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ABSTRACT

Projection-based embedded discrete fracture model (pEDFM) is an effective numerical model to handle the flow
in fractured reservoirs, with high efficiency and strong generalization of flow models. However, this paper points
out that pEDFM fails to handle flow barriers in most cases, and identifies the physical projection configuration
of fractures is a key step in pEDFM. This paper presents and proves the equivalence theorem, which explains
the geometric nature of physical projection configurations of fractures, that is, the projection configuration of
a fracture being physical is equivalent to it being topologically homeomorphic to the fracture, by analyzing the
essence of pEDFM. Physical projection configurations of fractures may be rigorously established based on this
theorem, allowing pEDFM to obtain physical numerical results for many flow models, particularly those with flow
barriers. Furthermore, a natural idea emerges of employing flow barriers to flexibly ‘cut’ the formation to quickly
handle the flow problems in the formation with complex geological conditions, and several numerical examples
are implemented to test this idea and application of the improved pEDFM.
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1 Introduction

Accurate and efficient numerical simulation of flow in fractured media is a challenging and
important topic, which is of great interest in hydrocarbon recovery [1–4], aquifer management,
and carbon dioxide geological sequestration, etc. The discrete fracture model (DFM), which
explicitly handles large-scale fractures, has been a common technique to numerically model the
flow in fractured media over the past two decades. Unstructured matrix meshes were generated to
conform to the geometry of complex fracture network such that fractures lied at the interfaces
between matrix cells. DFM thus accurately accounted for the effect of complex fracture geome-
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tries on flow, yielding physical and accurate simulation results. For single-phase flow, multiphase
flow, and compositional flow models, A large variety of DFMs with different based numeri-
cal calculation methods had been presented in literature for single-phase flow, multiphase flow,
and compositional flow models, including finite difference method (FDM) [5,6], Galerkin finite
element method (FEM) [6,7], finite volume method (FVM) [7], control volume finite element
method (cvFEM) [8,9], and mixed finite element method (mFEM) [10]. However, a high-quality
unstructured mesh to match complex fracture networks was challenging to generate [11], and often
comprised of huge numbers of small-size cells near fractures. These resulted in high computing
costs, limiting the field applications of DFM.

The above problems led to the emergence of embedded discrete fracture model (EDFM) which
made use of non-conforming mesh. Li et al. [12] proposed EDFM, in which fractures were treated
as source or sink terms in matrix cells, allowing for the use of a structured background mesh.
Then, inter-cell connections were obtained by figuring out the geometric relationships between
embedded discrete fractures and structured matrix cells. That is, in contrast to DFM, EDFM
avoided the complexity of creating a high-quality conforming mesh. EDFM has been used to
numerically simulate a variety of flow problems in fractured media [13–21]. To increase compu-
tational performance in heterogeneous formations, Hajibeygi et al. [22] presented a hierarchical
embedded fracture model utilizing iterative multiscale FVM. Moinfar et al. [23] developed an
efficient EDFM for three-dimensional (3D) compositional reservoir simulation. Mimetic FDM and
its multiscale technique-based EDFM were reported by Yan et al. [24] and Zhang et al. [25],
respectively, in which velocity and phase pressure fields were solved simultaneously. Zeng et al. [26]
presented a coupled model of EDFM and extended finite element method (XFEM) to study
dynamic behaviors of hydraulic fractures. Rao et al. [27] presented a multi-layer virtual-cell EDFM
to improve the early-time simulation accuracy for the production forecast of fractured horizontal
wells. Wu et al. [28] proposed a Green element method-based EDFM that may yield high-accuracy
results for single-phase flow.

