v
q21,v − · · · q2m,v
...

...
...

...

qm1,v qm2,v · · · −











(v= 1, 2, · · · ,n). (36)

Let quv denote the collective overall CASD degree for alternatives xu over other alternatives

with respect to attribute yv, where

quv =
1

m− 1

m
∑

o=1,o 6=u
quo,v. (37)

Then, the collective overall CASD degree matrix Q= (quv)m×n can be obtained

Q= (quv)m×n =

y1 y2 · · · yn
x1
x2
...

xm











q11 q12 · · · q1n
q21 q22 · · · q2n
...

...
...

...

qm1 qm2 · · · qmn











. (38)

4.3 Determination of Attribute Weight Vector

As mentioned in Section 3.1, the attribute weight vector is denoted by w= (w1,w2, · · · ,wn)T ,
satisfying 0 ≤ wv ≤ 1 (v = 1, 2, · · · ,n) and

∑n
v=1wv = 1. In this paper, three perspectives are

considered to obtain the attribute weights, which are differentiation between evaluation values,

relationship between attributes and the amount of information contained in evaluation values.
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4.3.1 From the Perspective of Differentiation between Evaluation Values

Let DEVuv = 1
m−1

m
∑

o=1,o 6=u
d(quv,qov) be the deviation between alternative xu and other alter-

natives on attribute yv, where d(quv,qov) = |quv− qov| indicates the distance between quv and

qov.

Next, let DEVv = 2
m(m−1)

m
∑

u=1

m
∑

o=u+1

d(quv,qov) be the total deviation of alternative xu on

attribute yv.

According to maximizing deviation approach [47], an attribute with a larger deviation value

among alternatives should be assigned a larger weight, and vice versa. Thus, Model 1 is

constructed as follows:

Model 1

maxZ1(w)=
n
∑

v=1

DEVvwv

s.t.







n
∑

v=1

(wv)
2 = 1

wv ≥ 0, (v= 1, 2, · · · ,n)
.

(39)

4.3.2 From the Perspective of Relationship between Attributes

Let RELvp= [
m
∑

u=1

(quv · qup)]/[
√

m
∑

u=1

(quv)
2 ·
√

m
∑

u=1

(qup)
2] be the correlation coef�cient between

attribute yv and attribute yp ( p 6= v).

Then, let RELv = 1
n−1

n
∑

p=1,p 6=v
[
m
∑

u=1

(quv · qup)]/[
√

m
∑

u=1

(quv)
2 ·
√

m
∑

u=1

(qup)
2] be the correlation coef-

�cient between attribute yv and all the other attributes.

From the perspective of correlation coef�cient [48], larger RELv means the elimination of

attribute yv has less in�uence on ordering and attribute yv should be assigned a smaller weight,

and vice versa. Based on correlation coef�cient, Model 2 is built as follows:

Model 2

maxZ2(w)=
n
∑

v=1

(1−RELv)wv

s.t.







n
∑

v=1

(wv)
2 = 1

wv ≥ 0, (v= 1, 2, · · · ,n)
.

(40)
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4.3.3 From the Perspective of the Amount of Information Contained in Evaluation Values

Let ENTv = − 1
lnm

m
∑

u=1

(ℓuv lnℓuv) be the information entropy of attribute yv, where ℓuv =

quv/
m
∑

u=1

quv.

It has been mentioned in Section 3.2.2 that information entropy is an important tool to

measure the uncertainty of the evaluation information. It is easily known that if the information

entropy of evaluations on attribute yv is small, the difference degree contained in evaluations on

attribute yv is great, which means the evaluations on attribute yv are informative and attribute

yv should be assigned a large weight, and vice versa [49]. Therefore, Model 3 is constructed as

follows:

Model 3

maxZ3(w)=
n
∑

v=1

(1−ENTv)wv

s.t.







n
∑

v=1

(wv)
2 = 1

wv ≥ 0, (v= 1, 2, · · · ,n)
.

(41)

4.3.4 A Comprehensive Tri-Objective Optimization Model

Combining Eqs. (39)–(41), a comprehensive tri-objective optimization model is built as

maxZ1(w)=
n
∑

v=1

DEVvwv

maxZ2(w)=
n
∑

v=1

(1−RELv)wv

maxZ3(w)=
n
∑

v=1

(1−ENTv)wv

s.t.







n
∑

v=1

(wv)
2 = 1

wv ≥ 0, (v= 1, 2, · · · ,n)
.

(42)

To solve the comprehensive tri-objective optimization model, we add three balance coef�cients

ψ1, ψ2 and ψ3 into Eq. (42) and convert it into a single-objective optimization model as:

Model 4

maxZ(w)=ψ1
2

m(m− 1)

n
∑

v=1

m
∑

u=1

m
∑

o=u+1

d(quv,qov)wv+ψ2

n
∑

v=1













1−
1

n− 1

n
∑

p=1,p 6=v

m
∑

u=1

(quv · qup)
√

m
∑

u=1

(quv)
2 ·
√

m
∑

u=1

(qup)
2













wv

+ψ3

n
∑

v=1

(1+
1

lnm

m
∑

u=1

(ℓuv lnℓuv))wv
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s.t.







n
∑

v=1

(wv)
2 = 1

wv ≥ 0, (v= 1, 2, · · · ,n)
, (43)

where ψ1, ψ2 and ψ3 are the balance coef�cients, satisfying 0≤ψ1, ψ2, ψ3 ≤ 1 and ψ1+ψ2+ψ3 =
1. The values of ψ1, ψ2 and ψ3 could be given by DMs in advance, according to the actual

situation and personal preference.

