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ABSTRACT

In the smart logistics industry, unmanned forklifts that intelligently identify logistics pallets can improve work
efficiency in warehousing and transportation and are better than traditional manual forklifts driven by humans.
Therefore, they play a critical role in smart warehousing, and semantics segmentation is an effective method to
realize the intelligent identification of logistics pallets. However,most current recognition algorithms are ineffective
due to the diverse types of pallets, their complex shapes, frequent blockades in production environments, and
changing lighting conditions. This paper proposes a novel multi-feature fusion-guided multiscale bidirectional
attention (MFMBA) neural network for logistics pallet segmentation. To better predict the foreground category
(the pallet) and the background category (the cargo) of a pallet image, our approach extracts three types of features
(grayscale, texture, and Hue, Saturation, Value features) and fuses them. The multiscale architecture deals with the
problem that the size and shape of the pallet may appear different in the image in the actual, complex environment,
which usually makes feature extraction difficult. Our study proposes a multiscale architecture that can extract
additional semantic features. Also, since a traditional attention mechanism only assigns attention rights from a
single direction, we designed a bidirectional attention mechanism that assigns cross-attention weights to each
feature from two directions, horizontally and vertically, significantly improving segmentation. Finally, comparative
experimental results show that the precision of the proposed algorithm is 0.53%–8.77% better than that of other
methods we compared.
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1 Introduction

The recent rapid development of e-commerce has promoted the prosperity of the logistics
industry, accompanied by a demand for logistics that has steadily increased [1,2]. The logistics
industry is one of the industries with the fastest growths in personnel. Traditional logistics meth-
ods [3,4] can no longer meet the fast-paced needs of current society. Smart logistics has emerged
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to adapt to these changing needs [5–7], and with the rapid development of artificial intelligence
[8–10], smart logistics research has expanded toward automation. The traditional logistics model
requires considerable human and material resources, which can solve employment problems to
a certain extent. However, current smart logistics needs to reduce high labour costs through
automation while solving the shortage of labour [11] as it shifts to other industries. Automated
equipment can improve warehousing, material handling, packaging, and distribution efficiency
while reducing the error rate. Automated forklifts play a key role in smart logistics, and the
accuracy of automated forklifts needed to identify logistics pallets determines their work efficiency
and error rates.

Traditional forklift use in storage-oriented activities requires that goods be handled manually,
requiring workers to ensure the accuracy of handling at all times. However, the enormous daily
flow of goods and long-term repetitive operations exhaust workers, leading to workers forking
the goods and even causing safety hazards. Goods are managed in storage stacked on pallets.
Accurate identification of logistics pallets can enable automated forklifts to transport materials
quickly and efficiently, saving time and significantly reducing logistics costs [12]. Traditional
image processing technology cannot provide the performance required for high-precision segmen-
tation [13] and recognition of logistics pallets; so, semantic segmentation is being applied to the
image segmentation of logistics pallets to meet these performance requirements.

Liu et al. [14] applied the YOLACT deep learning approach used in artificial intelligence
to investigate the detection and segmentation of pallets in the carriage and achieved competitive
segmentation performance. Jia et al. [15] combined the Otsu algorithm and the marker watershed
algorithm to achieve image segmentation of pallet contours, which provided reference values for
designing a warehouse robot for wooden pallet visual inspection by reducing the influences of the
surrounding environment and the pallet pattern. Zhao et al. [16] designed a novel GPU-based
mean shift algorithm that quickly achieved unsupervised segmentation and tracking of instances.
Cui et al. [17] proposed a colour feature-based visual segmentation method that obtains pallet
colour feature samples from images in the work environment and then applies morphological
filtering, Sobel edge detection, and Hough transform algorithms to recognize the pallets. For
pallet detection, Chen et al. [18] proposed converting the colour image from RGB space to Hue,
Saturation, Value (HSV) and YUV spaces and then using the camera space model to determine
the location of the pallet relative to the forklift, thus establishing the relationship between the
image space and the real-world space. However, these colour-based approaches are vulnerable to
interference from non-simple backdrops. The Haar-based Adaboost approach, according to Syu
et al. [19], uses the AS-for-pallets algorithm to detect pallets. In addition, Seelinger et al. [20]
presented mobile camera space manipulation (MCSM), a visual guiding control system to help
forklift drivers.