Although EDFM had been validated by the above works and used in various porous flow
problems [29,30], Tene et al. [31] found that classical EDFM could not effectively handle cases
when fracture permeability was lower than matrix permeability, especially when flow barriers
were present. To resolve the limitation, they developed a projection-based EDFM (pEDFM) by
projecting the fracture cells to matrix-cell interfaces, constructing additional fracture-matrix (f-
m) connections while weakening the original matrix-matrix (m-m) connections. Jiang et al. [32]
pointed out that large errors could be induced for EDFM to handle multiphase flow across
fractures, and presented an improved pEDFM to effectively resolve the limitation. Rao et al. [33]
developed a modified pEDFM that included a practical approach for determining fracture cell
projection configuration and new fracture-fracture (f-f) connections to make the model framework
more complete. Liu et al. [34] used pEDFM to model carbon dioxide geological sequestration in
depleted complex-shape shale reservoirs. Wang et al. [35] presented a 3D pEDFM for composi-
tional simulation of fractured reservoirs. Ren et al. [36,37] coupled pEDFM and XFEM to study
flow in fractured reservoirs by considering geomechanics. Rao et al. [38] constructed a pEDFM
based two-phase flow heat and mass transfer model, and found that pEDFM could eliminate the
computational errors of temperature profiles in EDFM. These works indicated that, pEDFM had
a better generalization of flow models than EDFM, and a lower computational cost than DFM.
That is to say, pEDFM possessed the advantages of both DFM and EDFM, and hence deserved
more attention.
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However, this work points out that, in most cases, pEDFM still cannot effectively handle
embedded flow barriers, implying that Tene et al. [31] had not completely accomplished their
initial goal. By analysing the essence of pEDFM, this paper presents and proves an equivalence
theorem that shows that the projection configuration of a fracture being physical is equivalent to
it being topologically homeomorphic to fracture. Based on the equivalence theorem, pEDFM can
yield physical results for flow barriers. Then, we present a practical method to handle complex
geological conditions of reservoir model with a 3D Cartesian grid.

2 A Brief Review of pEDFM

2.1 Governing Equations
Take the immiscible multiphase flow problem as an example to illustrate the governing

equations. For phase a, the mass conservation equation is written as

∇ ·
(
kkra
Baμa

∇pa
)
+ q̃a,well =

∂

∂t

(
φsa
Ba

)
(1)

where k is the absolute permeability; kra, Ba, μa, pa, sa are relative permeability, volume factor,
viscosity, the converted pressure by considering gravity and saturation of phase a; q̃a,well is the
flow term of phase a for wells (source or sink term);

The discrete form of Eq. (1) is always obtained by block-center finite volume method. For
the ith cell, it is written in Eq. (2).

n∑
j=1

qijt+Δt+ qa,well,i
t+Δt = Vi

Δt

[(
φsa,i
Ba,i

)t+Δt

−
(

φsa,i
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]

(2)

where qa,well,i =
∫
Ω
q̃a,welldV , Ω is the computational domain.

The flux across the interface of two connected cells is approximated by two-point linear flux
approximation, that is Eq. (3).

qijt+Δt =−Tijλa,ijt+Δt(pa,it+Δt− pa,jt+Δt) (3)

where Tij and λa,ij are the transmissibility and phase mobility of the connection. Tij is the half
of the harmonic mean of two half-transmissibilities, that is Eq. (4).

Tij =
TiTj
Ti+Tj

(4)

λa,ij is expressed as Eq. (5).

λa,ij=
kra,ij

μa,ijBa,ij
(5)

The upstream and arithmetic average schemes are used for the terms (relative permeabil-
ity) subject to the saturation and the terms (viscosity and volume factor) subject to pressure,
respectively, these are in Eq. (6).

μa,ij =
μa,i+μa,j

2
, Ba,ij =

Ba,i+Ba,j
2

, kra,ij=
{
kra,i if pa,i ≥ pa,j
kra,j if pa,i < pa,j

(6)
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As a result, the ultimate discrete scheme of Eq. (1) is expressed as Eq. (7).

n∑
j=1

{−Tijλa,ij(pa,i− pa,j)
}t+ qa,well,i =

Vi
Δt

[(
φsa,i
Ba,i

)t+Δt

−
(

φsa,i
Ba,i

)t
]

(7)

2.2 pEDFM Framework
Tene et al. [31] presented pEDFM as a way to expand traditional EDFM to efficiently

treat fractures with a wide variety of permeabilities (i.e., from flow barriers to highly conductive
fractures). Jiang et al. [32] pointed out large errors will be induced for EDFM to handle multi-
phase flow across fractures, and presented an improved pEDFM to resolve the limitation. These
studies revealed that pEDFM had higher physical model generalization than traditional EDFM,
indicating that this new model required more attention.