To solve Eq. (43), a Lagrange function is constructed as

L(w,λ)=ψ1
2

m(m−1)

n
∑

v=1

m
∑

u=1

m
∑

o=u+1

d(quv,qov)wv+ψ2

n
∑

v=1

(1−
1

n− 1

n
∑

p=1,p 6=v

m
∑

u=1

(quv·qup)
√

m
∑

u=1

(quv)
2·
√

m
∑

u=1

(qup)
2

)wv

+ψ3

n
∑

v=1

(1+
1

lnm

m
∑

u=1

(ℓuv lnℓuv))wv+ λ
2
(
n
∑

v=1

(wv)
2− 1),

(44)

where λ is a real number, denoting the Lagrange multiplier.

The global optimal solution can be derived by taking partial derivatives of wv and λ in

Eq. (44), such that

∂L(w,λ)

∂wv
=ψ1

2
m(m−1)

m
∑

u=1

m
∑

o=u+1

d(quv,qov)+ψ2(1−
1

n− 1

n
∑

p=1,p 6=v

m
∑

u=1

(quv·qup)
√

m
∑

u=1

(quv)
2·
√

m
∑

u=1

(qup)
2

)

+ψ3(1+
1

lnm

m
∑

u=1

(ℓuv lnℓuv))+ λwv = 0,

(45)

∂L(w,λ)

∂λ
=

1

2
(

n
∑

v=1

(wv)
2− 1)= 0. (46)

By solving Eqs. (45) and (46), the solution can be obtained

w∗
v =

ψ1
2

m(m−1)

m
∑

u=1

m
∑

o=u+1

d(quv,qov)+ψ2(1− 1
n−1

n
∑

p=1,p6=v

m
∑

u=1
(quv·qup)

√

m
∑

u=1
(quv)2·

√

m
∑

u=1
(qup)2

)+ψ3(1+ 1
lnm

m
∑

u=1

(ℓuv lnℓuv))

√

√

√

√

√

√

√

n
∑

v=1

(ψ1
2

m(m−1)

m
∑

u=1

m
∑

o=u+1

d(quv,qov)+ψ2(1− 1
n−1

n
∑

p=1,p6=v

m
∑

u=1
(quv·qup)

√

m
∑

u=1
(quv)2·

√

m
∑

u=1
(qup)2

)+ψ3(1+ 1
lnm

m
∑

u=1

(ℓuv lnℓuv)))2

. (47)

After normalizing w∗
v (v = 1, 2, · · · ,n) in Eq. (47), we can obtain the attribute weight vector

w= (w1,w2, · · · ,wn)T , where wv =w∗
v/

n
∑

v=1

w∗
v .

Model 4 enables DMs to make a tradeoff in the above three aspects. Multifaceted considera-

tions enhance the stability of the proposed method and the setting of balance coef�cients improves

the �exibility of the proposed method.



1778 CMES, 2022, vol.131, no.3

4.4 Obtaining the Ranking of Alternatives

Up till now, the collective overall CASD degree matrix Q= (quv)m×n and the attribute weight

vector w = (w1,w2, · · · ,wn)T have been obtained. Thus, the total CASD degree of xu can be

calculated as

qu =
n
∑

v=1

quvwv (u= 1, 2 · · · ,m). (48)

Based on the values of qu (u= 1, 2 · · · ,m), the ranking of alternatives is obtained. The larger

qu, the better the alternative xu.

4.5 Decision Steps for the Personalized Comprehensive Cloud-Based Method

A personalized comprehensive cloud-based method for heterogeneous MAGDM problem is

proposed in this sub-section. Particularly, the resolution procedures of the proposed method are

depicted in Fig. 12.

DMsÛ
weights

Individual original 

evaluation matrices

Individual cloud 

matrices

Collective 

cloud matrix

Collective 
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degree matrix

 The total CASD 

degree for alternatives
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Figure 12: Resolution procedures of the proposed method

As depicted in Fig. 12, the proposed method mainly includes �ve steps below:
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Step 1. Construct the individual original normalized evaluation matrix Re = (reuv)m×n as

Eq. (4).

DMs identify the feasible alternatives xu (u = 1, 2 · · · ,m) and determine related attributes

yv (v= 1, 2 · · · ,n) and their evaluation forms, such as LT, PLTS, or LHFS. Each DM gives original

evaluation matrix
⌢

R
e
= (

⌢
r
e

uv)m×n. Obtain the individual original normalized evaluation matrix

Re = (reuv)m×n by using p̃(l) = p(l)/
∑#L(p)

l=1
p(l), where

Re = (reuv)m×n =































si , if yv is bene�t attribute

neg(si ), if yv is cos t attribute

{s(l)(p(l))|s(l) ∈S}, if yv is bene�t attribute

{neg(s(l))(p(l))|s(l) ∈S}, if yv is cos t attribute

{(s(l), lh(s(l)))|s(l) ∈ S}, if yv is bene�t attribute

{(neg(s(l)), lh(s(l)))|s(l) ∈ S}, if yv is cos t attribute

.

Step 2. Transform the individual original normalized evaluation matrix Re = (reuv)m×n to the

individual cloud matrix Ce = (Ce
uv)m×n as Eq. (28).

Hesitant degree HDe, information entropy He and indeterminacy degree IDe for DM de are

calculated according to the individual original evaluation matrix Re = (reuv)m×n based on Eqs. (5),

(6) and (8)–(11). Then, the regulation parameters of entropy and hyper entropy for each DM

are calculated by Eqs. (7) and (12), respectively. LTs, PLTSs and LHFSs are transformed into

clouds, C-PLTSs and C-LHFSs by the improved transformation approaches in Sections 3.2 and

3.3, respectively.

Step 3. Aggregate the individual cloud matrices Ce = (Ce
uv)m×n (e = 1, 2, · · · ,k) into the col-

lective cloud matrix Cg = (C
g
uv)m×n as Eq. (31) with basic operations of clouds and CWAA

operator.