In summary, vision-based detection methods [21–23] can effectively detect pallets against an
image background. However, there is still a lack of relevant research on the precise segmentation
of pallets, and accurate pallet segmentation [24] depends on whether automatic forklifts can fully
automate loading and unloading. Therefore, we developed a multi-feature fusion-guided multiscale
bidirectional attention (MFMBA) neural network for logistics pallet segmentation. First, multi-
feature extraction and fusion make up for the shortcomings of vision-based methods that are
easily misled by the background. Second, in an actual complex environment, the sizes and shapes
of pallets in the same image may be different, which makes feature acquisition difficult, but the
multiscale architecture can extract more semantic features, thereby enhancing the feature mining
capabilities of the segmentation model. In addition, the bidirectional attention mechanism [25]
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assigns bidirectional attention weights to each feature, which further improves the segmentation
performance of the model.

These are the study’s principal innovations:

(1) This paper proposes an MFMBA network for logistics pallet segmentation. Our study
has achieved competitive segmentation performance on datasets in real-world production
environments.

(2) To better predict the foreground category (the pallet) and the background category (the
goods) in an image, we extract the grayscale, texture, and HSV features from the pallet
image and then fuse them using a feature concatenation strategy.

(3) Our novel bidirectional attention mechanism assigns weights to each feature from two
directions (horizontally and vertically), which is better than traditional attention mecha-
nisms that only assign attention weights from a single direction.

The remainder of the paper is laid out as follows: Sections 2 and 3 describe related work and
explain the theoretical basis for the proposed algorithm. The comparison and ablation experiments
are described in Section 4, and we present our conclusions in Section 5.

2 Related Work

2.1 Image Segmentation
The process of assigning a label to each pixel in an image so that pixels with the same label

have similar characteristics is known as image segmentation [26,27]. Image segmentation can be
defined using the concept of set: assuming that the entire digital image is represented by set R,
image segmentation can be understood as dividing R into regions R1, R2,. . ., Rn and all subregions
meeting the following conditions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n∪
i=1

Ri =R, i= 1, 2, · · · ,n
Ri ∩Rj �=∅, i �= j, j= 1, 2, · · · ,n
Q(Ri)=True, i= 1, 2, · · · ,n
Q(Ri ∪Rj)= False

(1)

where Q(Ri) is an attribute of the pixels of the set R, ∅ indicates the empty set, ∩ is the
intersection of sets, and ∪ indicates the union of sets. If the union of Ri and Rj forms a
connected set, the two areas are defined as adjacent. It can be seen from Eq. (1) that after
segmentation, each pixel in the image has a category attribute, and the pixels in any sub-region
obtained after segmentation are all connected to four or eight other pixels. In addition, the pixels
have one and only one category attribute, that is, sub-regions do not intersect, and two adjacent
regions have different attributes.

During image processing and analysis, only a small portion of the image is usually examined.
As a result, to study image data, you must first identify and extract the portion of interest from
the entire image. The target is then analysed on this basis. Image segmentation is an essential step
in the intelligent identification of logistics pallets.

2.2 Attention Mechanism
The attention mechanism [28,29] originated from the study of human attention. Due to the

limitations on our information-processing capabilities, humans selectively focus on part of the
information they receive. This is also the ability that we need the model to have when receiving
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and learning a large amount of information. In mathematical terms, attention is learning a set
of weight coefficients through the model independently and dynamically assigning this series of
weights to each area of the information received by the model. The attention mechanism is widely
used in neural networks, especially in image segmentation tasks. The principle of the attention
mechanism is shown in Fig. 1. If the input variable is set to X = [x1,x2, · · · ,xn], the equation for
calculating the attention distribution is as follows:

αi = softmax(h(xi,p)) and (2)

α1+α2 +α3 · · · +αn = 1, (3)

where αi is the weight of attention distribution corresponding to the i-th input variable xi, which
is also a probability distribution and satisfies Eq. (2). h(xi,p) is called the attention score of
the i-th input variable, which is determined by xi and a pre-set vector p. Common attention
scoring methods include bilinear scoring and dot product scoring; their calculation equations are
as follows:

s(xi,p)= xTi Wp and (4)

s(xi,p)= xTi p. (5)

After obtaining the attention distribution, multiply the input variable xi and the corresponding
attention distribution ai, and then sum them as follows:

attention(X ,p)=
n∑
i=1

aixi. (6)

3 Methodology

The overall architecture of the proposed MFMBA algorithm is depicted schematically in
Fig. 1. This paper extracts the HSV feature, grayscale feature (GF), and texture feature (TF)
from logistics pallet images, applies a feature-stitching strategy for feature fusion, and inputs the
fusion features to the proposed multiscale bidirectional attention network to extract deep features.
The sigmoid function is then used to achieve semantic segmentation of the logistics pallets. The
MFMBA algorithm is discussed in detail in the following sections.