Firstly, the basic ideas of pEDFM are briefly introduced below. As shown in Fig. 1, pEDFM,
like EDFM, divides the reservoir calculation domain using a structured or orthogonal mesh
(recorded as background matrix mesh) and embeds fractures into the background mesh to create
fracture cells divided by intersecting lines (surfaces) between matrix cells. In reservoir simulation,
the reservoir boundary condition is always assumed to be closed. The essential difference between
pEDFM and EDFM lies in the different connections between cells.

Figure 1: Sketch of neighboring matrix cells, a contained fracture cell and its projections on
interfaces

As shown in Fig. 1, the grey squares represent three matrix cells mi, mj and mk, respectively.
The yellow segment denotes a fracture cell f in mi. Two red segments represent the x-direction
projection of f on interface �ij (denoted by fx) and y-direction projection of f on interface �ik
(denoted by fy), respectively.

2.2.1 Construction of Additional f-m Connections
For these three matrix cells and a fracture cell, there is only one fracture-matrix (f-m)

connection in classical EDFM, i.e., f-mi. However, additional f-m connections f-mj and f-mk are
constructed in pEDFM, and the areas of fx and fy are considered as the flow areas of f-mj and
f-mk connections, respectively. Besides, the original f-mi connection needs to be weakened.

In pEDFM, for f-mi connection, the ‘matrix half’ and ‘fracture half’ transmissibilities are
given as Eq. (8).

Tmi =
kmiAf
〈d〉f mi

, Tf =
kf Af
wf

(8)
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where kmi and kf are the permeabilities of mi and f , respectively, wf is the aperture of f . Af is the
area of f , 〈d〉f mi is the average normal distance between f and mi, which is generally approximated
by assuming that phase pressure within a matrix cell distributes linearly along the direction normal
to the contained fracture cell, that is Eq. (9).

〈d〉f mi =
∫
mi
|�n · �r|dV
Vmi

(9)

For added f-m connections, the areas of fx and fy are used to determine the transmissibilities
of these connections, by taking f-mj connection as an example, the ‘matrix half’ and ‘fracture
half’ transmissibilities are given as Eq. (10).

Tmj =
kmjAfx
dfmj

, Tf =
kf Af
wf

(10)

where kmj is the permeability of mj, Afx denotes the area of fx, dfmj is the distance between the
centers of mj and f .

Then Tfmj is calculated as Eq. (11).

Tfmj = (Tmj
−1+Tf

−1)−1 (11)

However, assuming that there is fluid flowing from mj to f , the physical flowing route is mj-
mi-f , so Jiang et al. [32] discussed that the transmissibility Tfmj should take the effect of mi (i.e.,
Tmi ) into account, which is Eq. (12).

Tfmj = (Tmj
−1+Tmi

−1 +Tf
−1)−1 (12)

Similarly, the transmissibility of the f-mk connection can be obtained in Eq. (13).

Tfmk = (Tmk
−1 +Tmi

−1+Tf
−1)−1, Tmk =

kmkAfy
dfmk

(13)

where kmk is the permeability of mk, Afx denotes the area of fx, dfmk is the distance between the
centers of mk and f .

2.2.2 Weakening of m-m Connections
Because the flow areas of m-m connections are blocked by additional f-m connections, the

transmissibility of corresponding m-m connections should be weakened. Take mi-mj connection as
an example, the effective flow area of mi-mj connection is equal to the area of �ij minus the area
of fx, so the half-transmissibility Ti and Tj for Tmimj are given as Eq. (14).

Ti =
kmi(Aij−Afx)

di
, Tj =

kmj(Aij−Afx)

dj
(14)

where Aij is the area of �ij, di is the distance from the center of mi to �ij, dj is the distance from
the center of mj to �ij.
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2.3 Determination of Projection Configuration of Fracture Cells
In the original paper by Tene et al. [31], there was no obvious statement about the deter-

mination criteria of the projection configuration of fracture cells, but it indicated that in each
direction we should select the interface that is closest to the fracture-cell center, and this implicit
criterion is simply denoted as the “smaller distance criterion”. Jiang et al. [32] pointed out that,
smaller distance criterion may give an unphysical fracture-cell projection configuration in some
cases when the distances between the fracture-cell center and two neighboring interfaces are the
same in at least one direction. To resolve this problem, they presented an additional criterion that
the intersections between the fracture-cell projections and the fracture cell should not be on the
same side of the fracture-cell center, which is simply denoted as the “different side criterion”.
Based on these two criteria, Rao et al. [33] presented a practical method namely the ‘micro-
translation method’ to efficiently select the projected interfaces of fracture cells to determine the
fracture-cell projection configurations.