Based on Eq. (29), DM weight vector v= (̟1,̟2, · · · ,̟k)
T can be acquired according to the

regulation parameters ς e and ζ e of each DM.

Step 4. Transform the collective cloud matrix Cg = (C
g
uv)m×n to the collective overall CASD

degree matrix Q= (quv)m×n as Eq. (38).

Firstly, pairwise comparisons are made to judge the CASD relationships for alternatives

xu (u = 1, 2 · · · ,m) on each attribute yv according to Eq. (32). Then, the thresholds for Ex, En

and He are calculated based on Eqs. (33)–(35) and the CASD degrees are calculated according to

Table 4. At the same time, the collective CASD degree matrices Qv = (quo,v)m×m (v = 1, 2, · · · ,n)
on different attributes yv (v= 1, 2, · · · ,n) are obtained, as Eq. (36). Finally, calculate the collective

overall CASD degrees quv for alternatives xu (u = 1, 2 · · · ,m) over other alternatives on each

attribute yv by Eq. (37) and generate the collective overall CASD degree matrix Q= (quv)m×n.
Step 5. Generate the ranking order of all alternatives xu according to the decreasing order of

the total CASD degrees qu (u= 1, 2 · · · ,m).
Set the balance coef�cients ψ1, ψ2, ψ3 for Eq. (43). After obtaining the attribute weight vector

w= (w1,w2, · · · ,wn)T by Model 4, the total CASD degrees of xu (u= 1, 2 · · · ,m) can be calculated

by Eq. (48). Based on the values of qu (u= 1, 2 · · · ,m), the ranking of alternatives is obtained.
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5 Illustrative Example

In this section, the proposed method is applied to an example of emergency medical waste dis-

posal site selection in COVID-19. Furthermore, sensitivity analyses are conduced to demonstrate

the stability and �exibility of the proposed method.

5.1 Illustration of the Proposed Method

5.1.1 Background Description

At the end of 2019, COVID-19 broke out in various provinces and cities in China. The

amount of medical waste kept rising along with the number of con�rmed cases. The explosive

growth of medical waste occurred in many cities, and the lack of disposal capacity made the

situation more serious. In such an emergency situation, medical waste disposal becomes a special

battle�eld in the �ght against pneumonia. If these massive amounts of medical waste that may

carry the virus were not disposed in a safe and timely way, it was likely to cause secondary infec-

tions and further spread of COVID-19, which may result in a series of unimaginable aftermaths.

Generally, quali�ed medical waste disposal companies existed previously were completely at full

capacity in many cities during the outbreak of COVID-19. In order to cope with the increasing

amount of medical waste, many local governments adopted a series of emergency measures. One

of these measures was converting other waste disposal companies, such as industrial hazardous

waste disposal companies and solid waste disposal companies, to medical waste disposal sites

temporarily for emergency disposal of medical waste. The selection for emergency medical waste

disposal sites can be regarded as a heterogeneous MAGDM problem.

To select a suitable emergency medical waste disposal site from �ve alternatives

{x1,x2,x3,x4,x5}, a panel of four experts {d1,d2,d3,d4} were appointed to evaluate the �ve alter-

natives on �ve attributes: geographical location (y1), equipment (y2), process technologies (y3),

disposal capacity (y4) and transport capacity (y5). The �ve attributes all are qualitative bene�t

attributes. The LTS is prede�ned as S = {s1 : very bad ; s2 : bad; s3 : a little bad ; s4 : medium; s5 :

a little good; s6 : good; s7 : very good}. The evaluations for geographical location (y1) can be eval-

uated by LTs. PLTSs are used to evaluate equipment (y2) and process technologies (y3). LHFSs

are used to evaluate disposal capacity (y4) and transport capacity (y5). The evaluations of all

alternatives on the �ve attributes given by the four DMs are normalized and listed in Table 5.

5.1.2 Resolution Process by Using the Proposed Method of This Paper

The procedures are summarized in the following steps:

Step 1. The individual original normalized evaluation matrices Re = (reuv)5×5 (e= 1, 2, 3, 4) have

been obtained and presented in Table 5.

Step 2. Based on Eqs. (5)–(12), Hesitant degree HD, information entropy H, indeterminacy

degree ID, regulation parameters ς and ζ for each DM are calculated and presented in Table 6.

According to the proposed transformation approaches from LTs, PLTSs and LHFSs to clouds,

C-PLTSs and C-LHFSs, the individual original normalized evaluation matrices Re = (reuv)5×5 (e=
1, 2, 3, 4) have been transformed into individual cloud matrices Ce = (Ce

uv)5×5 (e= 1, 2, 3, 4). LSF2

Eq. (2) and a = 1.36 are adopted in this paper. All the individual cloud matrices are listed in

Table 7.
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Table 5: Individual original normalized evaluation matrices for different DMs