3.1 Multi-Feature Extraction
To improve segmentation accuracy, we first extract the TF, GF, and HSV feature from

the pallet image to better distinguish the foreground category (the pallet) from the background
category (the cargo).

Texture features: Texture is an important distinguishing feature on the surface of an object.
When the image is transformed into different brightnesses and colours, the pixels follow a specified
rule and undergo near-periodical changes. Texture characteristics can effectively deal with logistics
pallet images in various light environments. The calculation equation for TF extraction is as
follows:

LBP(xc,yc)=
P−1∑
P=0

2Ps(ip− ic), s(x)=
{
1 x≥ 0
0 else

}
, (7)
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where (xc,yc) is the central pixel, ic represents the brightness of the point, ip is the brightness of
the adjacent pixels, and s represents the Sigmoid function.

Figure 1: The architecture of the proposed MFMBA algorithm

The basic principle of the local binary pattern (LBP) is that a particular pixel is centred; then,
its value is compared with other pixel values in its 3× 3 window. Every compared pixel value
greater than that of the center point equals 1; otherwise, it is 0. Thus, a 3× 3 window provides
eight binary numbers and converts the binary to decimal to obtain the LBP code, which represents
the texture. The LBP is shown schematically in Fig. 2.

Figure 2: Schematic diagram of an LBP

Grayscale features: Grayscale uses black tones to represent objects; black is used as the
reference colour, and blacks of different saturations are used to display the image. Each grayscale
image has a brightness value from 0% (white) to 100% (black). Because it has less redundant
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information, grayscale improves image segmentation. The calculation equation is as follows:

Gray= 0.229R+ 0.587G+ 0.114B, (8)

where R, G, and B represent the three-channel colours of the logistics pallet image.

HSV features: The HSV colour space, also known as the hexcone model, was created by A.
R. Smith in 1978 based on the intuitive characteristics of colours. Hue (H), saturation (S), and
lightness (L) are the colour parameters in this model (V). We must first convert the red, green,
and blue coordinates of a colour to real numbers between 0 and 1 before using RGB to represent
them. The following are the calculation formulas:⎧⎨
⎩
red =R/255
green=G/255
blue=B/255

. (9)

Next, we calculate the values of H, S, and V as follows:

H =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

60(G−B)

V −min(R,G,B)
, V =R

120+ 60(B−R)

V −min(R,G,B)
, V =G

240+ 60(R−G)

V −min(R,G,B)
, V =B

, (10)

S=
{V −min(R,G,B)

V
V �= 0

0 otherwise
, (11)

V =max(R,G,B). (12)

RGB features are output as HSV features using the equation above. The new output vector
block will be used as a feature sequence in our MFMBA model. Furthermore, the calculation
result may contain H < 0. H requires additional calculation processing at this time. The following
shows:

H =
{
H + 360 H < 0
H otherwise

, (13)

where H ∈ [0, 360], S ∈ [0, 1], and V ∈ [0, 1].

3.2 Multiscale Hybrid Convolution
Using a multiscale convolution kernel in the proposed algorithm has two distinct advantages.

The most significant benefit of multiscale convolution kernels is that differently sized kernels
can extract features from logistics pallet images of various scales, allowing the filter to extract
and learn richer characterisation information. Also, the convolutional neural network trains the
model by learning the filter’s parameters (weight and offset), that is, it continuously learns the
filter’s parameters to find the optimal value closest to the label. This article employs a multiscale
convolution kernel to allow a given convolution layer to have multiple filters, thereby diversifying
the weight and deviation learning, thus extracting and learning the semantic features of the
logistics pallet image fully and effectively.
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Multiscale inference methods [30–32] are commonly used in computer vision models for the
best results. Fine details are better predicted at larger sizes, larger objects are better predicted at
smaller sizes, and the network’s receiving field understands the scene better at smaller sizes. This
paper proposes a multiscale hybrid convolution model [33] that is different from the traditional
multiscale structure shown in Fig. 3. To extract features in the three sizes of 11× 11, 7× 7, and
3× 3, we use traditional convolution and hole convolution. The following is the calculation
formula:

Yc1 = ϕ

{
n1∑
i=0

w1
ij ∗ x1i + b1J

}

Yd1 = ϕ

{
n1∑
l=0

n1∑
m=0

w1
l,m ∗ x1j+l,k+m+ b1J

}
,

(14)

Yc2 = ϕ

{
n2∑
i=0

w2
ij ∗ x2i + b2J

}

Yd2 = ϕ

{
n2∑
l=0

n2∑
m=0

w2
ij ∗ x2j+1,k+m+ b2J

}
,

(15)

Yc3 = ϕ

{
n3∑
i=0

w3
ij ∗ x3i + b3J

}

Yd3 = ϕ

{
n3∑
l=0

n3∑
m=0

w3
ij ∗ x3j+1,k+m+ b3J

}
,

(16)

where hj is the pixel feature vector’s hidden state information, k is the feature point, j ∗ k is the
size of the feature map, and l ∗m is the size of the hollow convolution’s local receptive field.

Figure 3: Schematic diagram of multiscale hybrid dilated convolution
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3.3 Bidirectional Attention Mechanism
The model is divided into three parts and has a novel bidirectional attention mechanism,

which is the first section of the model. To effectively detect the local semantic information of
each pixel in the pallet image, we map all the characteristics onto a two-dimensional space and
apply a bidirectional weight to each feature using bidirectional attention. The second section of
the model includes the two types of weight features to broaden the weight coefficient. The third
section combines the two types of weight features to produce the greatest value, which is then
utilized to complement the weight coefficient result obtained in the second step. The bidirectional
attention mechanism is shown schematically in Fig. 4.

Figure 4: Schematic diagram of the bidirectional attention mechanism model

Let the feature map extracted from the previous convolutional layer be mh
i,j ∈ RH×W , where

H and W are the feature map’s height and width, respectively; then, input mk
i,j into the horizontal

attention module to obtain the attention weight. The steps in the calculation are as follows:

Atth =
exp(Whmi,j + bh)∑
i,j exp(Whmi,j + bh)

, (17)

where Wh and bh are the weight parameters of the dense layer, and Atth represents the attention
coefficient in the horizontal direction.

For the vertical attention mechanism, we transpose the matrix of the feature map to obtain
the feature map in the vertical direction. The calculation equation is as follows:

mv
j,i = (mv

i,j)
T , (18)

where mv
j,i represents the feature map flipped vertically. Similarly, input it to the vertical attention

module to obtain the vertical attention weight. The calculation equation of the weight coefficient
is as follows:

Attv =
exp(Wvmj,i+ bv)∑
j,i exp(Wvmj,i + bv)

. (19)
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Therefore, the calculation equation of the output of the bidirectional attention mechanism
model is as follows:

Add = (Atth+Attv), (20)

Max= (Atth,Attv), and (21)

BA= concatenate[Atth,Attv,Add,Max], (22)

where BA represents the output of the bidirectional attention mechanism model.

3.4 Feature Fusion
In this section, feature fusion is performed on the output of the multiscale semantic feature

and the bidirectional attention mechanism and is then segmented by the sigmoid function. The
calculation equation is as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M1 = add[Y1
c ,Yd

1]
M2 = add[Y2

c ,Yd
2]

M3 = add[Y3
c ,Yd

3]
M4 = concatenate[M1,M2]
M5 = concatenate[M3,M4]

, (23)

F = add[BA(M1),BA(M2),BA(M3),BA(M4),BA(M5)], (24)

where M1,M2, . . . ,M5 represents the fusion output of the hybrid dilated convolution of each
scale, add represents the summation operation on the feature tensor, and concatenate represents
the concatenation operation on the feature tensor.

The final output of segmentation using the sigmoid function is:

O= sigmoid(F). (25)

4 Experiments and Results

4.1 Dataset
A pallet is a medium that transforms static goods into dynamic goods—it is a loading plat-

form. Since the focus of this article is the intelligent identification and segmentation of logistics
pallets in industrial production environments, we collected images of pallets in complex environ-
ments from the Internet. The collected images are of different sizes and pixel sizes. We uniformly
cropped the size of the pallet image to 256× 256. To obtain the pallet image segmentation dataset,
we used ENVI software to annotate each image manually. An example of the pallet image after
cropping and annotation is shown in Fig. 5.