3 Not-Fully-Achieved Motivation

The motivation of the original pEDFM proposed by Tene et al. [31] is to modify EDFM
to effectively handle cases when fracture permeability is lower than matrix permeability, especially
those cases with flow barriers.

However, it is found that pEDFM still fails when dealing with flow barriers in most cases,
that is, it can not accurately characterize the block effect of flow barriers. As shown in Fig. 2,
a flow barrier (plotted in yellow) is divided into three cells f1, f2, and f3 by matrix cells m1, m2
and m3. By following smaller distance and different sides criteria, obtained fracture-cell projection
configurations are plotted in Fig. 3, in which red segments, blue segments and green segments
denote projection configurations of f1, f2 and f3, respectively. A1, A2 and A3 denote areas of
x-direction projections of f1, f2 and f3, respectively. The total projection areas on interfaces �12
and �23 can be calculated as Eq. (15).

Ap12 =A1+A2, Ap23 =A2 (15)

Figure 2: Schematics of an example in which pEDFM fails to handle the flow barrier

Figure 3: Schematics of the fracture-cell projection configurations of the given example
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Then, by following Eq. (7), the ‘matrix half’ transmissibilities for the m1-m2 connection are
Eqs. (16) and (17).

T1 =
km1(A12−Ap12)

d1
= km1(A12−A1−A2)

d1
> 0 (16)

T2 =
km2(A12−Ap12)

d2
= km2(A12−A1−A2)

d2
> 0 (17)

Consequently, the transmissibility of the m1-m2 connection is calculated as Eq. (18).

T12 = (T1x
−1 +T2x

−1)−1 > 0 (18)

Similarly, the transmissibility of the m2-m3 connection is obtained as Eq. (19).

T23 > 0 (19)

In Fig. 4, the blue arrows denote the connections whose transmissibility is not 0. Imagining
that there is fluid flowing into matrix cell m1 along the positive direction of x-axis, the fluid can
still pass through the flow barrier along the path “l-m1-m2-m3-r”, which is unphysical, meaning
the flow barrier is not effectively handled.

Figure 4: Schematics of the route along which fluid flow across the flow barrier

Fig. 5 depicts another example. A flow barrier is divided into four cells f1, f2, f3 and f4
by matrix cells m1, m2, m3 and m4. According to the same analysis as the previous example,
fluid can still flow across the flow barrier along the route “l-m1-m2-m3-m4-r”, which is also
unphysical. Furthermore, we give an example in Fig. 6 to validate the above analysis. As is shown,
a flow barrier whose geometry is the same as that in Fig. 5 is embedded in the 60 m× 60 m
reservoir model, and a water injection well and a producer are at position (10, 30) and position
(50, 30), respectively. The initial pressure is 20 MPa, and the constant injection rate is 1m3/d, and
the constant BHP of the producer is 10 MPa. Fig. 6 shows the water saturation profiles with
different mesh sizes at the 300th day from the original pEDFM, which illustrates the unphysical
computational results that injected water flow across the flow barrier and the unphysical results
are independent of the mesh size. Moreover, it can be predicted similarly that when the number
of matrix cells in a row continues to increase in Fig. 5, the result will still be unphysical, which
shows that, in most cases pEDFM cannot effectively handle the flow barrier, implying that Tene
et al. [31] have not fully achieved their original motivation.
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Figure 5: Schematics of the route along which fluid flow across the flow barrier when the matrix-
cell number increases to 4

Figure 6: Water saturation profiles with different mesh sizes (a) 5 m (b) 4 m (c) 2 m (d) 1 m

4 What is Physical Projection Configuration?

The issue of selecting a physical projection configuration was first noticed by Jiang et al. [32].
They pointed out that in some special cases, unphysical projection configurations may be imple-
mented by only following the “smaller distance criterion”. For an example shown in Fig. 7, a
fracture cell is located on the diagonal of a rectangular matrix cell, and the fracture-cell center
coincides with the matrix-cell center. By following the “smaller distance criterion”, edge 2 or edge
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4 can be selected in x-direction, and edge 1 or edge 3 can be selected in y-direction, resulting
in four projection configurations (i.e., edges 2-1, edges 2-3, edges 4-1, edges 4-3). However, Jiang
et al. [32] pointed out that the projection configurations of edges 1-4 and edges 2-3 do not
conform to the actual effect of fracture geometry orientation on flow and thus are unphysical. To
resolve this limitation, Jiang et al. proposed the different sides criterion to avoid those unphysical
projection configurations.

