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ABSTRACT

Interval-valued Pythagorean fuzzy soft set (IVPFSS) is a generalization of the interval-valued intuitionistic fuzzy
soft set (IVIFSS) and interval-valued Pythagorean fuzzy set (IVPFS). The IVPFSS handled more uncertainty
comparative to IVIFSS; it is the most significant technique for explaining fuzzy information in the decision-making
process. In this work, some novel operational laws for IVPFSS have been proposed. Based on presented operational
laws, two innovative aggregation operators (AOs) have been developed such as interval-valued Pythagorean fuzzy
soft weighted average (IVPFSWA) and interval-valued Pythagorean fuzzy soft weighted geometric (IVPFSWG)
operators with their fundamental properties. A multi-attribute group decision-making (MAGDM) approach has
been established utilizing our developed operators. A numerical example has been presented to ensure the validity
of the proposedMAGDM technique. Finally, comparative studies have been given between the proposed approach
and some existing studies. The obtained results through comparative studies show that the proposed technique is
more credible and reliable than existing approaches.
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1 Introduction

MAGDM is considered as the most appropriate technique to find the finest alternative from
all possible alternatives, following criteria or attributes. Conventionally, it is supposed that all
information that accesses the alternative in terms of attributes and their corresponding weights
are articulated in the form of crisp numbers. On the other hand, in real-life circumstances, most
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of the decisions are taken in situations where the objectives and limitations are usually indefinite
or ambiguous. To overcome such ambiguities and anxieties, Zadeh offered the notion of the fuzzy
set (FS) [1], a prevailing tool to handle the obscurities and uncertainties in decision making (DM).
Such a set allocates to all objects a membership value ranging from 0 to 1. Mostly, experts
consider membership and a non-membership value in the DM process which cannot be handled
by FS. Atanassov [2] introduced the idea of the intuitionistic fuzzy set (IFS) to overcome the
aforementioned limitation. In 2011, Wang et al. [3] presented numerous operations on IFS, such
as Einstein product, Einstein sum, etc., and constructed some novel AOs. They also discussed
some important properties of these operators and utilized their proposed operators to resolve
multi-attribute decision making (MADM). Atanassov [4] presented a generalized form of IFS in
the light of ordinary interval values, called interval-valued intuitionistic fuzzy set (IVIFS). Garg
et al. [5] extended the concept of IFS and presented a novel concept of the cubic intuitionistic
fuzzy set (CIFS) which is a successful tool to represent vague data by embedding both IFS and
IVIFS directly. They also discussed several desirable properties of CIFS.

The above-mentioned models have been well-recognized by the specialists but the existing
IFS is unable to handle the inappropriate and vague data because it is considered to envi-
sion the linear inequality between the membership and non-membership grades. For example, if
decision-makers choose membership and non-membership values 0.9 and 0.6 respectively, then
the above-mentioned IFS theory is unable to deal with it because 0.9 + 0.6 ≥ 1. To resolve
the aforesaid limitation, Yager [6] presented the idea of the Pythagorean fuzzy set (PFS) by
amending the basic condition κ + δ ≤ 1 to κ2 + δ2 ≤ 1 and developed some results associated
with score function and accuracy function. Rahman et al. [7] developed the Pythagorean fuzzy
Einstein weighted geometric operator and presented a MAGDM methodology utilizing their
proposed operator. Zang et al. [8] developed some basic operational laws and prolonged the
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method to resolve
multi-criteria decision-making (MCDM) complications for PFS information. Wei et al. [9] offered
the Pythagorean fuzzy power AOs along with basic characteristics, they also established a DM
technique to resolve MADM difficulties based on presented operators. Wang et al. [10] offered
the interaction operational laws for Pythagorean fuzzy numbers (PFNs) and developed power
Bonferroni mean operators. To assess the professional health risk, IIbahar et al. [11] offered
the Pythagorean fuzzy proportional risk assessment technique. Zhang [12] proposed a novel DM
approach based on similarity measures to resolve multi-criteria group decision making (MCGDM)
difficulties for the PFS.

All of the aforementioned techniques have a wide range of applications, but owing to their
ineffectiveness, they have several restrictions with the parameterization tool. Presenting a solution
to this type of uncertainty and obfuscation Molodtsov [13] established the idea of soft sets (SS)
and described some basic operations with their characteristics to handle the above-mentioned
confusion and ambiguity. Maji et al. [14] expanded the concept of SS and developed many basic
and binary operations for it. Maji et al. [15] developed the fuzzy soft set with some desirable
properties by merging two existing notions FS and SS. Maji et al. [16] developed the notion
of the intuitionistic fuzzy soft set (IFSS) and some fundamental operations with their necessary
properties. Garg et al. [5] presented the cubic IFSS and established some AOs for cubic IFSS.
They also planned a DM technique based on their developed operators. Zulqarnain et al. [17]
planned the TOPSIS method based on the correlation coefficient for interval-valued IFSS to solve
MADM problems. Jiang et al. [18] introduced the notion of the interval-valued intuitionistic
fuzzy soft set (IVIFSS) and discussed some of their basic properties. Narayanamoorthy et al. [19]
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proposed the score function for a normal wiggly hesitant fuzzy set and utilized it to expose the
deepest ideas hidden in the thought-level of the decision-makers. Narayanamoorthy et al. [20]
introduced the hesitant fuzzy subjective and objective weight integrated method to find weights
under hesitant fuzzy information. They also presented a novel ranking methodology for hesitant
fuzzy sets. Ramya et al. [21] developed the interval-valued hesitant Pythagorean fuzzy set under
the normal wiggly mathematical methodology and used it to solve the MCDM problem. Peng
et al. [22] merged two well-known theories PFS and SS and offered the concept of Pythagorean
fuzzy soft set (PFSS). Zulqarnain et al. [23] developed the AOs for PFSS with their application for
the green supplier chain management. Zulqarnain et al. [24] introduced an advanced form of AOs
considering the interaction and construct a DM approach based on their developed interactive
AOs. Smarandache [25] prolonged the idea of SS to hypersoft sets (HSS) by substituting the
single-parameter function f with a multi-parameter (sub-attribute) function. He privileges that
HSS proficiently contracts with inexact data comparative to SS.

MAGDM is a very effective and well-known tool to examine fuzzy data more effectively.
Therefore, it is obvious from the published literature that the interval-valued structures are more
general and increase more consideration in decision-making difficulties. The choice of vehicle is
a key part of real-life and will advise on complications of MAGDM. Lack of thinking about
the ambiguity of alternative associations will be the core motivation for some MAGDM concerns
about the undesirable consequences. By using a wealth of existing content, it contains previous
criticisms and suppressed sensitivities. Many logical and scientific tools/procedures are offended in
the literature for choosing the most suitable vehicle. As far as we know, there is currently no work
on the AOs of IVPFSS. Therefore, this article proposes some operational laws for interval-valued
Pythagorean fuzzy soft numbers (IVPFSN). The presented IVPFSN is well worth observing the
inaccurate information that occurs in the complications of daily life. Therefore, the main purpose
of this work is to propose new IVPFSWA and IVPFSWG operators based on the established
operational laws. An algorithm based on the proposed operators to solve the decision-making
problem is proposed. To prove the effectiveness of the proposed decision-making method, we
use a numerical example to illustrate it. The main benefit of the proposed operator is that the
proposed operator can reduce to IVIFSS and IVFSS operators under some specific conditions of
unconfidence. The organization of this paper is given as follows: Section 2 of this paper consists
of some basic concepts which help us to develop the structure of the following research. In
Section 3, some novel operational laws for IVPFSN have been proposed. Also, in the same section,
IVPFSWA and IVPFSWG operators have been introduced based on our developed operators with
their basic properties. In Section 4, a MAGDM approach has been constructed based on the
proposed AOs. To ensure the practicality of the developed approach a numerical example has
been presented for the selection of the best vehicle in Section 5.

2 Preliminaries

This section consists of some basic definitions which will provide a structure to form the
following work.

Definition 2.1 [1]

Let U be a collection of objects then a fuzzy set (FS) A over U is defined as

A= {(t,κ(t)) |t ∈U}
where, κA(t) : X → [0, 1] is a membership grade function.



1720 CMES, 2022, vol.131, no.3

Definition 2.2 [26]

Let U be a collection of objects then an interval-valued fuzzy set (IVFS) A over U is defined
as

A=
{(
t,
[
κ l (t) ,κu (t)

]) ∣∣∣∣t ∈U
}

where, κ l (t) ,κu (t) ∈ [0, 1] and represents the lower and upper bounds of the membership value.

Definition 2.3 [4]

Let U be a collection of objects then an interval-valued intuitionistic fuzzy set (IVIFS) A
over U is defined as

A=
{(
t,
([

κ lA (t) ,κuA (t)
]
,
[
δlA (t) , δuA (t)

]))
|t ∈U

}
where,

[
κ lA (t) ,κuA (t)

]
and

[
δlA (x) , δuA (x)

]
are intervals for membership and non-membership

grades, respectively, whereas
[
κ lA (t) ,κuA (t)

]
and

[
δlA (t) , δuA (t)

]
⊆ [0, 1], 0 ≤ κ lA (t) ,κuA (t) , δlA (t) ,

δuA (t)≤ 1, and 0≤ κuA (x)+ δuA (x)≤ 1.

Definition 2.4 [27]

Let U be a collection of objects then an interval-valued Pythagorean fuzzy set (IVPFS) A
over U is defined as

A=
{(
x,
([

κ lA (t) ,κuA (t)
]
,
[
δlA (t) , δuA (t)

]))
|t ∈U

}
where,

[
κ lA (t) ,κuA (t)

]
and

[
δlA (t) , δuA (t)

]
represents the intervals for membership and non-

membership grades, respectively. Furthermore, 0 ≤ (κuA (t)
)2 + (δuA (t)

)2 ≤ 1 and
[
κ lA (t) ,κuA (t)

]
⊆

[0, 1] and
[
δlA (t) , δuA (t)

]
⊆ [0, 1].

Definition 2.5 [13]

Let U be a universal set and N = {t1, t2, t3, . . . , tm} be set of attributes then a pair (F ,N) is
called a soft set (SS) over U where F : N → KU is a mapping and KU is known as a collection
of all subsets of universal set U .

Definition 2.6 [19]

Let U be a universal set and N be a set of attributes then a pair (�,N) is called an interval-
valued intuitionistic fuzzy soft set (IVIFSS) over U . Where � : N → IKU is a mapping and IKU

is known as a collection of all interval-valued intuitionistic fuzzy subsets of universal set U and
A⊂N.

(�,A)=
{
t,
([

κ lA (t) ,κuA (t)
]
,
[
δlA (t) , δuA (t)

])
|t ∈A

}
where,

[
κ lA (t) ,κuA (t)

]
and

[
δlA (t) , δuA (t)

]
are intervals for membership grade and non-membership

functions respectively with 0≤ κuA (t)+ δuA (t)≤ 1.
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Definition 2.7

Let U be a universal set and N be set of attributes then a pair ((�,N) is called an interval-
valued Pythagorean fuzzy soft set (IVPFSS) over U where � : N→℘KU is a mapping and ℘KU

is known as the collection of all interval-valued Pythagorean fuzzy subsets of universal set U .

(�,A)=
{
t,
([

κ lA (t) ,κuA (t)
]
,
[
δlA (t) , δuA (t)

])
|t ∈A

}
where,

[
κ lA (t) ,κuA (t)

]
,
[
δlA (t) , δuA (t)

]
are intervals for membership grade and non-membership

grade, respectively with 0≤ (κuA (t)
)2+ (δuA (t)

)2 ≤ 1 and A⊂N.

Definition 2.8

Let Me =
([

κ l,κu
]
,
[
δl, δu

])
be an interval-valued Pythagorean fuzzy soft number (IVPFSN),

then the score function is defined as follows:

S (Me)=
(
κ l
)2 + (κu)2− (δl)2− (δu)2

2

Definition 2.9

Let Me =
([

κ l,κu
]
,
[
δl, δu

])
be an IVPFSN, then accuracy function is defined as follows:

S (Me)=
(
κ l
)2 + (κu)2+ (δl)2+ (δu)2

2

3 Aggregation Operators for Interval Valued Pythagorean Fuzzy Soft Sets

In this section, we are going to define operational laws under IVPFSNs. Based on these
operational laws, we shall also present interval-valued Pythagorean fuzzy soft weighted average
(IVPFSWA) and interval-valued Pythagorean fuzzy soft geometric (IVPFSWG) operators.