DM Alternative Attribute

y1 y2 y3 y4 y5

d1 x1 s6 {s4(0.6), s5(0.4)} {s5(0.7), s6(0.3)} {(s4, 0.4), (s5, 0.5)} {(s6, 0.8)}
x2 s4 {s5(0.1), s6(0.2), s7(0.7)} {s6(1)} {(s5, 0.2), (s6, 0.3)} {(s4, 0.3), (s5, 0.2)}
x3 s5 {s5(0.5), s6(0.5)} {s2(0.1), s3(0.65), s4(0.25)} {(s4, 0.5), (s5, 0.4)} {(s1, 0.3), (s2, 0.2)}
x4 s3 {s3(0.6), s4(0.4)} {s6(0.25), s7(0.75)} {(s6, 0.2), (s7, 0.4)} {(s3, 0.5), (s4, 0.3)}
x5 s4 {s6(0.7), s7(0.3)} {s4(0.4), s5(0.6)} {(s5, 0.3), (s6, 0.3), (s7, 0.2)} {(s4, 0.4), (s5, 0.7)}

d2 x1 s6 {s7(1)} {s4(0.6), s5(0.4)} {(s4, 0.7)} {(s4, 0.7)}
x2 s7 {s6(1)} {s6(0.55), s7(0.45)} {(s6, 0.5), (s7, 0.7)} {(s6, 0.8), (s7, 0.4)}
x3 s5 {s6(1)} {s3(0.2), s4(0.8)} {(s5, 0.6)} {(s3, 0.9), (s4, 0.6)}
x4 s3 {s2(0.6), s3(0.4)} {s6(1)} {(s5, 0.5), (s6, 0.8)} {(s6, 0.8)}
x5 s2 {s6(0.3), s7(0.7)} {s6(0.1), s7(0.9)} {(s6, 0.7), (s7, 0.5)} {(s5, 0.7), (s6, 0.8)}

d3 x1 s6 {s4(1)} {s5(0.1), s6(0.9)} {(s3, 1)} {(s7, 0.9)}
x2 s7 {s4(0.2), s5(0.8)} {s6(1)} {(s5, 0.8), (s6, 0.9)} {(s6, 1)}
x3 s5 {s4(1)} {s3(1)} {(s4, 1)} {(s4, 1)}
x4 s3 {s3(1)} {s6(0.9), s7(0.1)} {(s6, 0.9)} {(s3, 1)}
x5 s2 {s6(1)} {s7(1)} {(s6, 0.9)} {(s5, 0.9), (s6, 0.9)}

d4 x1 s4 {s3(0.6), s4(0.4)} {s4(0.6), s5(0.4)} {(s3, 0.8)} {(s3, 1)}
x2 s5 {s5(0.6), s6(0.4)} {s6(1)} {(s5, 0.9)} {(s3, 0.3), (s4, 0.6)}
x3 s6 {s6(1)} {s3(0.55), s4(0.45)} {(s4, 0.5), (s5, 0.6)} {(s1, 0.7), (s2, 0.6)}
x4 s4 {s3(0.8), s4(0.2)} {s5(0.3), s6(0.7)} {(s6, 0.7)} {(s2, 0.5)}
x5 s5 {s7(1)} {s7(1)} {(s7, 0.6, 0.7)} {(s5, 0.8), (s6, 0.7)}

Table 6: Calculation results of some related indexes for DMs

DM η HD H ID ς ζ

d1 2.05 0.2929 0.3163 0.6033 1.2258 0.5388

d2 1.6 0.2286 0.1783 0.325 1.1329 0.3214

d3 1.25 0.1786 0.0591 0.055 1.0567 0.08

d4 1.5 0.2143 0.1962 0.305 1.1115 0.3213

Table 7: Individual cloud matrices for different DMs

DM Alternative Attribute

y1 y2 y3 y4 y5

d1 x1 (7.8031, 0.7788,

0.3423)

(5.4413, 0.5195,

0.2283)

(6.6099, 0.6331,

0.2783)

(5.6086, 0.5319,

0.2338)

(7.8031, 0.7788,

0.3423)

x2 (5, 0.4853, 0.2133) (9.293, 0.854,

0.3754)

(7.8031, 0.7788,

0.3423)

(7.0278, 0.6877,

0.3023)

(5.5683, 0.5289,

0.2325)

x3 (6.1878, 0.5727,

0.2517)

(6.9734, 0.6808,

0.2992)

(3.9486, 0.5742,

0.2524)

(5.5797, 0.5298,

0.2329)

(1.0657, 0.8421,

0.3702)

x4 (3.8122, 0.5727,

0.2517)

(4.2722, 0.5405,

0.2376)

(9.5102, 0.8726,

0.3835)

(8.9592, 0.8435,

0.3707)

(4.3713, 0.5334,

0.2344)

x5 (5, 0.4853, 0.2133) (8.4004, 0.8129,

0.3573)

(5.7278, 0.5405,

0.2376)

(7.9979, 0.7609,

0.3344)

(5.6323, 0.5336,

0.2345)

(Continued)
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Table 7 (continued)

DM Alternative Attribute

y1 y2 y3 y4 y5

d2 x1 (7.8031, 0.7198,

0.2042)

(10, 0.8296,

0.2354)

(5.4474, 0.4806,

0.1363)

(5, 0.4485, 0.1272) (5, 0.4485, 0.1272)

x2 (10, 0.8296,

0.2354)

(7.8031, 0.7198,

0.2042)

(8.7712, 0.7701,

0.2185)

(8.9227, 0.7777,

0.2206)

(8.8599, 0.7746,

0.2197)

x3 (6.1878, 0.5293,

0.1502)

(7.8031, 0.7198,

0.2042)

(4.8092, 0.4625,

0.1312)

(6.1878, 0.5293,

0.1502)

(4.384, 0.4921,

0.1396)

x4 (3.8122, 0.5293,

0.1502)

(2.8373, 0.651,

0.1847)

(7.8031, 0.7198,

0.2042)

(7.0257, 0.6353,

0.1802)

(7.8031, 0.7198,

0.2042)

x5 (2.1969, 0.7198,

0.2042)

(9.3789, 0.8001,

0.227)

(9.8327, 0.8218,

0.2331)

(8.8812, 0.7756,

0.22)

(7.0036, 0.6327,

0.1795)

d3 x1 (7.8031, 0.6714,

0.0508)

(5, 0.4184, 0.0317) (7.6838, 0.6599,

0.05)

(3.8122, 0.4937,

0.0374)