Figure 7: The example given by Jiang et al.

However, the examples in Section 3 show that “smaller distance” and “different sides” criteria
are insufficient to obtain physical projection configurations. Moreover, it can be seen that these
two criteria are subjective and lack rigorous analysis. Therefore, a profound and rigorous analysis
of “physical fracture-projection configuration” is required, as well as clarification of its geometric
nature.

4.1 Introduction of the Equivalence Theorem
In this paper, it will be pointed out that determining physical projection configuration is the

most crucial step of pEDFM. In addition, when determining the physical projection configuration,
it should focus on an entire fracture, not a single fracture cell. It should be noted that a fracture
cell that does not penetrate the entire matrix cell (as shown in Fig. 8) cannot completely block
the flow across the matrix cell, so the “shortest distance” and “different sides” criterion can be
directly applied to determine the projection configuration of the fracture cell. Therefore, unless
otherwise noted, the fractures mentioned below are those removing fracture cells at both ends that
do not penetrate the whole matrix cell.

In this paper, a necessary and sufficient condition is given to judge whether the projection
configuration of a fracture is physical, that is, the equivalent geometric description of “projection
configuration of a fracture is physical”, and is simply denoted as “equivalence theorem” in the
following,

Equivalence theorem: the projection configuration of a fracture (regardless of the fracture cells
which are at both ends of the fracture and do not penetrate the entire matrix cell) being physical
is equivalent to it being topologically homeomorphic to the fracture. That is, from the geometric
view, the topological properties of the projection configuration are the same as those of the
fracture.

The conception of homeomorphism in topology is used in the statement of the above the-
orem. The following is a quick description of the conception, and detailed explanations can be
found in the textbook [39].
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Figure 8: Schematics of those fracture cells which are not penetrating the matrix cell

In topology, two topological spaces {X , TX} and {Y , TY} are called homeomorphic when
a map f : X Y satisfies the following conditions: (i) f is bijection; (ii) f is continuous; (iii) the
inverse of f is continuous.

Then f is called the homeomorphism between {X , TX} and {Y , TY}, and {X , TX} and {Y ,
TY} have the same topological properties.

Colloquially, topological space is a geometric object, and homeomorphism is to extend and
continuously bend the object to make it a new object. So a square and a circle are homeomorphic,
but a sphere and a torus are not.

To prove the equivalence theorem, this paper firstly studies the essence of pEDFM, and then
obtains a lemma to prove the theorem.

4.2 Analysis of the Essence of pEDFM
EDFM handles fracture cells as the source or sink terms in matrix cells, whereas DFM uses

unstructured matrix cells to match fractures, resulting in fractures being located on the matrix
cell interfaces. Due to the two distinct fracture treatments, these two models exhibit distinct
characteristics: (i) Because EDFM does not require a high-quality unstructured mesh to match the
fracture geometry, it can be applied only to the physical models in which fractures are the source
or sink terms of matrix cells (e.g., production or injection simulation of a multi-stage fractured
horizontal well), EDFM has significant limitations in the generality of physical models; (ii) DFM
has good generalization of physical models, but it is difficult to generate a high-quality conforming
mesh.

The essence of pEDFM is to combine the advantages of EDFM and DFM, that is, in the
case of structured matrix cells (the same as EDFM), the fractures are projected onto the interfaces
of matrix cells, and the essence of projection is to remove the fracture to the interfaces of matrix
cells (the same as DFM). That is, pEDFM changes the “original model” shown in Fig. 9a to the
“approximate model” shown in Fig. 9b, wherein the fracture cell fy is the y-direction projection of
the fracture cell f on the interface �ik, and fx is the x-direction projection of f on the interface
�ij. It can be seen that, in the x-direction, fx occupies a part of the area of �ij, so it is necessary
to weaken the connection between mi and mj, and establish the additional connection between mj
and fx. Similarly, in the y-direction, the mi-mk connection needs to be weakened, and an additional
mk-fy connection needs to be established. Thus, pEDFM is essentially a hybrid of EDFM and
DFM, combining their advantages while avoiding their shortcomings.
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Figure 9: Analysis of the essence of pEDFM from the view of only one fracture cell (a) original
model (b) approximate model

If considering a fracture, take Fig. 10 as an example, the essence of pEDFM is to change
the “original model” shown in Fig. 10a to the “approximate model” shown in Fig. 10b.