3.1 Operational Laws for Interval Valued Pythagorean Fuzzy Soft Numbers

Let Me =
([

κ l,κu
]
,
[
δl, δu

])
, Me11 =

([
κ l11,κ

u
11

]
,
[
δl11, δ

u
11

])
, and

Me12 =
([

κ l12,κ
u
12

]
,
[
δl12, δ

u
12

])
be three interval-valued Pythagorean fuzzy soft numbers and β

be a positive real number, and by algebraic norms, we have

(1) Me11 ⊕Me12 =
([√

κ l
2

11+ κ l
2

12 − κ l
2

11κ
l2
12,
√

κu
2

11 + κu
2

12 − κu
2

11κ
u2
12

]
,
[
δl11δ

l
12, δ

u
11δ

u
12

])

(2) Me11 ⊗Me12 =
([

κ l11κ
l
12,κ

u
11κ

u
12

]
,
[√

δl
2

11+ δl
2

12 − δl
2

11δ
l2
12,
√

δu
2

11+ δu
2

12 − δu
2

11δ
u2
11

])

(3) βMe =
([√

1−
(
1− κ l

2
)β

,
√
1− (1− κu2

)β]
,
[
δl

β
, δuβ

])

=
(√

1−
(
1− [κ l,κu]2)β

,
[
δl

β
, δuβ

])
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(4) Me
β =

([
κ l

β
,κuβ

]
,

[√
1−

(
1− δl

2
)β

,
√
1− (1− δu2

)β])

=
([

κ l
β
,κuβ

]
,

√
1−

(
1− [δl, δu]2)β

)

3.2 Interval Valued Pythagorean Fuzzy Soft Weighted Average Operator

Let Meij =
([

κ lij,κ
u
ij

]
,
[
δlij, δ

u
ij

])
be a collection of interval-valued Pythagorean fuzzy soft

numbers (IVPFSNs), and ωi and νj are the weight vector for experts and parameters, respectively,
with given conditions ωi > 0,

∑n
i=1 ωi = 1; νj > 0,

∑m
j=1 νj = 1. Then, the IVPFSWA operator is

defined as IVPFSWA: Ψn −→Ψ

IVPFSWA
(Me11 ,Me12 , . . . ,Menm

)=⊕m
j=1νj

(⊕n
i=1ωiMeij

)
Theorem 3.1

Let Meij =
([

κ lij,κ
u
ij

]
,
[
δlij, δ

u
ij

])
be a collection of IVPFSNs, where (i = 1, 2, 3 . . . ,n and j =

1, 2, 3, . . .m), and the aggregated value is also an IVPFSN, such as

IVPFSWA
(Me11 ,Me12 , . . . ,Menm

)

=
⎛
⎝
√√√√1−

m∏
j=1

(
n∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

,
m∏
j=1

(
n∏
i=1

([
δlij, δ

u
ij

])ωi

)νj
⎞
⎠

where ωi and νj are weight vector for expert’s and attributes respectively with given conditions
ωi > 0,

∑n
i=1 ωi = 1; νj > 0,

∑m
j=1 νj = 1.

Proof. We shall prove the IVPFSWA operator by utilizing the principle of mathematical
induction:

For n= 1, we get ω1 = 1. Then, we have

IVPFSWA
(Me11 ,Me12 , . . . ,Me1m

)=⊕m
j=1νjMe1j

IVPFSWA
(Me11 ,Me12 , . . . ,Menm

)=
⎛
⎝
√√√√1−

m∏
j=1

(
1−

[
κ l1j,κ

u
1j

]2)νj

,
m∏
j=1

([
δl1j, δ

u
1j

])νj

⎞
⎠

=

⎛
⎜⎝
√√√√√1−

m∏
j=1

( 1∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

,
m∏
j=1

( 1∏
i=1

([
δlij, δ

u
ij

])ωi

)νj
⎞
⎟⎠ .
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For m= 1, we get ν1 = 1. Then, we have

IVPFSWA
(Me11 ,Me21 , . . . ,Men1

)=⊕n
i=1ωiMei1

=
⎛
⎝
√√√√1−

n∏
i=1

(
1−

[
κ li1,κ

u
i1

]2)ωi

,
n∏
i=1

([
δli1, δ

u
1i

])ωi

⎞
⎠

=

⎛
⎜⎝
√√√√√1−

1∏
j=1

(
n∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

,
1∏
j=1

(
n∏
i=1

([
δlij, δ

u
ij

])ωi

)νj

⎞
⎟⎠

This shows that the above theorem holds for n = 1 and m = 1. Now, consider the above
theorem also holds for m= α1+ 1,n= α2 and m= α1,n= α2+ 1, such as

⊕α1+1
j=1 νj

(⊕α2
i=1ωiMeij

)=
⎛
⎜⎝
√√√√√1−

α1+1∏
j=1

(
α2∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

,
α1+1∏
j=1

(
α2∏
i=1

([
δlij, δ

u
ij

])ωi

)νj

⎞
⎟⎠

⊕α1
j=1 νj

(
⊕α2+1
i=1 ωiMeij

)
=

⎛
⎜⎝
√√√√√1−

α1∏
j=1

⎛
⎝α2+1∏

i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi

⎞
⎠

νj

,
α1∏
j=1

⎛
⎝α2+1∏

i=1

([
δlij, δ

u
ij

])ωi

⎞
⎠

νj
⎞
⎟⎠

For m= α1+ 1 and n= α2+ 1, we have

⊕α1+1
j=1 νj

(
⊕α2+1
i=1 ωiMeij

)
=⊕α1+1

j=1 νj

(
⊕α2
i=1 ωiMeij ⊕ωα2+1Me(α2+1)j

)

=⊕α1+1
j=1 ⊕α2

i=1 νjωiMeij ⊕α1+1
j=1 νjωα2+1Me(α2+1)j

=

⎛
⎜⎝
√√√√√1−

α1+1∏
j=1

(
α2∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

⊕

√√√√√1−
α1+1∏
j=1

((
1−

[
κ l
(α2+1)j,κ

u
(α2+1)j

]2)ωα2+1
)νj

,

α1+1∏
j=1

(
α2∏
i=1

([
δlij, δ

u
ij

])ωi

)νj

⊕
α1+1∏
j=1

(([
δl(α2+1)j, δ

u
(α2+1)j

])ω(α2+1)
)νj

⎞
⎠

=

⎛
⎜⎝
√√√√√1−

α1+1∏
j=1

(
α2+1∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

,
α1+1∏
j=1

⎛
⎝α2+1∏

i=1

([
δlij, δ

u
ij

])ωi

⎞
⎠

νj
⎞
⎟⎠

Therefore, it holds for m = α1 + 1 and n= α2 + 1. So, we can judge that the above theorem
also holds for all values of m and n.
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Example 3.1

Let χ = {x1,x2,x3} be the set of specialists with weights ωi = (0.38, 0.45, 0.17)T who wants
to choose a bike under some defined set of properties ϕ = {e1 = Resale Value, e2 = Mileage,
e3 = Cost of bike} with weights νj = (0.25, 0.45, 0.3)T . We suppose the rating values of the

specialists for each property in the form of IVPFSNs (M,ϕ)=
([

κ lij,κ
u
ij

]
,
[
δlij, δ

u
ij

])
3×3

is given as

(M,ϕ)=
⎡
⎣([0.3, 0.8] , [0.4, 0.5]) ([0.4, 0.6] , [0.3, 0.7]) ([0.5, 0.8] , [0.5, 0.6])

([0.1, 0.5] , [0.2, 0.3]) ([0.3, 0.8] , [0.5, 0.7]) ([0.2, 0.4] , [0.2, 0.3])
([0.2, 0.9] , [0.2, 0.3]) ([0.5, 0.7] , [0.2, 0.6]) ([0.2, 0.4] , [0.2, 0.8])

⎤
⎦

By using the above theorem, we have

IVPFSWA
(Me11 ,Me12 , . . . ,Me33

)=
⎛
⎜⎝
√√√√√1−

3∏
j=1

(
3∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

,
3∏
j=1

(
3∏
i=1

([
δlij, δ

u
ij

])ωi

)νj
⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.36, 0.91]0.38 [0.64, 0.84]0.45

[0.36, 0.75]0.17

}0.17{
[0.75, 0.99]0.38

[0.36, 0.91]0.45 [0.75, 0.99]0.17

}0.45
{
[0.19, 0.96]0.38 [0.51, 0.75]0.45

[0.84, 0.96]0.17

}0.3
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝
{
[0.4, 0.5]0.38 [0.3, 0.7]0.45

[0.5, 0.6]0.17

}0.25{
[0.2, 0.7]0.38 [0.5, 0.7]0.45

[0.2, 0.3]0.17

}0.45
{
[0.2, 0.3]0.38 [0.2, 0.6]0.45

[0.2, 0.8]0.17

}0.3
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.6783, 0.9648][0.8181, 0.9245]

[0.8406, 0.9523]

}0.25{[0.8964, 0.9962][0.6314, 0.9584]
[0.9523, 0.9983]

}0.45
{
[0.5320, 0.9846][0.7386, 0.8786]

[0.9708, 0.9931]

}0.3
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝
{
[0.7060, 0.7486][0.5817, 0.8517]

[0.8888, 0.9168]

}0.25{[0.5425, 0.8732][0.7320, 0.8517]
[0.7606, 0.8149]

}0.45
{
[0.5425, 0.6329][0.4847, 0.7946]

[0.7606, 0.9628]

}0.3
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝
√
1−

(
[0.4665, 0.8494]0.25 [0.5390, 0.9531]0.45

[0.3815, 0.8591]0.3

)
,(

[0.3650, 0.5857]0.25 [0.3020, 0.6060]0.45

[0.2000, 0.4842]0.3

)
⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝
√
1−

(
[0.8264, 0.9600][0.7572, 0.9786]

[0.7489, 0.9555]

)
,(

[0.7773, 0.8748]
[0.5834, 0.7982][0.6170, 0.8045]

)
⎞
⎟⎟⎟⎠
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=
(√

1− [0.7773, 0.8977],
[0.2798, 0.5617]

)

=
(√

[0.1023, 0.2227], [0.2798, 0.5617]
)

= ([0.3198, 0.4719], [0.2798, 0.5617])

3.3 Properties of PFSWA Operator
3.3.1 Idempotency

If Meij =Me =
([

κ lij,κ
u
ij

]
,
[
δlij, δ

u
ij

])
∀i, j, then,

IVPFSWA
(Me11 ,Me12 , . . . ,Menm

)=Me

Proof: As we know that all Meij =Me =
([

κ lij,κ
u
ij

]
,
[
δlij, δ

u
ij

])
,then, we have

IVPFSWA
(Me11 ,Me12 , . . . ,Menm

)

=
⎛
⎝
√√√√1−

m∏
j=1

(
n∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

,
m∏
j=1

(
n∏
i=1

([
δlij, δ

u
ij

])ωi

)νj
⎞
⎠

=

⎛
⎜⎝
√√√√1−

((
1−

[
κ lij,κ

u
ij

]2)∑n
i=1 ωi

)∑m
j=1 νj

,
(([

δlij, δ
u
ij

])∑n
i=1 ωi

)∑m
j=1 νj

⎞
⎟⎠

As
∑m

j=1 νj = 1 and
∑n

i=1 ωi = 1, then we have

=
(√

1−
(
1−

[
κ lij,κ

u
ij

]2)
,
[
δlij, δ

u
ij

])

=
([

κ lij,κ
u
ij

]
,
[
δlij, δ

u
ij

])
=Me

Hence proved.

3.3.2 Boundedness

Let Meij be a collection of PFSNs where M−
eij =

(
min
j

min
i

{[
κ lij,κ

u
ij

]}
,
max
j

max
i

{[
δlij, δ

u
ij

]})

and M+
eij =

(
max
j

max
i

{[
κ lij,κ

u
ij

]}
,
min
j

min
i

{[
δlij, δ

u
ij

]})
, then

M−
eij ≤ IVPFSWA

(Me11 ,Me12 , . . . ,Menm
)≤M+

eij
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Proof. As we know that Meij =
〈[

κ lij,κ
u
ij

]
,
[
δlij, δ

u
ij

]〉
be an IVPFSN, then

min
j

min
i

{[
κ lij,κ

u
ij

]2}≤ [κ lij,κuij]2 ≤max
j

max
i

{[
κ lij,κ

u
ij

]2}

⇒ 1−max
j

max
i

{[
κ lij,κ

u
ij

]2}≤ 1−
[
κ lij,κ

u
ij

]2 ≤ 1−min
j

min
i

{[
κ lij,κ

u
ij

]2}

⇔
(
1−max

j
max
i

{[
κ lij,κ

u
ij

]2})ωi

≤
(
1−

[
κ lij,κ

u
ij

]2)ωi

≤
(
1−min

j
min
i

{[
κ lij,κ

u
ij

]2})ωi

⇔
(
1−max

j
max
i

{[
κ lij,κ

u
ij

]2})∑n
i=1ωi

≤
n∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi

≤
(
1−min

j
min
i

{[
κ lij,κ

u
ij

]2})∑n
i=1 ωi

⇔
(
1−max

j
max
i

{[
κ lij,κ

u
ij

]2})∑n
j=1 νj

≤
m∏
j=1

(
n∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

≤
(
1−min

j
min
i

{[
κ lij,κ

u
ij

]2})∑n
j=1 νj

⇔ 1−max
j

max
i

{[
κ lij,κ

u
ij

]2}≤ m∏
j=1

(
n∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

≤ 1−min
j

min
i

{[
κ lij,κ

u
ij

]2}

⇔min
j

min
i

{[
κ lij,κ

u
ij

]2}≤ 1−
m∏
j=1

(
n∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

≤max
j

max
i

{[
κ lij,κ

u
ij

]2}

⇔min
j

min
i

{[
κ lij,κ

u
ij

]}
≤
√√√√1−

m∏
j=1

(
n∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

≤max
j

max
i

{[
κ lij,κ

u
ij

]}
(a)

Similarly, we can prove that

min
j

min
i

{[
δlij, δ

u
ij

]}
≤

m∏
j=1

(
n∏
i=1

([
δlij, δ

u
ij

])ωi

)νj

≤max
j

max
i

{[
δlij, δ

u
ij

]}
(b)

Let IVPFSWA (Me11 ,Me12 , . . . ,Menm) = 〈[κ lσ ,κuσ ] , [δlσ , δuσ ]〉= Mσ , then inequalities (a) and

(b) can be transferred into the form:
min
j

min
i

{[
κ lij,κ

u
ij

]}
≤ Mσ ≤ max

j
max
i

{[
κ lij,κ

u
ij

]}
and

min
j

min
i

{[
δlij, δ

u
ij

]}
≤Mσ ≤max

j
max
i

{[
δlij, δ

u
ij

]}
, respectively.
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So, by using the score function, we have

S (Mσ )=
(
κ lσ
)2+ (κuσ )2− (δlσ )2 − (δuσ )2

2
≤max

j
max
i

{[
κ lij,κ

u
ij

]}
−min

j
min
i

{[
δlij, δ

u
ij

]}

= S

(
M−

eij

)

S (Mσ )=
(
κ lσ
)2+ (κuσ )2− (δlσ )2 − (δuσ )2

2
≥min

j
min
i

{[
κ lij,κ

u
ij

]}
−max

j
max
i

{[
δlij, δ

u
ij

]}
= S

(
M+

eij

)

Then, by order relation between two IVPFSNs, we have

M−
eij ≤ IVPFSWA

(Me11 ,Me12 , . . . ,Menm
)≤M+

eij

Hence proved.