4.2 Experiment Environments
All of the experiments in this article were conducted on a computer with a single NVIDIA

GTX1080 GPU to fairly verify and compare the performance of the proposed algorithms (8 GB).
The keras2.1.5 deep learning library was used to construct the model. We used Python 3.6.5 as
our programming language, and we processed 1280 samples each time in batches. The setting
of each of the above hyperparameters was tested extensively in this study. These parameters are
the best in this experiment. Table 1 summarizes the final hyperparameters. Furthermore, we used
Adam [34] as the optimizer for the proposed algorithm, which converges quickly. Table 1 lists
the most important parameters: The learning rate is 0.01; α indicates that the first-order moment
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estimation’s exponential decay rate is 0.99; β indicates that the second-order moment estimation’s
exponential decay rate is 0.999; Epsilon is set to 1e-8; and Decay indicates that the learning rate
decay is 3e-8.

Figure 5: Examples of original and segmented logistics pallet images

Table 1: Setting the hyperparameters

Item Value

OS Windows 10
GPU NVIDIA GTX1080
Deep learning framework Keras 2.1.5
Batch size 2000
Epochs 400
Learning rate 0.01

4.3 Evaluation Methods
This paper uses three evaluation indicators—precision (P), recall (R), and F1 score (F1)—to

evaluate the segmentation performance of the proposed MFMBA algorithm comprehensively. The
following are the calculation formulas for Precision, Recall, and F1 score:

P= TP
TP+FP

, (26)

R= TP
TP+FN

, and (27)
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F1= 2×P×R
P+R

, (28)

where TP represents a true positive (the number of pixels of the logistics pallet that were correctly
detected), FP represents a false positive (the number of pixels of the logistics pallet that were
incorrectly detected), and FN represents a false negative (the number of pixels of the logistics
pallet that were incorrectly detected).

4.4 Experimental Results of Different Methods
In this section, a comparative experiment is conducted to demonstrate the superiority of

the proposed algorithm. Furthermore, all experiments were carried out in the same environment
and with the same hyperparameters. We compared AlexNet [18], Res-Net [19], DenseNet [20],
Unet [21], and DeepLab-v3 [2] with the proposed MFMBA model. The comparative experimental
results of various methods are shown in Tables 2 and 3 and Fig. 6. Only 1% and 20% of the
training samples were chosen in separate experiments.

Table 2: The result of comparison with five different models under 1% of the training samples

Methods 1% of the training samples

P R F1

AlexNet [35] 0.8950 0.8555 0.8790
ResNet [36] 0.9188 0.8602 0.8885
DenseNet [37] 0.8487 0.9376 0.8910
Unet [38] 0.8497 0.8915 0.8579
DeepLab-v3 [39] 0.8512 0.9013 0.8755
MFMBA (Proposed method) 0.9237 0.9417 0.9275

Table 3: The result of comparison with five different models under 20% of the training samples

Methods 20% of the training samples

P R F1

AlexNet [18] 0.9481 0.9624 0.9552
ResNet [19] 0.9517 0.9675 0.9595
DenseNet [20] 0.8917 0.9580 0.9478
Unet [21] 0.9258 0.9389 0.9524
DeepLab-v3 [22] 0.9387 0.9221 0.9599
MFMBA (Proposed method) 0.9564 0.9793 0.9626

Due to the wide variety of pallets, shape complexity, strong regularity, and complex environ-
ments (e.g., pallets being occluded in the industrial production environment and changing lighting
conditions), the semantic segmentation of the pallet segmentation image can be an arduous task.
The training set was made up of either 1% or 20% of the total number of samples. Table 2 shows
that the overall residual network outperforms the dense network and AlexNet, as evidenced by
the experimental results. Because the residual network preserves many shallow features, and the
residual calculation and deep features are better merged to gain additional features, the residual
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calculation and deep features are better integrated to obtain more features. Fig. 6 shows that
ResNet has a high level of accuracy on positive samples.

Figure 6: Segmentation results under 1% training sample. (a) Input image; (b) AlexNet; (c)
ResNet; (d) DenseNet; (e) Unet; (f) DeepLab-v3; and (g) MFMBA (Ours)

Furthermore, the residual network has better performance for mining features, as evidenced by
the precision index. On the same training sample, our proposed MFMBA algorithm outperforms
other methods in P (0.5%–8.1% higher than the others), R (0.4%–9.1% higher than the others),
and F1 score (compared to the other five groups of models, 3.9%–7.5% higher), demonstrating
its feasibility. Fig. 6 depicts the outcomes of the experiment (using 1% of the samples for train-
ing). Table 3 shows that, with the increase in the number of training samples, the performance
of our algorithm is significantly improved and outperforms the other five methods. This fully
demonstrates the effectiveness of our model.