(10, 0.7738,

0.0586)

x2 (10, 0.7738,

0.0586)

(5.9868, 0.4818,

0.0365)

(7.8031, 0.6714,

0.0508)

(7.0012, 0.5899,

0.0447)

(7.8031, 0.6714,

0.0508)

x3 (6.1878, 0.4937,

0.0374)

(5, 0.4184, 0.0317) (3.8122, 0.4937,

0.0374)

(5, 0.4184, 0.0317) (5, 0.4184, 0.0317)

x4 (3.8122, 0.4937,

0.0374)

(3.8122, 0.4937,

0.0374)

(7.9834, 0.6804,

0.0515)

(7.8031, 0.6714,

0.0508)

(3.8122, 0.4937,

0.0374)

x5 (2.1969, 0.6714,

0.0508)

(7.8031, 0.6714,

0.0508)

(10, 0.7738,

0.0586)

(7.8031, 0.6714,

0.0508)

(6.9955, 0.5893,

0.0446)

d4 x1 (5, 0.4401, 0.1272) (4.2757, 0.4899,

0.1416)

(5.4488, 0.4716,

0.1363)

(3.8122, 0.5193,

0.1501)

(3.8122, 0.5193,

0.1501)

x2 (6.1878, 0.5193,

0.1501)

(6.7982, 0.5968,

0.1725)

(7.8031, 0.7062,

0.2041)

(6.1878, 0.5193,

0.1501)

(4.4396, 0.4791,

0.1385)

x3 (7.8031, 0.7062,

0.2041)

(7.8031, 0.7062,

0.2041)

(4.345, 0.4854,

0.1403)

(5.6031, 0.4819,

0.1393)

(1.0895, 0.7624,

0.2204)

x4 (5, 0.4401, 0.1272) (4.0077, 0.5071,

0.1466)

(7.346, 0.6587,

0.1904)

(7.8031, 0.7062,

0.2041)

(2.1969, 0.7062,

0.2041)

x5 (6.1878, 0.5193,

0.1501)

(10, 0.8139,

0.2353)

(10, 0.8139,

0.2353)

(10, 0.8139,

0.2353)

(6.988, 0.619,

0.1789)

Step 3. DMs’ weights are calculated by Eq. (29). With basic operations of clouds, CWAA

operator, and DM weight vector v = (̟1,̟2,̟3,̟4)
T = (0.1989, 0.2488, 0.3, 0.2523)T , the

collective cloud matrix Cg = (Cg
uv)5×5 is obtained and shown in Table 8.

Step 4. Compare the alternatives xu (u = 1, 2 · · · , 5) in pair and determinate the CASD

relationships on each attribute yv by Eq. (32). The CASD degrees are calculated according to

Eqs. (33)–(35) and Table 4. The collective CASD degree matrices Qv = (quo,v)5×5 (v = 1, 2 · · · , 5)
are shown in Table 9. Subsequently, the collective overall CASD degrees for alternative xu (u =
1, 2 · · · , 5) over other alternatives on each attribute yv are calculated by Eq. (37). The collective

overall CASD degree matrix Q= (quv)5×5 is presented in Table 10.

Step 5. Balance coef�cients ψ1 = 1
3
, ψ2 = 1

3
, ψ3 = 1

3
are set for Eq. (43) in this exam-

ple. By Model 4, the attribute weight vector is obtained as w = (w1,w2,w3,w4,w5)
T =

(0.2368, 0.1886, 0.1664, 0.2036, 0.2046)T .
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Table 8: Collective cloud matrix

Alternative Attribute

y1 y2 y3 y4 y5

x1 (7.0959,

0.6585,

0.1963)

(6.1492,

0.5814,

0.1718)

(6.3498,

0.5691,

0.1596)

(4.4651,

0.4975,

0.1449)

(6.7577,

0.6468,

0.1845)

x2 (8.0437,

0.6825,

0.1719)

(7.301, 0.6584,

0.2152)

(8.044, 0.7275,

0.2156)

(7.2794,

0.6457,

0.1912)

(6.773, 0.6309,

0.1685)

x3 (6.5953,

0.5778,

0.1707)

(6.7972, 0.632,

0.1975)

(4.2219,

0.5013,

0.1495)

(5.563, 0.4864,

0.1469)

(3.0776,

0.6328,

0.2113)

x4 (4.1119,

0.5069,

0.1507)

(3.7104,

0.5491,

0.1599)

(8.0814,

0.7271,

0.2227)

(7.8396,

0.7092,

0.2161)

(4.509, 0.62,

0.1796)

x5 (3.7613,

0.6157,

0.1609)

(8.8683,

0.7701,

0.2301)

(9.1087,

0.7569,

0.1994)

(8.6644,

0.7531,

0.2214)

(6.7245,

0.5976,

0.1662)

Table 9: Collective CASD degree matrices on different attributes

x1 x2 x3 x4 x5 x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

y1 y2 y3
x1 - 0.4259 0.5036 1.0000 1.0000 - 0.4676 0.4638 1.0000 0.0000 - 0.5000 0.6141 0.5000 0.0000

x2 0.5741 - 0.5000 1.0000 1.0000 0.5324 - 0.5409 1.0000 0.5000 0.5000 - 1.0000 0.4959 0.4097

x3 0.4964 0.5000 - 1.0000 1.0000 0.5362 0.4591 - 1.0000 0.5000 0.3859 0.0000 - 0.0000 0.0000

x4 0.0000 0.0000 0.0000 - 0.5759 0.0000 0.0000 0.0000 - 0.0000 0.5000 0.5041 1.0000 - 0.4132

x5 0.0000 0.0000 0.0000 0.4241 - 1.0000 0.5000 0.5000 1.0000 - 1.0000 0.5903 1.0000 0.5868 -