3.3.3 Shift Invariance

If Me =
〈[
κ l,κu

]
,
[
δl, δu

]〉
be an IVPFSN, then

IVPFSWA(Me11⊕Me,Me12⊕Me, . . . ,Menm⊕Me)= IVPFSWA (Me11 ,Me12 , . . . ,Menm)⊕Me

Proof. Consider Me and Meij be two IVPFSNs. Then, by operational laws defined under
IVPFSNs defined above, we have

Me⊕Meij =
(√[

κ l ,κu
]+ [κ lij,κuij]2− [κ l,κu] [κ lij,κuij]2, [δl, δu][δlij, δuij]

)
, therefore

IVPFSWA
(Me11 ⊕Me,Me12 ⊕Me, . . . ,Menm ⊕Me

)=⊕m
j=1νj

(⊕n
i=1ωi

(Meij ⊕Me
))

=
⎛
⎝
√√√√1−

m∏
j=1

(
n∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi (
1− [κ l,κu]2)ωi

)νj

,
m∏
j=1

(
n∏
i=1

([
δlij, δ

u
ij

])ωi
([

δl, δu
])ωi

)νj
⎞
⎠

=
⎛
⎝
√√√√1−

(
1− [κ l,κu]2) m∏

j=1

(
n∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

,
[
δl, δu

] m∏
j=1

(
n∏
i=1

([
δlij, δ

u
ij

])ωi

)νj
⎞
⎠

=
⎛
⎝
⎛
⎝
√√√√1−

m∏
j=1

(
n∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

,
m∏
j=1

(
n∏
i=1

([
δlij, δ

u
ij

])ωi

)νj
⎞
⎠⊕

([
κ l,κu

]
,
[
δl, δu

])⎞⎠
= IVPFSWA

(Me11 ,Me12 , . . . ,Menm
)⊕Me

Hence proved.
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3.3.4 Homogeneity
Prove that IVPFSWA (βMe11 ,βMe12 , . . . ,βMenm) = β IVPFSWA (Me11 ,Me12 , . . . ,Menm)

for any positive real number β.

Proof. Let Meij be an IVPFSN and β > 0, then by using the operational laws mentioned
above, we have

βMeij =
⎛
⎝
√
1−

(
1−

[
κ lij,κ

u
ij

]2)β

,
[
δlij, δ

u
ij

]β⎞⎠
So,

βMe11 ,βMe12 , . . . ,βMenm
)

=
⎛
⎝
√√√√1−

m∏
j=1

(
n∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)βωi
)νj

,
m∏
j=1

(
n∏
i=1

([
δlij, δ

u
ij

])βωi

)νj
⎞
⎠

=

⎛
⎜⎜⎝
√√√√√1−

⎛
⎝ m∏
j=1

(
n∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj
⎞
⎠

β

,

⎛
⎝ m∏
j=1

(
n∏
i=1

([
δlij, δ

u
ij

])ωi

)νj
⎞
⎠

β
⎞
⎟⎟⎠

= β IVPFSWA
(Me11 ,Me12 , . . . ,Menm

)
which completes the proof.

3.4 Interval Valued Pythagorean Fuzzy Soft Weighted Geometric Operator

Let Meij =
〈[

κ lij,κ
u
ij

]
,
[
δlij, δ

u
ij

]〉
be a collection of interval-valued Pythagorean fuzzy soft num-

bers (IVPFSNs), and ωi and νj are the weight vector for experts and parameters, respectively, with
given conditions ωi > 0,

∑n
i=1 ωi = 1; νj > 0,

∑m
j=1 νj = 1. Then, the IVPFSWG operator is defined

as IVPFSWG: Ψn −→Ψ

IVPFSWG
(Me11 ,Me12 , . . . ,Menm

)=⊗m
j=1

(
⊗n
i=1Mωi

eij

)νj

Theorem 3.2

Let Meij =
〈[

κ lij,κ
u
ij

]
,
[
δlij, δ

u
ij

]〉
be a collection of interval-valued Pythagorean fuzzy soft num-

bers (IVPFSNs). Then, the aggregated value obtained by using the IVPFSWG operator is also
IVPFSN and

IVPFSWG
(Me11 ,Me12 , . . . ,Menm

)

=
⎛
⎝ m∏
j=1

(
n∏
i=1

([
κ lij,κ

u
ij

])ωi

)νj

,

√√√√1−
m∏
j=1

(
n∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj
⎞
⎠

where ωi and νj are weight vector for expert’s and attributes respectively with given conditions
ωi > 0,

∑n
i=1 ωi = 1; νj > 0,

∑m
j=1 νj = 1.
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Proof. We can prove the IVPFSWG operator by using the principle of mathematical induction
as follows:

For n= 1, we get ω1 = 1. Then, we have

IVPFSWG
(Me11 ,Me12 , . . . ,Me1m

)=⊗m
j=1M

νj
e1j

IVPFSWG
(Me11 ,Me12 , . . . ,Menm

)

=
⎛
⎝ m∏
j=1

([
κ l1j,κ

u
1j

])νj
,

√√√√1−
m∏
j=1

(
1−

[
δl1j, δ

u
1j

]2)νj

⎞
⎠

=

⎛
⎜⎝ m∏
j=1

( 1∏
i=1

([
κ lij,κ

u
ij

])ωi

)νj

,

√√√√√1−
m∏
j=1

( 1∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj
⎞
⎟⎠ .

For m= 1, we get ν1 = 1. Then, we have

IVPFSWG
(Me11 ,Me21 , . . . ,Men1

)=⊗n
i=1

(Mei1

)ωi
=
⎛
⎝ n∏
i=1

([
κ li1,κ

u
1i

])ωi
,

√√√√1−
n∏
i=1

(
1−

[
δli1, δ

u
i1

]2)ωi

⎞
⎠

=

⎛
⎜⎝ 1∏
j=1

(
n∏
i=1

([
κ lij,κ

u
ij

])ωi

)νj

,

√√√√√1−
1∏
j=1

(
n∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj

⎞
⎟⎠

This shows that the above theorem holds for n = 1 and m = 1. Now, consider the above
theorem also holds for m= α1+ 1,n= α2 and m= α1,n= α2+ 1, such as

⊗α1+1
j=1

(⊗α2
i=1

(Meij
)ωi
)νj

=

⎛
⎜⎝α1+1∏

j=1

⎛
⎜⎝ α2∏
i=1

([
κ lij,κ

u
ij

])ωi
,

√√√√√1−
α1+1∏
j=1

(
α2∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj

⎞
⎟⎠

νj⎞⎟⎠
⊗α1
j=1

(
⊗α2+1
i=1

(Meij
)ωi
)νj

=

⎛
⎜⎝ α1∏
j=1

⎛
⎝α2+1∏

i=1

([
κ lij, δ

u
ij

])ωi

⎞
⎠

νj

,

√√√√√1−
α1∏
j=1

⎛
⎝α2+1∏

i=1

(
1−

[
δlij, δ

u
ij

]2)ωi

⎞
⎠

νj
⎞
⎟⎠

For m= α1+ 1 and n= α2+ 1, we have

⊗α1+1
j=1

(
⊗α2+1
i=1

(
Meij

)ωi
)νj

=⊗α1+1
j=1

(
⊗α2
i=1

(
Meij

)ωi

⊗
(

Me(α2+1)j

)ωα2+1
)νj
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=⊗α1+1
j=1 ⊗α2

i=1

((
Meij

)ωi
)νj

⊗α1+1
j=1

((
Me(α2+1)j

)ωα2+1
)νj

=
⎛
⎝α1+1∏

j=1

(
α2∏
i=1

([
κ lij,κ

u
ij

])ωi

)νj

⊗
α1+1∏
j=1

(([
κ l(α2+1)j,κ

u
(α2+1)j

])ω(α2+1)
)νj

,

√√√√√1−
α1+1∏
j=1

(
α2∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj

⊗

√√√√√1−
α1+1∏
j=1

((
1−

[
δl
(α2+1)j, δ

u
(α2+1)j

]2)ωα2+1
)νj

⎞
⎟⎠

=

⎛
⎜⎝α1+1∏

j=1

⎛
⎝α2+1∏

i=1

([
κ lij,κ

u
ij

])ωi

⎞
⎠

νj

,

√√√√√1−
α1+1∏
j=1

(
α2+1∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj

⎞
⎟⎠

It is clarified from the above equation that the theorem holds for m= α1 + 1 and n= α2 + 1.
So, we can say that the theorem holds for all values of m and n.

Example 3.2

Again, consider Example 3.1 with rating values of the specialists for each property in the

form of IVPFSNs (M,ϕ)=
([

κ lij,κ
u
ij

]
,
[
δlij, δ

u
ij

])
3×3

is given as

(M,ϕ)=
⎡
⎣([0.4, 0.5] , [0.3, 0.8]) ([0.3, 0.7] [0.4, 0.6]) ([0.5, 0.6] , [0.5, 0.8])

([0.2, 0.3] , [0.1, 0.5]) ([0.5, 0.7] , [0.3, 0.8]) ([0.2, 0.3] , [0.2, 0.4])
([0.2, 0.3] , [0.2, 0.9]) ([0.2, 0.6] , [0.5, 0.7]) ([0.2, 0.8] , [0.2, 0.4])

⎤
⎦

By using the above theorem, we have

IVPFSWG
(Me11 ,Me12 , . . . ,Me33

)

=

⎛
⎜⎝ 3∏
j=1

(
3∏
i=1

([
κ lij,κ

u
ij

])ωi

)νj

,

√√√√√1−
3∏
j=1

(
3∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj
⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝
{
[0.4, 0.5]0.38 [0.3, 0.7]0.45

[0.5, 0.6]0.17

}0.25{
[0.2, 0.7]0.38 [0.5, 0.7]0.45

[0.2, 0.3]0.17

}0.45
{
[0.2, 0.3]0.38 [0.2, 0.6]0.45

[0.2, 0.8]0.17

}0.3
⎞
⎟⎟⎟⎠ ,

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.36, 0.91]0.38 [0.64, 0.84]0.45

[0.36, 0.75]0.17

}0.17{
[0.75, 0.99]0.38

[0.36, 0.91]0.45 [0.75, 0.99]0.17

}0.45
{
[0.19, 0.96]0.38 [0.51, 0.75]0.45

[0.84, 0.96]0.17

}0.3
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝
{
[0.7060, 0.7486][0.5817, 0.8517]

[0.8888, 0.9168]

}0.25{[0.5425, 0.8732][0.7320, 0.8517]
[0.7606, 0.8149]

}0.45
{
[0.5425, 0.6329][0.4847, 0.7946]

[0.7606, 0.9628]

}0.3
⎞
⎟⎟⎟⎠ ,

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.6783, 0.9648][0.8181, 0.9245]

[0.8406, 0.9523]

}0.25{[0.8964, 0.9962][0.6314, 0.9584]
[0.9523, 0.9983]

}0.45
{
[0.5320, 0.9846][0.7386, 0.8786]

[0.9708, 0.9931]

}0.3
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

(
[0.3650, 0.5857]0.25 [0.3020, 0.6060]0.45

[0.2000, 0.4842]0.3

)
,√

1−
(
[0.4665, 0.8494]0.25 [0.5390, 0.9531]0.45

[0.3815, 0.8591]0.3

)
⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

(
[0.7773, 0.8748]

[0.5834, 0.7982][0.6170, 0.8045]

)
√
1−

(
[0.8264, 0.9600][0.7572, 0.9786]

[0.7489, 0.9555]

)
⎞
⎟⎟⎟⎠

=
(

[0.2798, 0.5617],√
1− [0.7773, 0.8977]

)

=
(
[0.2798, 0.5617],

√
[0.1023, 0.2227]

)
= ([0.2798, 0.5617], [0.3198, 0.4719])

3.5 Properties of IVPFSWG
3.5.1 Idempotency

If Meij =Me =
([

κ lij,κ
u
ij

]
,
[
δlij, δ

u
ij

])
∀i, j, then,

IVPFSWG
(Me11 ,Me12 , . . . ,Menm

)=Me

Proof. As we know that all Meij =Me =
([

κ lij,κ
u
ij

]
,
[
δlij, δ

u
ij

])
, then, we have

IVPFSWG (Me11 ,Me12 , . . . ,Menm)

=
⎛
⎝ m∏
j=1

(
n∏
i=1

([
κ lij,κ

u
ij

])ωi

)νj

,

√√√√1−
m∏
j=1

(
n∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj
⎞
⎠

=

⎛
⎜⎝(([κ lij,κuij])

∑n
i=1ωi

)∑m
j=1 νj

,

√√√√1−
((

1−
[
δlij, δ

u
ij

]2)∑n
i=1 ωi

)∑m
j=1 νj

⎞
⎟⎠
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As
∑m

j=1 νj = 1 and
∑n

i=1 ωi = 1, then we have

=
([

κ lij,κ
u
ij

]
,

√
1−

(
1−

[
δlij, δ

u
ij

]2))

=
([

κ lij,κ
u
ij

]
,
[
δlij, δ

u
ij

])
=Me

Hence proved.