4.5 Ablation Experiment on the MFMBA Sub-Module
The sub-modules of the proposed algorithm were subjected to ablation experiments and are

described in this section. The multi-feature fusion (MFF) module, multiscale network (MSN), and
bidirectional attention (BA) mechanism are acronyms for multi-feature fusion module, multiscale
network, and bidirectional attention mechanism, respectively. We combined them and ran separate
experiments to see which sub-modules have the greatest impact on segmentation performance.
Table 4 summarizes the findings of the ablation experiment.

Table 4 and Fig. 7 clearly show that any two sub-modules perform better segmentation than a
single module. MFF outperforms a single MS and BA, demonstrating the utility of multi-feature
extraction. Moreover, the MFF MS combination is superior to the MS and BA combination
because the multi-feature extraction and fusion module can extract richer semantic information.
Furthermore, the combined model outperforms a single module, demonstrating that the proposed
algorithm’s MFF extraction, MSN, and BA mechanism are effective. As a result, MFMBA’s
effectiveness is also demonstrated.
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Table 4: Ablation experiment results of the sub-module of MFMBA under 1% and 20% training
samples

Methods 1% training samples 20% training samples

P R F1 P R F1

MFF 0.9087 0.9254 0.9187 0.9364 0.9589 0.9488
MS 0.8847 0.9258 0.9005 0.9258 0.9210 0.9187
BA 0.8547 0.8825 0.8974 0.9105 0.9055 0.8945
MS-BA 0.8854 0.9187 0.9174 0.9415 0.9574 0.9478
MFF-MS 0.9199 0.9409 0.9250 0.9501 0.9714 0.9614
MFF-BA 0.9199 0.9411 0.9201 0.9514 0.9647 0.9601
MFMBA (Ours) 0.9237 0.9417 0.9275 0.9564 0.9793 0.9626

Figure 7: Visualized results of ablation experiments. (a) Precision; and (b) F1 score
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4.6 Ablation Experiment of Multi-Feature Fusion
In the previous section’s ablation experiment, we discovered that the MFF module performs

exceptionally well in the proposed algorithm. As a result, this section sets up an ablation exper-
iment to investigate the impact of various features on the experimental outcomes. The three
extracted features were abbreviated as HSV, T, and G, and ablation experiments were performed
on combinations of these three features. Table 5 presents the results of the experiment.

Table 5: Experimental results of ablation studies on multi-feature fusion under 1% and 20%
training samples

Methods 1% training samples 20% training samples

P R F1 P R F1

HSV 0.8945 0.9043 0.8994 0.9285 0.9317 0.9366
G 0.8901 0.7971 0.8455 0.9284 0.9105 0.8958
T 0.0847 0.6096 0.1488 0.2545 0.6854 0.3922
HSV+G 0.8842 0.9141 0.8989 0.9258 0.9399 0.9287
HSV+T 0.9184 0.9111 0.9147 0.9458 0.9412 0.9587
G+T 0.8297 0.8322 0.8310 0.8574 0.8695 0.8717
MFMBA (Ours) 0.9237 0.9417 0.9275 0.9564 0.9793 0.9626

From Fig. 8 and Table 5, we see that the segmentation performance using texture features
is the worst, while the performance using HSV features is the best. HSV features contain more
semantic information, while logistics pallets’ grayscale features do not. Local features can also
be described in greater detail with greater accuracy. Furthermore, the fusion of any two groups
of features exceeds the utility of a single feature, meaning that integrating several characteristics
provides more semantic information than using a single feature. The results suggest that the MFF
of the algorithm is effective.

Figure 8: (Continued)
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Figure 8: Visualized results of multi-feature fusion ablation experiment. (a) Precision. (b) Recall

5 Conclusions

This paper proposes a novel MFMBA neural network for logistics pallet segmentation. To bet-
ter predict the foreground category (the pallet) and background category (the cargo) of the pallet
image, three types of features (grayscale, texture, and HSV) are extracted and fused. Experimental
results demonstrate that all three features improve the segmentation performance of the model,
especially the HSV feature. Also, we demonstrated the superiority of the multiscale architecture,
which extracts more semantic features than other architectures used to date. In addition, since the
traditional attention mechanism only allocates attention from a single direction, we also designed
a two-way attention mechanism that can assign cross-attention weights to each feature from two
directions (horizontally and vertically). This mechanism improves the segmentation performance
of the proposed algorithm, which is also demonstrated by comparison and ablation experiments.
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