y4 y5
x1 - 0.0000 0.3669 0.0000 0.0000 - 0.4968 1.0000 1.0000 0.5000

x2 1.0000 - 0.5000 0.4624 0.4547 0.5032 - 1.0000 1.0000 0.5000

x3 0.6331 0.5000 - 0.0000 0.0000 0.0000 0.0000 - 0.2076 0.0000

x4 1.0000 0.5376 1.0000 - 0.4319 0.0000 0.0000 0.7924 - 0.0000

x5 1.0000 0.5453 1.0000 0.5681 - 0.5000 0.5000 1.0000 1.0000 -

Table 10: Collective overall CASD degree matrix

y1 y2 y3 y4 y5

x1 0.7324 0.4828 0.4035 0.0917 0.7492

x2 0.7685 0.6433 0.6014 0.6043 0.7508

x3 0.7491 0.6238 0.0965 0.2833 0.0519

x4 0.1440 0.0000 0.6043 0.7424 0.1981

x5 0.1060 0.7500 0.7943 0.7784 0.7500

With the obtained attribute weight vector, the total CASD degrees of qu (u = 1, 2 · · · , 5) are

calculated by Eq. (48) and the results are listed as follows:

q1 = 0.5036, q2 = 0.68, q3 = 0.3794, q4 = 0.3263, q5 = 0.6107
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Thus, the ranking order is x2 ≻ x5 ≻ x1 ≻ x3 ≻ x4 and x2 is the optimal alternative.

5.2 Sensitivity Analyses

LSFs are strictly monotonously increasing with respect to the subscript i. In linguistic eval-

uation scales, the absolute deviation of semantics between any two adjacent LTs may increase,

decrease or remain unchanged with increasing linguistic subscripts. DMs can choose different

LSFs according to the actual situation and personal preference. In Eq. (43), ψ1, ψ2, ψ3 are

considered as the balance coef�cients for each perspective of attribute weights obtaining, satisfying

0≤ψ1, ψ2, ψ3 ≤ 1 and ψ1+ψ2+ψ3 = 1. The values of ψ1, ψ2, ψ3 are given by DMs in advance.

This sub-section takes different LSFs and different balance coef�cients to solve the above example.

The corresponding decision results are listed in Table 11 and shown in Fig. 13. The average

differences of total CASD degrees between two adjacent alternatives in ranking results are shown

in Fig. 14.

Table 11: Decision results for different LSFs and balance coef�cients

No. LFS Balance coef�cients Total CASD degrees Ranking of alternatives

1 LFS1 ψ1 = 1
3
, ψ2 = 1

3
, ψ3 = 1

3
q1 = 0.4857, q2 = 0.6960,

q3 = 0.3404, q4 = 0.3356,

q5 = 0.6421

x2 ≻ x5 ≻ x1 ≻ x3 ≻ x4

2 ψ1 = 1, ψ2 = 0, ψ3 = 0 q1 = 0.4832, q2 = 0.6946,

q3 = 0.3287, q4 = 0.3370,

q5 = 0.6564

x2 ≻ x5 ≻ x1 ≻ x4 ≻ x3

3 ψ1 = 0, ψ2 = 1, ψ3 = 0 q1 = 0.4871, q2 = 0.7,

q3 = 0.3688, q4 = 0.3383,

q5 = 0.6056

x2 ≻ x5 ≻ x1 ≻ x3 ≻ x4

4 ψ1 = 0, ψ2 = 0, ψ3 = 1 q1 = 0.4902, q2 = 0.6936,

q3 = 0.3263, q4 = 0.3274,

q5 = 0.6624

x2 ≻ x5 ≻ x1 ≻ x4 ≻ x3

5 LFS2 (a= 1.36 is

set in this

example)

ψ1 = 1
3
, ψ2 = 1

3
, ψ3 = 1

3
q1 = 0.5036, q2 = 0.68,

q3 = 0.3794, q4 = 0.3263,

q5 = 0.6107

x2 ≻ x5 ≻ x1 ≻ x3 ≻ x4

6 ψ1 = 1, ψ2 = 0, ψ3 = 0 q1 = 0.5004, q2 = 0.6782,

q3 = 0.363, q4 = 0.3333,

q5 = 0.6251

x2 ≻ x5 ≻ x1 ≻ x3 ≻ x4

7 ψ1 = 0, ψ2 = 1, ψ3 = 0 q1 = 0.4967, q2 = 0.6804,

q3 = 0.4027, q4 = 0.3365,

q5 = 0.5836

x2 ≻ x5 ≻ x1 ≻ x3 ≻ x4

8 ψ1 = 0, ψ2 = 0, ψ3 = 1 q1 = 0.5247, q2 = 0.6846,

q3 = 0.3847, q4 = 0.2888,

q5 = 0.6173

x2 ≻ x5 ≻ x1 ≻ x3 ≻ x4

9 LFS3

(α = β = 0.8 is set

in this example)

ψ1 = 1
3
, ψ2 = 1

3
, ψ3 = 1

3
q1 = 0.4574, q2 = 0.7171,

q3 = 0.3310, q4 = 0.3436,

q5 = 0.6509

x2 ≻ x5 ≻ x1 ≻ x4 ≻ x3

10 ψ1 = 1, ψ2 = 0, ψ3 = 0 q1 = 0.4522, q2 = 0.7159,

q3 = 0.3183, q4 = 0.3453,

q5 = 0.6682

x2 ≻ x5 ≻ x1 ≻ x4 ≻ x3

(Continued)
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Table 11 (continued)