3.5.2 Boundedness

Let Meij be a collection of PFSNs where M−
eij =

(
min
j

min
i

{[
κ lij,κ

u
ij

]}
,
max
j

max
i

{[
δlij, δ

u
ij

]})

and M+
eij =

(
max
j

max
i

{[
κ lij,κ

u
ij

]}
,
min
j

min
i

{[
δlij, δ

u
ij

]})
, then

M−
eij ≤ IVPFSWG

(Me11 ,Me12 , . . . ,Menm
)≤M+

eij

Proof. As we know that Meij =
([

κ lij,κ
u
ij

]
,
[
δlij, δ

u
ij

])
be an IVPFSN, then

min
j

min
i

{[
δlij, δ

u
ij

]2}≤ [δlij, δuij]2 ≤max
j

max
i

{[
δlij, δ

u
ij

]2}

⇒ 1−max
j

max
i

{[
δlij, δ

u
ij

]2}≤ 1−
[
δlij, δ

u
ij

]2 ≤ 1−min
j

min
i

{[
δlij, δ

u
ij

]2}

⇔
(
1−max

j
max
i

{[
δlij, δ

u
ij

]2})ωi

≤
(
1−

[
δlij, δ

u
ij

]2)ωi

≤
(
1−min

j
min
i

{[
δlij, δ

u
ij

]2})ωi

⇔
(
1−max

j
max
i

{[
δlij, δ

u
ij

]2})∑n
i=1 ωi

≤
n∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi

≤
(
1−min

j
min
i

{[
δlij, δ

u
ij

]2})∑n
i=1 ωi

⇔
(
1−max

j
max
i

{[
δlij, δ

u
ij

]2})∑n
j=1 νj

≤
m∏
j=1

(
n∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj

≤
(
1−min

j
min
i

{[
δlij, δ

u
ij

]2})∑n
j=1 νj

⇔ 1−max
j

max
i

{[
δlij, δ

u
ij

]2}≤ m∏
j=1

(
n∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj

≤ 1−min
j

min
i

{[
δlij, δ

u
ij

]2}

⇔min
j

min
i

{[
δlij, δ

u
ij

]2}≤ 1−
m∏
j=1

(
n∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj

≤max
j

max
i

{[
δlij, δ

u
ij

]2}
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⇔min
j

min
i

{[
δlij, δ

u
ij

]}
≤
√√√√1−

m∏
j=1

(
n∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj

≤max
j

max
i

{[
δlij, δ

u
ij

]}
(c)

Similarly, we can prove that

min
j

min
i

{[
κ lij,κ

u
ij

]}
≤

m∏
j=1

(
n∏
i=1

([
κ lij,κ

u
ij

])ωi

)νj

≤max
j

max
i

{[
κ lij,κ

u
ij

]}
(d)

Let IVPFSWG (Me11 ,Me12 , . . . ,Menm) = 〈[κ lσ ,κuσ ] , [δlσ , δuσ ]〉= Mσ , then inequalities (c) and
(d) can be transferred into the form:

min
j

min
i

{[
κ lij,κ

u
ij

]}
≤Mσ ≤max

j
max
i

{[
κ lij,κ

u
ij

]}
and min

j
min
i

{[
δlij, δ

u
ij

]}
≤Mσ ≤ max

j
max
i

{[
δlij, δ

u
ij

]}
,

respectively.

So, by using the score function, we have

S (Mσ )=
(
κ lσ
)2+ (κuσ )2− (δlσ )2 − (δuσ )2

2
≤max

j
max
i

{[
κ lij,κ

u
ij

]}
−min

j
min
i

{[
δlij, δ

u
ij

]}
= S

(
M−

eij

)

S (Mσ )=
(
κ lσ
)2+ (κuσ )2− (δlσ )2 − (δuσ )2

2
≥min

j
min
i

{[
κ lij,κ

u
ij

]}
−max

j
max
i

{[
δlij, δ

u
ij

]}
= S

(
M+

eij

)

Then, by order relation between two IVPFSNs, we have

M−
eij ≤ IVPFSWG

(Me11 ,Me12 , . . . ,Menm
)≤M+

eij

Hence proved.

3.5.3 Shift Invariance

If Me =
([

κ l,κu
]
,
[
δl, δu

])
be an IVPFSN, then

IVPFSWG (Me11 ⊕Me,Me12 ⊕Me, . . . ,Menm ⊕Me)= IVPFSW(Me11 ,Me12 , . . . ,Menm)⊕
Me

Proof. Consider Me and Meij be two IVPFSNs. Then, by operational laws defined under
IVPFSNs defined above, we have

Me⊕Meij =
(√[

κ l,κu
]2+ [κ lij,κuij]2− [κ l,κu]2 [κ lij,κuij]2, [δl, δu] [δlij, δuij]

)
, therefore

IVPFSWG (Me11 ⊕Me,Me12 ⊕Me, . . . ,Menm ⊕Me)

=⊕m
j=1νj

(⊕n
i=1ωi

(Meij ⊕Me
))
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=
⎛
⎝ m∏
j=1

(
n∏
i=1

([
κ lij,κ

u
ij

])ωi
([

κ l,κu
])ωi

)νj

,

√√√√1−
m∏
j=1

(
n∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi (
1− [δl, δu]2)ωi

)νj
⎞
⎠

=
⎛
⎝[κ l,κu] m∏

j=1

(
n∏
i=1

([
κ lij,κ

u
ij

])ωi

)νj

,

√√√√1−
(
1− [δl, δu]2) m∏

j=1

(
n∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj
⎞
⎠

=
⎛
⎝
⎛
⎝ m∏
j=1

(
n∏
i=1

([
κ lij,κ

u
ij

])ωi

)νj

,

√√√√1−
m∏
j=1

(
n∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj
⎞
⎠⊕

([
κ l,κu

]
,
[
δl, δu

])⎞⎠
= IVPFSWG

(Me11 ,Me12 , . . . ,Menm
)⊕Me

Hence proved.

3.5.4 Homogeneity
Prove that IVPFSWG (βMe11 ,βMe12 , . . . ,βMenm) = β IVPFSWA (Me11 ,Me12 , . . . ,Menm)

for any positive real number β.

Proof: Let Meij be an IVPFSN and β > 0, then by using the operational laws mentioned
above, we have

βMeij =
⎛
⎝
√
1−

(
1−

[
κ lij,κ

u
ij

]2)β

,
[
δlij, δ

u
ij

]β⎞⎠
So,

IVPFSWG
(
βMe11 ,βMe12 , . . . ,βMenm

)

=
⎛
⎝ m∏
j=1

(
n∏
i=1

([
κ lij,κ

u
ij

])βωi

)νj

,

√√√√1−
m∏
j=1

(
n∏
i=1

(
1−

[
δlij, δ

u
ij

]2)βωi
)νj
⎞
⎠

=

⎛
⎜⎜⎝
⎛
⎝ m∏
j=1

(
n∏
i=1

([
κ lij,κ

u
ij

])ωi

)νj
⎞
⎠

β

,

√√√√√1−
⎛
⎝ m∏
j=1

(
n∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj
⎞
⎠

β
⎞
⎟⎟⎠

= β IVPFSWG
(Me11 ,Me12 , . . . ,Menm

)
which completes the proof.

4 Multi-Attribute Group Decision-Making Approach Based on Proposed Operators

In this section, a decision-making (DM) approach for solving multi-attribute group decision-
making (MAGDM) problems based on proposed IVPFSWA and IVPFSWG operators has been
developed along with numerical examples.
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4.1 Proposed Approach

Let I = {I1,I2,I3, . . . ,Is
}
be the set of s alternatives, X = {x1,x2,x3, . . .xr} be the set of r

specialists (decision-makers) and ϕ = {e1, e2, e3, . . . , em} be the set of m attributes. Let the weighted
vector of experts Xi (i= 1, 2, 3, . . . , r) is ωi = (ω1,ω2,ω3, . . . ,ωn)T such that ωi > 0,

∑n
i=1 ωi = 1

and the weighted vector of attributes ei (i= 1, 2, 3, . . . ,m) is νj = (ν1, ν2, ν3, . . . , νn)T such that
νj > 0,

∑n
j=1 νj = 1. A team of specialists provides the decision matrix in the form of IVPFSNs

such as Dm×n
(Meij

)= ([κ lij,κuij] , [δlij, δuij])m×n
.

The procedure to apply proposed IVPFSWG and IVPFSWA operators for solving the
MAGDM problem is summarized in the following steps:

Step-1: Obtain a decision matrix in the form of PFSNs for alternatives relative to experts.

Dm×n
(Meij

)= ([κ lij,κuij] , [δlij, δuij])m×n

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

([
κ l11,κ

u
11

]
,
[
δl11, δ

u
11

])
([

κ l21,κ
u
21

]
,
[
δl21, δ

u
21

])
([

κ l12,κ
u
12

]
,
[
δl12, δ

u
122

])
([

κ l22,κ
u
22

]
,
[
δl22, δ

u
22

]) · · ·
([

κ l1n,κ
u
1n

]
,
[
δl1n, δ

u
1n

])
([

κ l2n,κ
u
2n

]
,
[
δl2n, δ

u
2n

])
...

. . .
...([

κ lm1,κ
u
m1

]
,
[
δlm1, δ

u
m1

]) ([
κ lm2,κ

u
m2

]
,
[
δlm2, δ

u
m2

])
· · · ([

κ lmn,κ
u
mn
]
,
[
δlmn, δ

u
mn
])

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, where

0≤ κ lij,κ
u
ij , δ

l
ij, δ

u
ij ≤ 1 And 0≤

(
κuij

)2+(δuij)2 ≤ 1∀i, j are given in Tables 1–4.

Step-2: By using the normalization formula, normalize the decision matrix to convert the
rating value of cost type parameters into benefit type parameters.

Meij =

⎧⎪⎨
⎪⎩

Mc
eij =

([
κ lij,κ

u
ij

]
,
[
δlij, δ

u
ij

])
n×m

cost type parameter

Meij =
([

δlij, δ
u
ij

]
,
[
κ lij,κ

u
ij

])
n×m

benefit type parameter

Step-3: Use the developed IVPFSWG and IVPFSWA operators to aggregate the IVPFSNs
Meij for each alternative I= {I1,I2,I3, . . . ,Is

}
into the decision matrix Mij.

Step-4: Calculate the score values of M for all alternatives.

Step-5: Select the alternative having maximum score value and examine the ranking.

4.2 Numerical Example

Suppose a person wants to buy a car and he has four alternatives such as I1, I2, I3 and
I4. There are four considered attributes according to which the person has to take the decision
such as e1; price of the car, e2; comfortability, e3; resale value, and, e4; growth rate with the
weighted vectorν = (0.3, 0.1, 0.2, 0.4)T . Here e1, e3 are cost type parameters and e2, e4 are benefit
type parameters. The person hires a team of four experts Xr(r = 1, 2, 3, 4) for decision making
with the weighted vector ω = (0.1, 0.2, 0.4, 0.3)T .
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4.2.1 By IVPFSWA Operator
Step-1: Obtain Pythagorean fuzzy soft decision matrices (Tables 1–4).

Table 1: IVPFS decision matrix for I1

e1 e2 e3 e4

x1 ([.4, .5] , [.2, .5]) ([.7, .8] , [.5, .6]) ([.4, .6] , [.2, .5]) ([.2, .4] , [.2, .6])
x2 ([.2, .7] , [.2, .6]) ([.1, .6] , [.4, .5]) ([.2, .3] , [.4, .8]) ([.2, .5] , [.4, .7])
x3 ([.3, .5] , [.1, .4]) ([.4, .6] , [.2, .7]) ([.4, .7] , [.3, .7]) ([.5, .7] , [.2, .4])
x4 ([.4, .6] , [.3, .7]) ([.4, .5] , [.3, .7]) ([.3, .6] , [.3, .5]) ([.3, .6] , [.3, .5])

Table 2: IVPFS decision matrix for I2

e1 e2 e3 e4

x1 ([.3, .6] , [.5, .6]) ([.2, .7] , [.5, .7]) ([.2, .7] , [.4, .5]) ([.6, .7] , [.5, .8])
x2 ([.3, .5] , [.5, .8]) ([.1, .4] , [.4, .5]) ([.1, .5] , [.3, .7]) ([.4, .5] , [.3, .6])
x3 ([.2, .6] , [.1, .4]) ([.1, .2] , [.2, .9]) ([.4, .7] , [.3, .8]) ([.5, .8] , [.2, .6])
x4 ([.2, .3] , [.3, .8]) ([.3, .5] , [.2, .8]) ([.3, .7] , [.2, .6]) ([.1, .7] , [.3, .6])

Table 3: IVPFS decision matrix for I3

e1 e2 e3 e4

x1 ([.3, .4] , [.2, .7]) ([.3, .4] , [.4, .6]) ([.5, .6] , [.4, .5]) ([.3, .4] , [.3, .6])
x2 ([.4, .6] , [.3, .7]) ([.3, .5] , [.2, .3]) ([.3, .5] , [.5, .8]) ([.2, .6] , [.2, .4])
x3 ([.2, .4] , [.3, .4]) ([.3, .5] , [.3, .7]) ([.3, .7] , [.3, .8]) ([.1, .3] , [.5, .6])
x4 ([.3, .7] , [.3, .7]) ([.3, .5] , [.2, .4]) ([.2, .5] , [.3, .6]) ([.3, .4] , [.3, .7])

Table 4: IVPFS decision matrix for I4

e1 e2 e3 e4

x1 ([.3, .5] , [.2, .6]) ([.2, .6] , [.4, .7]) ([.2, .5] , [.3, .6]) ([.5, .7] , [.6, .8])
x2 ([.2, .7] , [.3, .8]) ([.1, .5] , [.4, .7]) ([.5, .7] , [.4, .5]) ([.2, .5] , [.3, .4])
x3 ([.2, .5] , [.1, .6]) ([.2, .5] , [.1, .5]) ([.2, .4] , [.2, .7]) ([.3, .5] , [.1, .5])
x4 ([.2, .4] , [.5, .8]) ([.2, .5] , [.5, .8]) ([.2, .7] , [.3, .6]) ([.2, .5] , [.4, .5])

Step-2: Because e1, e3 are cost type parameters, so utilized the normalization formula to
obtain normalized Pythagorean fuzzy soft decision matrices are given in the following Tables 5–8.
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Table 5: Normalized IVPFS decision matrix for I1

e1 e2 e3 e4

x1 ([.4, .5] , [.2, .5]) ([.5, .6] , [.7, .8]) ([.4, .6] , [.2, .5]) ([.2, .4] , [.2, .6])
x2 ([.2, .7] , [.2, .6]) ([.4, .5] , [.1, .6]) ([.2, .3] , [.4, .8]) ([.2, .5] , [.4, .7])
x3 ([.3, .5] , [.1, .4]) ([.2, .7] , [.4, .6]) ([.4, .7] , [.3, .7]) ([.5, .7] , [.2, .4])
x4 ([.4, .6] , [.3, .7]) ([.3, .7] , [.4, .5]) ([.3, .6] , [.3, .5]) ([.3, .6] , [.3, .5])

Table 6: Normalized IVPFS decision matrix for I2

e1 e2 e3 e4

x1 ([.3, .6] , [.5, .6]) ([.5, .7] , [.2, .7]) ([.2, .7] , [.4, .5]) ([.6, .7] , [.5, .8])
x2 ([.3, .5] , [.5, .8]) ([.4, .5] , [.1, .4]) ([.1, .5] , [.3, .7]) ([.4, .5] , [.3, .6])
x3 ([.2, .6] , [.1, .4]) ([.2, .9] , [.1, .2]) ([.4, .7] , [.3, .8]) ([.5, .8] , [.2, .6])
x4 ([.2, .3] , [.3, .8]) ([.2, .8] , [.3, .5]) ([.3, .7] , [.2, .6]) ([.1, .7] , [.3, .6])

Table 7: Normalized IVPFS decision matrix for I3

e1 e2 e3 e4

x1 ([.3, .4] , [.2, .7]) ([.4, .6] , [.3, .4]) ([.5, .6] , [.4, .5]) ([.3, .4] , [.3, .6])
x2 ([.4, .6] , [.3, .7]) ([.2, .3] , [.3, .5]) ([.3, .5] , [.5, .8]) ([.2, .6] , [.2, .4])
x3 ([.2, .4] , [.3, .4]) ([.3, .7] , [.3, .5]) ([.3, .7] , [.3, .8]) ([.1, .3] , [.5, .6])
x4 ([.3, .7] , [.3, .7]) ([.2, .4] , [.3, .5]) ([.2, .5] , [.3, .6]) ([.3, .4] , [.3, .7])

Table 8: Normalized IVPFS decision matrix for I4

e1 e2 e3 e4

x1 ([.3, .5] , [.2, .6]) ([.4, .7] , [.2, .6]) ([.2, .5] , [.3, .6]) ([.5, .7] , [.6, .8])
x2 ([.2, .7] , [.3, .8]) ([.4, .7] , [.1, .5]) ([.5, .7] , [.4, .5]) ([.2, .5] , [.3, .4])
x3 ([.2, .5] , [.1, .6]) ([.1, .5] , [.2, .5]) ([.2, .4] , [.2, .7]) ([.3, .5] , [.1, .5])
x4 ([.2, .4] , [.5, .8]) ([.5, .8] , [.2, .5]) ([.2, .7] , [.3, .6]) ([.2, .5] , [.4, .5])

Step-3: Apply the proposed IVPFSWA operator on the acquired data, we will obtain an
opinion of the decision-makers.

Θ1 =

⎛
⎜⎝
√√√√√1−

4∏
j=1

(
4∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

,
4∏
j=1

(
4∏
i=1

([
δlij, δ

u
ij

])ωi

)νj
⎞
⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.75, 0.84]0.1 [0.64, 0.75]0.2

[0.64, 0.84]0.4 [0.84, 0.96]0.3

}0.3{
[0.51, 0.96]0.1 [0.75, 0.84]0.2

[0.91, 0.96]0.4 [0.75, 0.96]0.3

}0.1
{
[0.75, 0.91]0.1 [0.51, 0.96]0.2

[0.51, 0.84]0.4 [0.75, 0.91]0.3

}0.2{
[0.64, 0.84]0.1 [0.51, 0.91]0.2

[0.64, 0.91]0.4 [0.64, 0.91]0.3

}0.4
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝
{
[0.2, 0.5]0.1 [0.7, 0.8]0.2

[0.2, 0.5]0.4 [0.2, 0.6]0.3

}0.3{
[0.2, 0.6]0.1 [0.1, 0.6]0.2

[0.4, 0.8]0.4 [0.4, 0.7]0.3

}0.1
{
[0.1, 0.4]0.1 [0.4, 0.6]0.2

[0.3, 0.7]0.4 [0.2, 0.4]0.3

}0.2{
[0.3, 0.7]0.1 [0.4, 0.5]0.2

[0.3, 0.5]0.4 [0.3, 0.5]0.3

}0.4
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.9716, 0.9827][0.9146, 0.9441]
[0.8365, 0.9326][0.9490, 0.9878]

}0.3{[0.9349, 0.9949][0.9441, 0.9657]
[0.9629, 0.9838][0.9173, 0.9876]

}0.1
{
[0.9716, 0.9906][0.8740, 0.9919]
[0.7639, 0.9326][0.9173, 0.9721]

}0.2{[0.9564, 0.9827][0.8740, 0.9813]
[0.8365, 0.9630][0.8747, 0.9721]

}0.4
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝
{
[0.8513, 0.9330][0.9311, 0.9564]
[0.5253, 0.7579][0.6170, 0.8579]

}0.3{[0.8513, 0.9502][0.6310, 0.9029]
[0.6931, 0.9146][0.7597, 0.8985]

}0.1
{
[0.7943, 0.9124][0.8326, 0.9029]
[0.6178, 0.8670][0.6170, 0.7597]

}0.2{[0.8866, 0.9650][0.8326, 0.8706]
[0.6178, 0.7578][0.6968, 0.8123]

}0.4
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ([0.3401, 0.5912], [0.2813, 0.5574])

Θ2 =

⎛
⎜⎝
√√√√√1−

4∏
j=1

(
4∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

,
4∏
j=1

(
4∏
i=1

([
δlij, δ

u
ij

])ωi

)νj
⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.64, 0.91]0.1 [0.51, 0.75]0.2

[0.51, 0.96]0.4 [0.51, 0.64]0.3

}0.3{
[0.75, 0.91]0.1 [0.75, 0.84]0.2

[0.75, 0.99]0.4 [0.75, 0.84]0.3

}0.1
{
[0.64, 0.96]0.1 [0.96, 0.99]0.2

[0.51, 0.84]0.4 [0.36, 0.75]0.3

}0.2{
[0.91, 0.96]0.1 [0.36, 0.96]0.2

[0.51, 0.91]0.4 [0.51, 0.99]0.3

}0.4
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝
{
[0.5, 0.6]0.1 [0.2, 0.7]0.2

[0.4, 0.5]0.4 [0.5, 0.8]0.3

}0.3{
[0.5, 0.8]0.1 [0.1, 0.4]0.2

[0.3, 0.7]0.4 [0.3, 0.6]0.3

}0.1
{
[0.1, 0.4]0.1 [0.1, 0.2]0.2

[0.3, 0.8]0.4 [0.2, 0.6]0.3

}0.2{
[0.3, 0.8]0.1 [0.3, 0.5]0.2

[0.2, 0.6]0.4 [0.3, 0.6]0.3

}0.4
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.9564, 0.9906][0.8740, 0.9441]
[0.7639, 0.9838][0.8171, 0.8747]

}0.3{[0.9716, 0.9906][0.9441, 0.9657]
[0.8913, 0.9960][0.9173, 0.9490]

}0.1
{
[0.9564, 0.9960][0.9919, 0.9980]
[0.7639, 0.9326][0.7360, 0.9173]

}0.2{[0.9906, 0.9959][0.8152, 0.9919]
[0.7639, 0.9630][0.8171, 0.9970]

}0.4
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝
{
[0.9330, 0.9502][0.7248, 0.9311]
[0.6931, 0.7579][0.8123, 0.9352]

}0.3{[0.9330, 0.9779][0.6310, 0.8326]
[0.6178, 0.8670][0.6968, 0.8579]

}0.1
{
[0.7943, 0.9124][0.6310, 0.7248]
[0.6178, 0.9146][0.6170, 0.8579]

}0.2{[0.8866, 0.9780][0.7860, 0.8706]
[0.5253, 0.8152][0.6968, 0.8579]

}0.4
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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= ([0.3470, 0.6811], [0.2713, 0.5864])

Θ3 =

⎛
⎜⎝
√√√√√1−

4∏
j=1

( 4∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

,
4∏
j=1

( 4∏
i=1

([
δlij, δ

u
ij

])ωi

)νj
⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.84, 0.91]0.1 [0.64, 0.84]0.2

[0.64, 0.75]0.4 [0.84, 0.91]0.3

}0.3{
[0.64, 0.84]0.1 [0.91, 0.96]0.2

[0.75, 0.91]0.4 [0.64, 0.96]0.3

}0.1
{
[0.84, 0.96]0.1 [0.51, 0.91]0.2

[0.51, 0.91]0.4 [0.91, 0.99]0.3

}0.2{
[0.51, 0.91]0.1 [0.84, 0.96]0.2

[0.75, 0.96]0.4 [0.84, 0.91]0.3

}0.4
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝
{
[0.2, 0.7]0.1 [0.3, 0.4]0.2

[0.4, 0.5]0.4 [0.3, 0.6]0.3

}0.3{
[0.3, 0.7]0.1 [0.3, 0.5]0.2

[0.5, 0.8]0.4 [0.2, 0.4]0.3

}0.1
{
[0.3, 0.4]0.1 [0.3, 0.5]0.2

[0.3, 0.8]0.4 [0.5, 0.6]0.3

}0.2{
[0.3, 0.7]0.1 [0.3, 0.5]0.2

[0.3, 0.6]0.4 [0.3, 0.7]0.3

}0.4
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.9827, 0.9906][0.9146, 0.9657]
[0.8365, 0.8913][0.9490, 0.9721]

}0.3{[0.9564, 0.9827][0.9813, 0.9919]
[0.8913, 0.9630][0.8747, 0.9878]

}0.1
{
[0.9827, 0.9959][0.8740, 0.9813]
[0.7639, 0.9630][0.9721, 0.9970]

}0.2{[0.9349, 0.9906][0.9657, 0.9919]
[0.8913, 0.9838][0.9490, 0.9721]

}0.4
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝
{
[0.8513, 0.9649][0.7860, 0.8326]
[0.6931, 0.7579][0.6968, 0.8579]

}0.3{[0.8865, 0.9650][0.7860, 0.8706]
[0.7579, 0.9146][0.6170, 0.7597]

}0.1
{
[0.8866, 0.9124][0.7860, 0.8326]
[0.6178, 0.9146][0.8123, 0.8579]

}0.2{[0.8866, 0.9650][0.7860, 0.8706]
[0.6178, 0.8152][0.6968, 0.8985]

}0.4
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ([0.3114, 0.5751], [0.3190, 0.5509])

Θ4 =

⎛
⎜⎝
√√√√√1−

4∏
j=1

(
4∏
i=1

(
1−

[
κ lij,κ

u
ij

]2)ωi
)νj

,
4∏
j=1

(
4∏
i=1

([
δlij, δ

u
ij

])ωi

)νj
⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.75, 0.91]0.1 [0.51, 0.84]0.2