No. LFS Balance coef�cients Total CASD degrees Ranking of alternatives

11 ψ1 = 0, ψ2 = 1, ψ3 = 0 q1 = 0.4694, q2 = 0.7202,

q3 = 0.3637, q4 = 0.3395,

q5 = 0.6071

x2 ≻ x5 ≻ x1 ≻ x3 ≻ x4

12 ψ1 = 0, ψ2 = 0, ψ3 = 1 q1 = 0.4522, q2 = 0.7155,

q3 = 0.3131, q4 = 0.3455,

q5 = 0.6737

x2 ≻ x5 ≻ x1 ≻ x4 ≻ x3

Figure 13: Demonstration of ranking results

Figure 14: Average differences of total CASD degrees

As can be seen from Table 11 and Fig. 13, the ranking order of alternatives is x2 ≻ x5 ≻ x1 ≻
x3 ≻ x4 or x2 ≻ x5 ≻ x1 ≻ x4 ≻ x3. Besides, it is easy to discover from Table 11 that the top three

alternatives are always x2, x5 and x1, which indicates that the alteration of LSFs and balance
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coef�cients has only little impact on the ranking order of the alternatives. Therefore, the proposed

method has high stability in determining the optimal alternative.

Furthermore, the proposed method can handle various decision situations and meet different

DMs’ preferences by taking different LSFs and balance coef�cients. Thus, the �exibility of the

proposed method can be re�ected by the acquired ranking results derived by various selections of

LSFs and balance coef�cients.

6 Comparison Analyses and Discussion

To justify the advantages of our proposal, comparison analyses with methods based on cloud

and other classical MAGDM methods are conducted. Besides, a summary of transformation

approaches with different evaluation forms is presented.

6.1 Comparison with Methods Based on Cloud

Peng et al. [23] proposed a new method based on cloud to handle MAGDM problems with

PLTSs. Hu [32] proposed two methods based on comprehensive cloud aggregation operator to

solve MAGDM problems with LHFSs. This paper proposes a novel method based on cloud for

heterogeneous MAGDM, which could handle MAGDM problems with LT, PLTS, LHFS or one

of them. Obviously, the aforesaid methods all are based on cloud. The proposed method could

handle MAGDM problems in [23,32], while Peng et al.’s method [23] and Hu’s methods [32] could

not solve the problem of this paper. Thus, the proposed method has wider applicability. Except

for wider applicability, other important distinguishing factors and superiorities of the proposed

method are stated as follows:

(1) The cloud in [23] contains �ve characteristics, yet the values of left and right entropy

are averaged into one in this paper, which greatly reduce the complexity of the follow-

ing calculation. The transformation from LTs to clouds in [32] is based on the golden

radio, while it is based on LSFs in this paper. The selection for LSFs and its related

parameters makes the transformation more �exible and practical. In addition, this paper

proposes regulation parameters for entropy and hyper entropy. DMs’ personalities can be

re�ected with the incorporation of regulation parameters in the transformation from LTs to

clouds. Moreover, the modi�ed ratios of LTs decrease the loss and distortion of evaluation

information in the transformation from PLTSs (LHFSs) to C-PLTSs (C-LHFSs).

(2) The method in [23] determines the attribute weights only via maximizing deviation, while

three perspectives are considered to obtain the attribute weights in this paper. Besides, the

setting of balance coef�cients enhances the �exibility of the proposed method. Moreover,

three steps are needed to obtain attribute weights in [23], including determining the indi-

vidual weights of criteria, determining the weights associated with groups (equivalent to

DMs in this paper) and calculating the overall weights of attributes. By contrast, only

one step is needed to obtain attribute weights by the proposed method, which reduces the

complexity of the calculation greatly.

(3) The proposed approach to determining DMs’ weights is superior to [32]. Hu [32] and this

paper both consider the number of LTs and corresponding indeterminacy degree in LHFS.

However, if all the DMs only use one LT with different memberships in all LHFSs, the

determination approach of DMs’ weights in [32] becomes invalid. For example, d1 and d2
give their evaluation matrices as follows:
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It can be seen that d1 and d2 does not have the same con�dence for their own evaluation

matrices, but they will be assigned the same weight in [32]. However, d1 and d2 will be assigned

different weights in this paper for their different membership for LTs. Obviously, the determination

approach of DMs’ weights in this paper is more reasonable.

(4) The ranking of alternatives is based on the expected score values of clouds in [32]. The

expected score values of clouds sometimes are unstable and may lead to inaccurate decision

results. By contrast, the ranking of alternatives is based on the total CASD degree in this

paper. Obviously, the ranking approach of this paper is more stable.

6.2 Comparison with Other Classical MAGDMMethods

Lin et al. [50] put forward two novel TOPSIS-ScoreC-PLTS and VIKOR-ScoreC-PLTS meth-

ods to handle MAGDM problems with PLTSs. This paper proposes a personalized comprehensive

cloud-based method for heterogeneous MAGDM, which could handle MAGDM problems with

LT, PLTS, LHFS or one of them. To justify the advantages of our proposal, comparison analyses

with Lin et al.’s method [50] are conducted as follows:

(1) Solve the adapted example of this paper by the methods in [50]

Since Lin et al.’s method just cloud handle the MAGDM problems with PLTSs, we only retain

the evaluations on y1, y2 and y3 in the site selection example of emergency medical waste disposal

and replace Eq. (12) by ζ e = logρ2(H
e + 1). The adapted problem is dealt with the TOPSIS-

ScoreC-PLTS method in [50], the VIKOR-ScoreC-PLTS method in [50] and the proposed method,

respectively. The ranking results are displayed in Table 12.