[0.75, 0.96]0.4 [0.51, 0.75]0.3

}0.3{
[0.51, 0.96]0.1 [0.51, 0.84]0.2

[0.51, 0.75]0.4 [0.75, 0.96]0.3

}0.1
{
[0.75, 0.96]0.1 [0.75, 0.99]0.2

[0.84, 0.96]0.4 [0.75, 0.91]0.3

}0.2{
[0.84, 0.96]0.1 [0.36, 0.75]0.2

[0.51, 0.96]0.4 [0.75, 0.96]0.3

}0.4
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝
{
[0.2, 0.6]0.1 [0.2, 0.6]0.2

[0.3, 0.6]0.4 [0.6, 0.8]0.3

}0.3{
[0.3, 0.8]0.1 [0.1, 0.5]0.2

[0.4, 0.5]0.4 [0.3, 0.4]0.3

}0.1
{
[0.1, 0.6]0.1 [0.2, 0.5]0.2

[0.2, 0.7]0.4 [0.1, 0.5]0.3

}0.2{
[0.5, 0.8]0.1 [0.2, 0.5]0.2

[0.3, 0.6]0.4 [0.4, 0.5]0.3

}0.4
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.9716, 0.9906][0.8740, 0.9657]
[0.8913, 0.9838][0.8171, 0.9173]

}0.3{[0.9349, 0.9959][0.8740, 0.9657]
[0.7639, 0.8913][0.9173, 0.9878]

}0.1
{
[0.9716, 0.9959][0.9441, 0.9980]
[0.9326, 0.9838][0.9173, 0.9721]

}0.2{[0.9827, 0.9959][0.8151, 0.9441]
[0.7639, 0.9838][0.9173, 0.9878]

}0.4
⎞
⎟⎟⎟⎠,

⎛
⎜⎜⎜⎝
{
[0.8513, 0.9502][0.7248, 0.9029]
[0.6178, 0.8151][0.8579, 0.9352]

}0.3{[0.8866, 0.9779][0.6310, 0.8706]
[0.6931, 0.7579][0.6968, 0.7597]

}0.1
{
[0.7943, 0.9502][0.7248, 0.8706]
[0.5253, 0.8670][0.5012, 0.8122]

}0.2{[0.9330, 0.9779][0.7248, 0.8706]
[0.6078, 0.8152][0.7597, 0.8123]

}0.4
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ([0.3162, 0.7856], [0.2701, 0.6137]) .

Step-4: Use the score function S =
(
κ l
)2+(κu)

2−
(
δl
)2−(δu)

2

2 for the interval-valued Pythagorean
fuzzy soft set to calculate the score values for all alternatives. S (Θ1) = 0.0377, S (Θ2) = 0.0834,
S (Θ3)= 0.0113, and S (Θ4)= 0.0141.

Step-5: From the above calculation, we get S (Θ2) > S (Θ1) > S (Θ4) > S (Θ3), which shows
that I2 is the best alternative. So, I2 > I1 > I4 > I3.

4.2.2 By IVPFSWG Operator
Step-1: Obtain PFS decision matrices (Tables 1–4).

Step-2: Use the normalization formula to normalize the obtained PFS decision matrices
(Tables 5–8).

Step-3: Apply the proposed IVPFSWG operator on the acquired data, we will obtain an
opinion of the decision-makers

Θ1 =

⎛
⎜⎝ 4∏
j=1

( 4∏
i=1

([
κ lij,κ

u
ij

])ωi

)νj

,

√√√√√1−
4∏
j=1

( 4∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj
⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

,⎛
⎜⎜⎜⎝
{
[0.2, 0.5]0.1 [0.7, 0.8]0.2

[0.2, 0.5]0.4 [0.2, 0.6]0.3

}0.3{
[0.2, 0.6]0.1 [0.1, 0.6]0.2

[0.4, 0.8]0.4 [0.4, 0.7]0.3

}0.1
{
[0.1, 0.4]0.1 [0.4, 0.6]0.2

[0.3, 0.7]0.4 [0.2, 0.4]0.3

}0.2{
[0.3, 0.7]0.1 [0.4, 0.5]0.2

[0.3, 0.5]0.4 [0.3, 0.5]0.3

}0.4
⎞
⎟⎟⎟⎠,

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.75, 0.84]0.1 [0.64, 0.75]0.2

[0.64, 0.84]0.4 [0.84, 0.96]0.3

}0.3{
[0.51, 0.96]0.1 [0.75, 0.84]0.2

[0.91, 0.96]0.4 [0.75, 0.96]0.3

}0.1
{
[0.75, 0.91]0.1 [0.51, 0.96]0.2

[0.51, 0.84]0.4 [0.75, 0.91]0.3

}0.2{
[0.64, 0.84]0.1 [0.51, 0.91]0.2

[0.64, 0.91]0.4 [0.64, 0.91]0.3

}0.4
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝
{
[0.8513, 0.9330][0.9311, 0.9564]
[0.5253, 0.7579][0.6170, 0.8579]

}0.3{[0.8513, 0.9502][0.6310, 0.9029]
[0.6931, 0.9146][0.7597, 0.8985]

}0.1
{
[0.7943, 0.9124][0.8326, 0.9029]
[0.6178, 0.8670][0.6170, 0.7597]

}0.2{ [0.8866, 0.9650][0.8326, 0.8706]
[0.0.6178, 0.7578][0.6968, 0.8123]

}0.4
⎞
⎟⎟⎟⎠ ,

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.9716, 0.9827][0.9146, 0.9441]
[0.8365, 0.9326][0.9490, 0.9878]

}0.3{[0.9349, 0.9949][0.9441, 0.9657]
[0.9629, 0.9838][0.9173, 0.9876]

}0.1
{
[0.9716, 0.9906][0.8740, 0.9919]
[0.7639, 0.9326][0.9173, 0.9721]

}0.2{[0.9564, 0.9827][0.8740, 0.9813]
[0.8365, 0.9630][0.8747, 0.9721]

}0.4
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ([0.7975, 0.8569], [0.6395, 0.7586])

Θ2 =

⎛
⎜⎝ 4∏
j=1

( 4∏
i=1

([
κ lij,κ

u
ij

])ωi

)νj

,

√√√√√1−
4∏
j=1

( 4∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj
⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

,⎛
⎜⎜⎜⎝
{
[0.2, 0.5]0.1 [0.7, 0.8]0.2

[0.2, 0.5]0.4 [0.2, 0.6]0.3

}0.3{
[0.2, 0.6]0.1 [0.1, 0.6]0.2

[0.4, 0.8]0.4 [0.4, 0.7]0.3

}0.1
{
[0.1, 0.4]0.1 [0.4, 0.6]0.2

[0.3, 0.7]0.4 [0.2, 0.4]0.3

}0.2{
[0.3, 0.7]0.1 [0.4, 0.5]0.2

[0.3, 0.5]0.4 [0.3, 0.5]0.3

}0.4
⎞
⎟⎟⎟⎠,

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.75, 0.84]0.1 [0.64, 0.75]0.2

[0.64, 0.84]0.4 [0.84, 0.96]0.3

}0.3{
[0.51, 0.96]0.1 [0.75, 0.84]0.2

[0.91, 0.96]0.4 [0.75, 0.96]0.3

}0.1
{
[0.75, 0.91]0.1 [0.51, 0.96]0.2

[0.51, 0.84]0.4 [0.75, 0.91]0.3

}0.2{
[0.64, 0.84]0.1 [0.51, 0.91]0.2

[0.64, 0.91]0.4 [0.64, 0.91]0.3

}0.4
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝
{
[0.8513, 0.9330][0.9311, 0.9564]
[0.5253, 0.7579][0.6170, 0.8579]

}0.3{[0.8513, 0.9502][0.6310, 0.9029]
[0.6931, 0.9146][0.7597, 0.8985]

}0.1
{
[0.7943, 0.9124][0.8326, 0.9029]
[0.6178, 0.8670][0.6170, 0.7597]

}0.2{ [0.8866, 0.9650][0.8326, 0.8706]
[0.0.6178, 0.7578][0.6968, 0.8123]

}0.4
⎞
⎟⎟⎟⎠ ,

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.9716, 0.9827][0.9146, 0.9441]
[0.8365, 0.9326][0.9490, 0.9878]

}0.3{[0.9349, 0.9949][0.9441, 0.9657]
[0.9629, 0.9838][0.9173, 0.9876]

}0.1
{
[0.9716, 0.9906][0.8740, 0.9919]
[0.7639, 0.9326][0.9173, 0.9721]

}0.2{[0.9564, 0.9827][0.8740, 0.9813]
[0.8365, 0.9630][0.8747, 0.9721]

}0.4
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ([0.5643, 0.8978], [0.5206, 0.7452])

Θ3 =

⎛
⎜⎝ 4∏
j=1

(
4∏
i=1

([
κ lij,κ

u
ij

])ωi

)νj

,

√√√√√1−
4∏
j=1

(
4∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj
⎞
⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

,⎛
⎜⎜⎜⎝
{
[0.2, 0.5]0.1 [0.7, 0.8]0.2

[0.2, 0.5]0.4 [0.2, 0.6]0.3

}0.3{
[0.2, 0.6]0.1 [0.1, 0.6]0.2

[0.4, 0.8]0.4 [0.4, 0.7]0.3

}0.1
{
[0.1, 0.4]0.1 [0.4, 0.6]0.2

[0.3, 0.7]0.4 [0.2, 0.4]0.3

}0.2{
[0.3, 0.7]0.1 [0.4, 0.5]0.2

[0.3, 0.5]0.4 [0.3, 0.5]0.3

}0.4
⎞
⎟⎟⎟⎠,

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.75, 0.84]0.1 [0.64, 0.75]0.2

[0.64, 0.84]0.4 [0.84, 0.96]0.3

}0.3{
[0.51, 0.96]0.1 [0.75, 0.84]0.2

[0.91, 0.96]0.4 [0.75, 0.96]0.3

}0.1
{
[0.75, 0.91]0.1 [0.51, 0.96]0.2

[0.51, 0.84]0.4 [0.75, 0.91]0.3

}0.2{
[0.64, 0.84]0.1 [0.51, 0.91]0.2

[0.64, 0.91]0.4 [0.64, 0.91]0.3

}0.4
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝
{
[0.8513, 0.9330][0.9311, 0.9564]
[0.5253, 0.7579][0.6170, 0.8579]

}0.3{[0.8513, 0.9502][0.6310, 0.9029]
[0.6931, 0.9146][0.7597, 0.8985]

}0.1
{
[0.7943, 0.9124][0.8326, 0.9029]
[0.6178, 0.8670][0.6170, 0.7597]

}0.2{ [0.8866, 0.9650][0.8326, 0.8706]
[0.0.6178, 0.7578][0.6968, 0.8123]

}0.4
⎞
⎟⎟⎟⎠ ,

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.9716, 0.9827][0.9146, 0.9441]
[0.8365, 0.9326][0.9490, 0.9878]

}0.3{[0.9349, 0.9949][0.9441, 0.9657]
[0.9629, 0.9838][0.9173, 0.9876]

}0.1
{
[0.9716, 0.9906][0.8740, 0.9919]
[0.7639, 0.9326][0.9173, 0.9721]

}0.2{[0.9564, 0.9827][0.8740, 0.9813]
[0.8365, 0.9630][0.8747, 0.9721]

}0.4
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ([0.6325, 0.9658], [0.2365, 0.5263])

Θ4 =

⎛
⎜⎝ 4∏
j=1

( 4∏
i=1

([
κ lij,κ

u
ij

])ωi

)νj

,

√√√√√1−
4∏
j=1

( 4∏
i=1

(
1−

[
δlij, δ

u
ij

]2)ωi
)νj
⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

,⎛
⎜⎜⎜⎝
{
[0.2, 0.5]0.1 [0.7, 0.8]0.2

[0.2, 0.5]0.4 [0.2, 0.6]0.3

}0.3{
[0.2, 0.6]0.1 [0.1, 0.6]0.2

[0.4, 0.8]0.4 [0.4, 0.7]0.3

}0.1
{
[0.1, 0.4]0.1 [0.4, 0.6]0.2

[0.3, 0.7]0.4 [0.2, 0.4]0.3

}0.2{
[0.3, 0.7]0.1 [0.4, 0.5]0.2

[0.3, 0.5]0.4 [0.3, 0.5]0.3

}0.4
⎞
⎟⎟⎟⎠,

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.75, 0.84]0.1 [0.64, 0.75]0.2

[0.64, 0.84]0.4 [0.84, 0.96]0.3

}0.3{
[0.51, 0.96]0.1 [0.75, 0.84]0.2

[0.91, 0.96]0.4 [0.75, 0.96]0.3

}0.1
{
[0.75, 0.91]0.1 [0.51, 0.96]0.2

[0.51, 0.84]0.4 [0.75, 0.91]0.3

}0.2{
[0.64, 0.84]0.1 [0.51, 0.91]0.2

[0.64, 0.91]0.4 [0.64, 0.91]0.3

}0.4
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝
{
[0.8513, 0.9330][0.9311, 0.9564]
[0.5253, 0.7579][0.6170, 0.8579]

}0.3{[0.8513, 0.9502][0.6310, 0.9029]
[0.6931, 0.9146][0.7597, 0.8985]

}0.1
{
[0.7943, 0.9124][0.8326, 0.9029]
[0.6178, 0.8670][0.6170, 0.7597]

}0.2{ [0.8866, 0.9650][0.8326, 0.8706]
[0.0.6178, 0.7578][0.6968, 0.8123]

}0.4
⎞
⎟⎟⎟⎠ ,

√√√√√√√√1−

⎛
⎜⎜⎜⎝
{
[0.9716, 0.9827][0.9146, 0.9441]
[0.8365, 0.9326][0.9490, 0.9878]

}0.3{[0.9349, 0.9949][0.9441, 0.9657]
[0.9629, 0.9838][0.9173, 0.9876]

}0.1
{
[0.9716, 0.9906][0.8740, 0.9919]
[0.7639, 0.9326][0.9173, 0.9721]

}0.2{[0.9564, 0.9827][0.8740, 0.9813]
[0.8365, 0.9630][0.8747, 0.9721]

}0.4
⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ([0.4525, 0.5469], [0.1253, 0.5263]) .

Step-4: Use the score function S =
(
κ l
)2+(κu)

2−
(
δl
)2−(δu)

2

2 interval-valued for the Pythagorean
fuzzy soft set to calculate the score values for all alternatives such as S (Θ1) = 0.0524, S (Θ2) =
0.0754, S (Θ3)= 0.0241, and S (Θ4)= 0.0114.

Step-5: From the above calculation, we get the ranking of alternatives S (Θ2) > S (Θ1) >

S (Θ3) > S (Θ4), which shows that I2 is the best alternative. So, I2 > I1 > I3 > I4.

5 Comparative Studies

To highlight the effectiveness of the presented method, a comparison between the proposed
model and prevailing methods is proposed in the following section.

5.1 Comparative Analysis with Interval-Valued Pythagorean Fuzzy Weighted Average Operator [28]
Step-1: Obtain an IVPF decision matrices (Tables 1–4).

Step-2: Use normalization formula to normalize the obtained IVPF decision matrices
(Tables 5–8).

Step-3: Apply the IVPFWA operator on the acquired data, then we get the opinion of
decision-makers.

As we have

IVPFWA (M1,M2,M3,M4, . . . . . .Mn)=
⎛
⎝
√√√√1−

4∏
i=1

(
1−

[
κ li ,κ

u
i

]2)ωi

,
4∏
i=1

[
δli , δ

u
i

]ωi

⎞
⎠

Θ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1−

⎛
⎜⎜⎝
{
[0.75, 0.84]0.1 [0.64, 0.75]0.2

[0.64, 0.84]0.4 [0.84, 0.96]0.3

}{
[0.51, 0.96]0.1 [0.75, 0.84]0.2

[0.91, 0.96]0.4 [0.75, 0.96]0.3

}
{
[0.75, 0.91]0.1 [0.51, 0.96]0.2

[0.51, 0.84]0.4 [0.75, 0.91]0.3

}{
[0.64, 0.84]0.1 [0.51, 0.91]0.2

[0.64, 0.91]0.4 [0.64, 0.91]0.3

}
⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{
[0.2, 0.5]0.1 [0.7, 0.8]0.2

[0.2, 0.5]0.4 [0.2, 0.6]0.3

}{
[0.2, 0.6]0.1 [0.1, 0.6]0.2

[0.4, 0.8]0.4 [0.4, 0.7]0.3

}
{
[0.1, 0.4]0.1 [0.4, 0.6]0.2

[0.3, 0.7]0.4 [0.2, 0.4]0.3

}{
[0.3, 0.7]0.1 [0.4, 0.5]0.2

[0.3, 0.5]0.4 [0.3, 0.5]0.3

}
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1−

⎛
⎜⎜⎝
{
[0.9716, 0.9827][0.9146, 0.9441]
[0.8365, 0.9326][0.9490, 0.9878]

}{
[0.9349, 0.9949][0.9441, 0.9657]
[0.9629, 0.9838][0.9173, 0.9876]

}
{
[0.9716, 0.9906][0.8740, 0.9919]
[0.7639, 0.9326][0.9173, 0.9721]

}{
[0.9564, 0.9827][0.8740, 0.9813]
[0.8365, 0.9630][0.8747, 0.9721]

}
⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{
[0.8513, 0.9330][0.9311, 0.9564]
[0.5253, 0.7579][0.6170, 0.8579]

}{
[0.8513, 0.9502][0.6310, 0.9029]
[0.6931, 0.9146][0.7597, 0.8985]

}
{
[0.7943, 0.9124][0.8326, 0.9029]
[0.6178, 0.8670][0.6170, 0.7597]

}{
[0.8866, 0.9650][0.8326, 0.8706]
[0.0.6178, 0.7578][0.6968, 0.8123]

}
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ([0.6071, 0.8944], [0.0083, 0.1265])

Θ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1−

⎛
⎜⎜⎝
{
[0.64, 0.91]0.1 [0.51, 0.75]0.2

[0.51, 0.96]0.4 [0.51, 0.64]0.3

}{
[0.75, 0.91]0.1 [0.75, 0.84]0.2

[0.75, 0.99]0.4 [0.75, 0.84]0.3

}
{
[0.64, 0.96]0.1 [0.19, 0.96]0.2

[0.51, 0.96]0.4 [0.36, 0.75]0.3

}{
[0.91, 0.96]0.1 [0.19, 0.96]0.2

[0.51, 0.84]0.4 [0.51, 0.99]0.3

}
⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{
[0.5, 0.6]0.1 [0.2, 0.7]0.2

[0.4, 0.5]0.4 [0.5, 0.8]0.3

}{
[0.5, 0.8]0.1 [0.1, 0.4]0.2

[0.3, 0.7]0.4 [0.3, 0.6]0.3

}
{
[0.1, 0.4]0.1 [0.1, 0.2]0.2

[0.3, 0.8]0.4 [0.2, 0.6]0.3

}{
[0.3, 0.8]0.1 [0.3, 0.5]0.2

[0.2, 0.6]0.4 [0.3, 0.6]0.3

}
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1−

⎛
⎜⎜⎝
{
[0.9564, 0.9906][0.8740, 0.9441]
[0.7639, 0.9838][0.8171, 0.8747]

}{
[0.9716, 0.9906][0.9441, 0.9657]
[0.8913, 0.9960][0.9173, 0.9490]

}
{
[0.9564, 0.9960][0.7174, 0.9918]
[0.7639, 0.9838][0.7360, 0.9173]

}{
[0.9906, 0.9959][0.7174, 0.9919]
[0.7639, 0.9326][0.8171, 0.9970]

}
⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{
[0.9930, 0.9502][0.7248, 0.9311]
[0.6931, 0.7579][0.8123, 0.9352]

}{
[0.9330, 0.9780][0.6309, 0.8326]
[0.6178, 0.8670][0.6968, 0.8579]

}
{
[0.7943, 0.9124][0.6310, 0.7248]
[0.6178, 0.9146][0.6170, 0.8579]

}{
[0.8866, 0.9779][0.7860, 0.8706]
[0.5253, 0.8152][0.6968, 0.8579]

}
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ([0.6357, 0.9659], [0.0050, 0.1174])

Θ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1−

⎛
⎜⎜⎝
{
[0.84, 0.91]0.1 [0.64, 0.84]0.2

[0.64, 0.75]0.4 [0.84, 0.91]0.3

}{
[0.64, 0.84]0.1 [0.91, 0.96]0.2

[0.75, 0.91]0.4 [0.91, 0.99]0.3

}
{
[0.84, 0.96]0.1 [0.51, 0.91]0.2

[0.51, 0.91]0.4 [0.91, 0.99]0.3

}{
[0.51, 0.91]0.1 [0.84, 0.96]0.2

[0.75, 0.96]0.4 [0.84, 0.91]0.3

}
⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{
[0.2, 0.7]0.1 [0.3, 0.4]0.2

[0.4, 0.5]0.4 [0.3, 0.6]0.3

}{
[0.3, 0.7]0.1 [0.3, 0.5]0.2

[0.5, 0.8]0.4 [0.2, 0.4]0.3

}
{
[0.3, 0.4]0.1 [0.3, 0.5]0.2

[0.3, 0.8]0.4 [0.5, 0.6]0.3

}{
[0.3, 0.7]0.1 [0.3, 0.5]0.2

[0.3, 0.6]0.4 [0.3, 0.7]0.3

}
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1−

⎛
⎜⎜⎝
{
[0.9827, 0.9906][0.9146, 0.9657]
[0.8365, 0.8913][0.9490, 0.9721]

}{
[0.9564, 0.9827][0.9813, 0.9919]
[0.8913, 0.9630][0.9721, 0.9970]

}
{
[0.9827, 0.9959][0.8740, 0.9813]
[0.7639, 0.9630][0.9721, 0.9970]

}{
[0.9349, 0.9906][0.9657, 0.9919]
[0.8913, 0.9838][0.9490, 0.9721]

}
⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{
[0.8513, 0.9650][0.7860, 0.8326]
[0.6931, 0.7579][0.6968, 0.8579]

}{
[0.8866, 0.9650][0.7860, 0.8706]
[0.5759, 0.9146][0.6170, 0.7597]

}
{
[0.8866, 0.9124][0.7860, 0.8706]
[0.6178, 0.9146][0.8123, 0.8579]

}{
[0.8866, 0.9650][0.7860, 0.8706]
[0.6178, 0.8152][0.6968, 0.8985]

}
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ([0.3652, 0.6523], [0.5236, 0.6524])

Θ4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1−

⎛
⎜⎜⎝
{
[0.64, 0.91]0.1 [0.51, 0.75]0.2

[0.51, 0.96]0.4 [0.51, 0.64]0.3

}{
[0.75, 0.91]0.1 [0.75, 0.84]0.2

[0.75, 0.99]0.4 [0.75, 0.84]0.3

}
{
[0.64, 0.96]0.1 [0.19, 0.96]0.2

[0.51, 0.96]0.4 [0.36, 0.75]0.3

}{
[0.91, 0.96]0.1 [0.19, 0.96]0.2

[0.51, 0.84]0.4 [0.51, 0.99]0.3

}
⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{
[0.5, 0.6]0.1 [0.2, 0.7]0.2

[0.4, 0.5]0.4 [0.5, 0.8]0.3

}{
[0.5, 0.8]0.1 [0.1, 0.4]0.2

[0.3, 0.7]0.4 [0.3, 0.6]0.3

}
{
[0.1, 0.4]0.1 [0.1, 0.2]0.2

[0.3, 0.8]0.4 [0.2, 0.6]0.3

}{
[0.3, 0.8]0.1 [0.3, 0.5]0.2

[0.2, 0.6]0.4 [0.3, 0.6]0.3

}
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1−

⎛
⎜⎜⎝
{
[0.9564, 0.9906][0.8740, 0.9441]
[0.7639, 0.9838][0.8171, 0.8747]

}{
[0.9716, 0.9906][0.9441, 0.9657]
[0.8913, 0.9960][0.9173, 0.9490]

}
{
[0.9564, 0.9960][0.7174, 0.9918]
[0.7639, 0.9838][0.7360, 0.9173]

}{
[0.9906, 0.9959][0.7174, 0.9919]
[0.7639, 0.9326][0.8171, 0.9970]

}
⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{
[0.9930, 0.9502][0.7248, 0.9311]
[0.6931, 0.7579][0.8123, 0.9352]

}{
[0.9330, 0.9780][0.6309, 0.8326]
[0.6178, 0.8670][0.6968, 0.8579]

}
{
[0.7943, 0.9124][0.6310, 0.7248]
[0.6178, 0.9146][0.6170, 0.8579]

}{
[0.8866, 0.9779][0.7860, 0.8706]
[0.5253, 0.8152][0.6968, 0.8579]

}
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ([0.6357, 0.9659], [0.0050, 0.1174])

Step-4: Use the score function S =
(
κ l
)2+(κu)

2−
(
δl
)2−(δu)

2

2 for IVPFS to calculate the score
values for all alternatives.

S (Θ1)= (0.4575)2+ (0.8569)2− (0.4595)2− (0.7586)2

2
= 0.0154

S (Θ2)= (0.6543)2+ (0.8978)2− (0.5206)2− (0.7452)2

2
= 0.0251

S (Θ3)= (0.6565)2+ (0.9548)2− (0.2365)2− (0.3663)2

2
= 0.0198

S (Θ4)= (0.4545)2+ (0.5459)2− (0.8553)2− (0.2563)2

2
= 0.0247
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Step-5: Ranking of alternatives S (Θ2) > S (Θ4) > S (Θ3) > S (Θ1). So, I2 > I4 > I3 > I1.
Hence, the best alternative is I2.

5.2 Comparison with Interval-Valued Pythagorean Fuzzy Weighted Geometric Operator [28]
Step-1: Obtain an IVPF decision matrices (Tables 1–4).

Step-2: Use normalization formula to normalize the obtained IVPF decision matrices
(Tables 5–8).

Step-3: Apply the IVPFWG operator on the acquired data, then we get the opinion of
decision-makers.