Table 12: Ranking results with different methods

Method Ranking result

TOPSIS-ScoreC-PLTS method in [50] x2 ≻ x5 ≻ x1 ≻ x3 ≻ x4
VIKOR-ScoreC-PLTS method in [50] x2 ≻ x1 ≻ x3 ≻ x5 ≻ x4
Proposed method of this paper x2 ≻ x1 ≻ x5 ≻ x3 ≻ x4

It is easy to �nd that x2 is always the optimal alternative and x4 is always the worst

alternative, which shows the effectiveness of the proposed method.

(2) Solve the example in [50] by the proposed method of this paper

The proposed method could handle MAGDM problems with LT, PLTS, LHFS or one

of them. As a result, the proposed method could settle the example in [50] directly and the

calculation results are as follows:

DM weight vector: v= (̟1,̟2,̟3,̟4)
T = (0.2415, 0.2399, 0.2545, 0.2641)T .

Attribute weight vector: w= (w1,w2,w3,w4,w5)
T = (0.2071, 0.2331, 0.1871, 0.2205, 0.1523)T .

The total CASD degrees: q1 = 0.6808, q2 = 0.4606, q3 = 0.3932, q4 = 0.4654.
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Therefore, the �nal ranking order is x1 ≻ x4 ≻ x2 ≻ x3 and x1 is the optimal alternative.

The ranking order by method in [50] is x1 ≻ x2 ≻ x3 ≻ x4 and x1 ≻ x3 ≻ x2 ≻ x4. No matter

by method in [50] or the proposed method, x1 is the best alternative. However, the ranking of the

rest alternatives differs greatly. Obviously, the most remarkable difference is the ranking order of

x4. After analysis, it is easily found that equal weights are given to each DM directly in [50], while

higher weights are given to DMs with more informative evaluations in this paper. DMs d3 and d4
are given higher weights for their informative evaluations and they give overwhelming evaluations

to x4 on y1. Thus, the ranking of x4 improves a lot by the proposed method. It is clear that the

proposed method of this paper is more objective and practical.

6.3 Comparison with Other Transformation Approaches

Previous studies [22–27,30–34] have proposed a lot of transformation approaches from LT and

its’ extended forms to cloud and comprehensive clouds. A speci�c summary is shown in Table 13.

Table 13: A summary of transformation approaches with different evaluation forms

Approach The form

of

evaluation

Probability Membership Interval

concept

Personality

of DMs

Wang et al. [22] LT - - - -

Wang et al. [24] LT - - - Yes

Zhu et al. [25]

and Hu [32]

LT and LHFS - Yes - -

Peng et al. [23] LT and PLTS Yes - - -

Zhou et al. [31] LT and HFLTS - - - -

Mao et al. [26] LT and Interval-

Valued Hesitant

Fuzzy Linguistic

Set

Yes Yes

Peng et al. [27] LT and Uncertain

Z-number

- - Yes -

Jia et al. [30] LT, Atanassov’s

interval-valued

Intuitionistic fuzzy

sets and Z-numbers

- Yes Yes -

Wang et al. [33] LT and

Unbalanced

linguistic

distribution

assessments

Yes - - -

Wang et al. [34] LT and PLTS Yes - - -

Transformation

approaches of

this paper

LT, PLTS and

LHFS

Yes Yes - Yes
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In summary, we �nd that most existing studies can only process LTs, or LTs with probability,

or LTs with membership or LTs with interval concept. However, this paper provides the trans-

formation approaches for LTs, LTs with probability and LTs with membership, simultaneously.

Moreover, there are few studies that take DMs’ personalities into account during the transfor-

mation process. Although Wang et al. [24] introduced overlap parameter into the transformation

process to re�ect the DMs’ personality, the determination of overlap parameter is a little sub-

jective. This paper proposes regulation parameters for entropy and hyper entropy and further

incorporates them into the transformation process from LTs to clouds to re�ect the different

personalities of DMs. It is worth emphasizing that the determination of regulation parameters

is totally objective. Apparently, the proposed transformation approaches of this paper are more

applicable and effective.

7 Conclusion

This paper develops a personalized comprehensive cloud-based method for heterogeneous

MAGDM, in which the evaluations of alternatives on attributes are represented as LTs, PLTSs

and LHFSs. The validity of the proposed method is demonstrated with a site selection example

of emergency medical waste disposal in COVID-19. The effectiveness, stability, �exibility and

superiorities of the proposed method are proven by sensitivity and comparison analyses, respec-

tively. Compared with the existing methods, the proposed method of this paper has the following

prominent superiorities:

(1) With the proposed regulation parameters, the width and thickness of clouds for the corre-

sponding LTS are different for different DMs, which makes the DMs’ personalities can be

re�ected in clouds. Besides, a novel approach to obtaining DM weight vector is constructed

based on the proposed regulation parameters.

(2) The new transformation approaches from PLTS and LHFS to C-PLTS and C-LHFS

decrease the loss and distortion of evaluation information.

(3) CASD relationship and CASD degree are initiated in this paper to compare clouds. With

CASD relationship and CASD degree, alternatives in the form of clouds can be ranked

and the ranking results are stable and effective. This innovation provides new perspective

for pairwise comparisons of clouds.

(4) The comprehensive tri-objective programing constructed in this paper enables DMs to

make a tradeoff among three different aspects. Multifaceted considerations enhance the

stability of the proposed method and the setting of balance coef�cients improves the

�exibility of the proposed method.

Although an example of emergency medical waste disposal site selection in COVID-19 is

illustrated to the effectiveness of the proposed method, and it is expected to be applied to more

real-life decision-making problems, such as investment selection, supply chain management, and

so on. More effective transformation approaches for other evaluation forms, especially LTs with

interval concept are waiting for us to come up with and apply them to heterogeneous MAGDM

problems. Additionally, how to extend some classical decision-making methods to heterogeneous

MAGDM based on cloud is also very interesting and deserves to be studied in the future.
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