As we have

IVPFWG (M1,M2,M3,M4, . . . . . .Mn)=
⎛
⎝ 4∏
i=1

[
κ li ,κ

u
i

]ωi
,

√√√√1−
4∏
i=1

(
1−

[
δli , δ

u
i

]2)ωi

⎞
⎠

Θ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{
[0.2, 0.5]0.1 [0.7, 0.8]0.2

[0.2, 0.5]0.4 [0.2, 0.6]0.3

}{
[0.2, 0.6]0.1 [0.1, 0.6]0.2

[0.4, 0.8]0.4 [0.4, 0.7]0.3

}
{
[0.1, 0.4]0.1 [0.4, 0.6]0.2

[0.3, 0.7]0.4 [0.2, 0.4]0.3

}{
[0.3, 0.7]0.1 [0.4, 0.5]0.2

[0.3, 0.5]0.4 [0.3, 0.5]0.3

}
⎞
⎟⎟⎠ ,

√√√√√√√1−

⎛
⎜⎜⎝
{
[0.75, 0.84]0.1 [0.64, 0.75]0.2

[0.64, 0.84]0.4 [0.84, 0.96]0.3

}{
[0.51, 0.96]0.1 [0.75, 0.84]0.2

[0.91, 0.96]0.4 [0.75, 0.96]0.3

}
{
[0.75, 0.91]0.1 [0.51, 0.96]0.2

[0.51, 0.84]0.4 [0.75, 0.91]0.3

}{
[0.64, 0.84]0.1 [0.51, 0.91]0.2

[0.64, 0.91]0.4 [0.64, 0.91]0.3

}
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{
[0.8513, 0.9330][0.9311, 0.9564]
[0.5253, 0.7579][0.6170, 0.8579]

}{
[0.8513, 0.9502][0.6310, 0.9029]
[0.6931, 0.9146][0.7597, 0.8985]

}
{
[0.7943, 0.9124][0.8326, 0.9029]
[0.6178, 0.8670][0.6170, 0.7597]

}{
[0.8866, 0.9650][0.8326, 0.8706]
[0.0.6178, 0.7578][0.6968, 0.8123]

}
⎞
⎟⎟⎠ ,

√√√√√√√1−

⎛
⎜⎜⎝
{
[0.9716, 0.9827][0.9146, 0.9441]
[0.8365, 0.9326][0.9490, 0.9878]

}{
[0.9349, 0.9949][0.9441, 0.9657]
[0.9629, 0.9838][0.9173, 0.9876]

}
{
[0.9716, 0.9906][0.8740, 0.9919]
[0.7639, 0.9326][0.9173, 0.9721]

}{
[0.9564, 0.9827][0.8740, 0.9813]
[0.8365, 0.9630][0.8747, 0.9721]

}
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ([0.0083, 0.1265], [0.6071, 0.8944])

Θ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{
[0.5, 0.6]0.1 [0.2, 0.7]0.2

[0.4, 0.5]0.4 [0.5, 0.8]0.3

}{
[0.5, 0.8]0.1 [0.1, 0.4]0.2

[0.3, 0.7]0.4 [0.3, 0.6]0.3

}
{
[0.1, 0.4]0.1 [0.1, 0.2]0.2

[0.3, 0.8]0.4 [0.2, 0.6]0.3

}{
[0.3, 0.8]0.1 [0.3, 0.5]0.2

[0.2, 0.6]0.4 [0.3, 0.6]0.3

}
⎞
⎟⎟⎠ ,

√√√√√√√1−

⎛
⎜⎜⎝
{
[0.64, 0.91]0.1 [0.51, 0.75]0.2

[0.51, 0.96]0.4 [0.51, 0.64]0.3

}{
[0.75, 0.91]0.1 [0.75, 0.84]0.2

[0.75, 0.99]0.4 [0.75, 0.84]0.3

}
{
[0.64, 0.96]0.1 [0.19, 0.96]0.2

[0.51, 0.96]0.4 [0.36, 0.75]0.3

}{
[0.91, 0.96]0.1 [0.19, 0.96]0.2

[0.51, 0.84]0.4 [0.51, 0.99]0.3

}
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠



CMES, 2022, vol.131, no.3 1747

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{
[0.9930, 0.9502][0.7248, 0.9311]
[0.6931, 0.7579][0.8123, 0.9352]

}{
[0.9330, 0.9780][0.6309, 0.8326]
[0.6178, 0.8670][0.6968, 0.8579]

}
{
[0.7943, 0.9124][0.6310, 0.7248]
[0.6178, 0.9146][0.6170, 0.8579]

}{
[0.8866, 0.9779][0.7860, 0.8706]
[0.5253, 0.8152][0.6968, 0.8579]

}
⎞
⎟⎟⎠ ,

√√√√√√√1−

⎛
⎜⎜⎝
{
[0.9564, 0.9906][0.8740, 0.9441]
[0.7639, 0.9838][0.8171, 0.8747]

}{
[0.9716, 0.9906][0.9441, 0.9657]
[0.8913, 0.9960][0.9173, 0.9490]

}
{
[0.9564, 0.9960][0.7174, 0.9918]
[0.7639, 0.9838][0.7360, 0.9173]

}{
[0.9906, 0.9959][0.7174, 0.9919]
[0.7639, 0.9326][0.8171, 0.9970]

}
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ([0.0050, 0.1174], [0.6357, 0.9659])

Θ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{
[0.2, 0.7]0.1 [0.3, 0.4]0.2

[0.4, 0.5]0.4 [0.3, 0.6]0.3

}{
[0.3, 0.7]0.1 [0.3, 0.5]0.2

[0.5, 0.8]0.4 [0.2, 0.4]0.3

}
{
[0.3, 0.4]0.1 [0.3, 0.5]0.2

[0.3, 0.8]0.4 [0.5, 0.6]0.3

}{
[0.3, 0.7]0.1 [0.3, 0.5]0.2

[0.3, 0.6]0.4 [0.3, 0.7]0.3

}
⎞
⎟⎟⎠ ,

√√√√√√√1−

⎛
⎜⎜⎝
{
[0.84, 0.91]0.1 [0.64, 0.84]0.2

[0.64, 0.75]0.4 [0.84, 0.91]0.3

}{
[0.64, 0.84]0.1 [0.91, 0.96]0.2

[0.75, 0.91]0.4 [0.91, 0.99]0.3

}
{
[0.84, 0.96]0.1 [0.51, 0.91]0.2

[0.51, 0.91]0.4 [0.91, 0.99]0.3

}{
[0.51, 0.91]0.1 [0.84, 0.96]0.2

[0.75, 0.96]0.4 [0.84, 0.91]0.3

}
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{
[0.8513, 0.9650][0.7860, 0.8326]
[0.6931, 0.7579][0.6968, 0.8579]

}{
[0.8866, 0.9650][0.7860, 0.8706]
[0.5759, 0.9146][0.6170, 0.7597]

}
{
[0.8866, 0.9124][0.7860, 0.8706]
[0.6178, 0.9146][0.8123, 0.8579]

}{
[0.8866, 0.9650][0.7860, 0.8706]
[0.6178, 0.8152][0.6968, 0.8985]

}
⎞
⎟⎟⎠ ,

√√√√√√√1−

⎛
⎜⎜⎝
{
[0.9827, 0.9906][0.9146, 0.9657]
[0.8365, 0.8913][0.9490, 0.9721]

}{
[0.9564, 0.9827][0.9813, 0.9919]
[0.8913, 0.9630][0.9721, 0.9970]

}
{
[0.9827, 0.9959][0.8740, 0.9813]
[0.7639, 0.9630][0.9721, 0.9970]

}{
[0.9349, 0.9906][0.9657, 0.9919]
[0.8913, 0.9838][0.9490, 0.9721]

}
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ([0.2565 0.5265] , [0.2336, 0.4524])

Θ4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{
[0.5, 0.6]0.1 [0.2, 0.7]0.2

[0.4, 0.5]0.4 [0.5, 0.8]0.3

}{
[0.5, 0.8]0.1 [0.1, 0.4]0.2

[0.3, 0.7]0.4 [0.3, 0.6]0.3

}
{
[0.1, 0.4]0.1 [0.1, 0.2]0.2

[0.3, 0.8]0.4 [0.2, 0.6]0.3

}{
[0.3, 0.8]0.1 [0.3, 0.5]0.2

[0.2, 0.6]0.4 [0.3, 0.6]0.3

}
⎞
⎟⎟⎠ ,

√√√√√√√1−

⎛
⎜⎜⎝
{
[0.64, 0.91]0.1 [0.51, 0.75]0.2

[0.51, 0.96]0.4 [0.51, 0.64]0.3

}{
[0.75, 0.91]0.1 [0.75, 0.84]0.2

[0.75, 0.99]0.4 [0.75, 0.84]0.3

}
{
[0.64, 0.96]0.1 [0.19, 0.96]0.2

[0.51, 0.96]0.4 [0.36, 0.75]0.3

}{
[0.91, 0.96]0.1 [0.19, 0.96]0.2

[0.51, 0.84]0.4 [0.51, 0.99]0.3

}
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{
[0.9930, 0.9502][0.7248, 0.9311]
[0.6931, 0.7579][0.8123, 0.9352]

}{
[0.9330, 0.9780][0.6309, 0.8326]
[0.6178, 0.8670][0.6968, 0.8579]

}
{
[0.7943, 0.9124][0.6310, 0.7248]
[0.6178, 0.9146][0.6170, 0.8579]

}{
[0.8866, 0.9779][0.7860, 0.8706]
[0.5253, 0.8152][0.6968, 0.8579]

}
⎞
⎟⎟⎠ ,

√√√√√√√1−

⎛
⎜⎜⎝
{
[0.9564, 0.9906][0.8740, 0.9441]
[0.7639, 0.9838][0.8171, 0.8747]

}{
[0.9716, 0.9906][0.9441, 0.9657]
[0.8913, 0.9960][0.9173, 0.9490]

}
{
[0.9564, 0.9960][0.7174, 0.9918]
[0.7639, 0.9838][0.7360, 0.9173]

}{
[0.9906, 0.9959][0.7174, 0.9919]
[0.7639, 0.9326][0.8171, 0.9970]

}
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ([0.6357, 0.9659], [0.2564, 0.6585]) .

Step-4: Use the score function S =
(
κ l
)2+(κu)

2−
(
δl
)2−(δu)

2

2 for IVPFS to calculate the score
values for all alternatives.

S (Θ1)= (0.4575)2+ (0.8569)2− (0.4595)2− (0.7586)2

2
= 0.030264

S (Θ2)= (0.6543)2+ (0.8978)2− (0.5206)2− (0.7452)2

2
= 0.0856

S (Θ3)= (0.6565)2+ (0.9548)2− (0.2365)2− (0.3663)2

2
= 0.0786

S (Θ4)= (0.6357)2+ (0.9659)2− (0.2564)2− (0.6585)2

2
= 0.0475

Step-5: Ranking of alternatives, S (Θ2) > S (Θ3) > S (Θ4) > S (Θ1). So, I2 > I3 > I1 > I4 .
Hence, the best alternative is I2.

Similarly, we can get the outcomes utilizing several other existing operators for comparative
studies.

5.3 Comparative Analysis
To verify the effectiveness of the proposed method, we compare the obtained results with

some existing methods under the environment of IVPFS and IVIFSS. A summary of all results is
given in Table 9. Zulqarnain et al. [17] developed aggregation operators for IVIFSS that are unable
to accommodate the decision-makers choices when the sum of upper membership and nonmem-
bership values of the parameters exceeds one. Peng et al. [27] interval-valued Pythagorean fuzzy
weighted average operator and Rahman et al. [28] interval-valued Pythagorean fuzzy weighted
geometric operator cannot handle the parametrized values of the alternatives. Furthermore, if only
one parameter is supposed rather than more than one parameter, the interval-valued Pythagorean
fuzzy soft set reduces to the interval-valued Pythagorean fuzzy set. Similarly, if the sum of upper
values of membership and nonmembership degree is less or equal to 1. Then, IVPFSS reduced
to IVIFSS. Thus, IVPFSS is the most generalized form of interval-valued Pythagorean fuzzy set.
Hence, based on the above-mentioned facts, admittedly, the proposed operators in this paper are
more powerful, reliable, and successful.
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Table 9: Comparison of proposed operators with some existing operators

Approach I1 I2 I3 I4 Alternatives ranking

IVPFWA [28] 0.0154 0.0251 0.0198 0.0247 I2 > I4 > I3 > I1

IVPFWG [28] 0.0364 0.0856 0.0786 0.0475 I2 > I3 > I1 > I4

IVIFSWA [18] 0.0235 0.0723 0.0584 0.2530 I2 > I3 > I1 > I4

IVIFSWG [18] 0.2365 0.7234 0.5840 0.6525 I2 > I4 > I3 > I1

Proposed IVPFSWA 0.0377 0.0834 0.0113 0.0141 I2 > I1 > I4 > I3

Proposed IVPFSWG 0.0524 0.0754 0.0241 0.0114 I2 > I1 > I3 > I4

6 Conclusion

In this work, we have introduced two novel aggregation operators such as IVPFSWA and IPF-
SWG operators. Firstly, we defined operational laws under an interval-valued Pythagorean fuzzy
soft environment. Based on these operational laws, we developed the aggregation operators for
IVPFSS such as IVPFSWA and IVPFSWG operators with their desirable properties. Furthermore,
a DM approach has been established to resolve multi-attribute group decision-making (MAGDM)
problems based on presented aggregation operators. To ensure the validity of the established
technique, a comprehensive numerical example has been presented. To verify the effectiveness of
the proposed method, a comparative analysis with some existing methods is presented. Finally,
based on obtained results, it has been concluded that the proposed method in this research is the
most feasible and successful method for the MAGDM problem.
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