Figure 10: Analysis of the essence of pEDFM from the view of a fracture (a) original model
(b) approximate model

Therefore, a lemma can be intuitively obtained but is difficult to prove rigorously, that is:

Lemma: For a fracture (regardless of the fracture cells that do not penetrate the entire matrix
cell at both ends), the essence of pEDFM is to continuously deform the fracture to a “new
fracture” located on matrix cell interfaces, so as to obtain an approximate model of the original
model for running simulation.

4.3 Proof of Equivalence Theorem
Using the above lemma, the equivalence theorem given in Section 4.1 can be proved.

Proof : According to the above lemma, the “new fracture” (i.e., the projection configuration of
the fracture) in the approximate model is obtained by continuous deformation of the fracture in
the original model. Thus, from the geometric view, the projection configuration of the fracture is
topologically homeomorphic to the fracture, i.e., the projection configuration of the fracture and
the fracture have the same topological properties.

For the example given by Jiang et al. [32], by following the equivalence theorem mentioned
above, to judge whether the projection is physical, it is necessary to focus on the fracture, not
fracture cells. Therefore, the fracture cell is stretched into two matrix cells (see Fig. 11) to obtain
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an “imaginary fracture”. If edges 2-3 or edges 1-4 are selected as the projection configuration of
the fracture cell, four types of the projection configurations of the “imaginary fracture” will be
obtained in Fig. 12, in which, (a), (b), and (c) are not connected, but the “imaginary fracture”
is connected, so (a), (b) and (c) are not topologically homeomorphic to the fracture. (d) is the
path-connected space, and its fundamental group is non-trivial, but the fundamental group of the
straight-line fracture is trivial, so (d) is also not homeomorphic to the fracture. Because (a), (b),
(c) and (d) in Fig. 12 do not satisfy the equivalence theorem, the selection of edges 2-3 or edges
1-4 as the projection configuration of the fracture cell is unphysical. On the contrary, when edges
1-2 or edges 3-4 are selected, four other types of the projection configurations of the “imaginary
fracture” will be obtained in Fig. 13. It can be seen that (a), (b), (c), and (d) are all homeomorphic
to the “imaginary fracture”, which means that edges 1-2 or edges 3-4 should be selected as the
projection configuration of the fracture cell.

Figure 11: Extending the fracture to two matrix cells to obtain an imaginary fracture

Figure 12: Possible fracture-projection configurations when edges 2-3 or edges 1-4 are selected as
projected edges (a) the first type; (b) the second type; (c) the third type; (d) the fourth type

Figure 13: Possible fracture-projection configurations when edges 1-2 or edges 3-4 are selected as
projected edges (a) the first type; (b) the second type; (c) the third type; (d) the fourth type
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5 Application of Equivalence Theorem to Effectively Handle Flow Barriers

In this section, the equivalence theorem will be used to analyze the example from Section 3
in which the flow barrier cannot be effectively handled by pEDFM, to illustrate that the proposed
equivalence theorem is required to determine physical projection configuration in pEDFM that
makes it a truly practical model.

By following “smaller distance” and “different sides” criteria, the projection configuration
of three fracture cells can be obtained in Fig. 14, where the yellow line segment represents the
projection configuration of f1, the green line segment is the projection configuration of f2, and
the red line segment is the projection configuration of f3.

Figure 14: The projection configuration of each fracture cell according to the criteria of “smaller
distance” and “different sides”

The geometry of the projection configuration of the entire flow barrier is:

As illustrated in Fig. 15, the projection configuration is not connected and contains an
intersection of two line segments, indicating that the projection configuration is not topologically
homeomorphic to the flow barrier, which is a connected straight-line segment. According to the
equivalence theorem, the projection configuration is not physical, which results in the flow barrier
failing to perform its flow-blocking effect.

Figure 15: Geometry of the fracture projection configuration

It should be noted that the closer the flow barrier is to its projected configuration, the more
accurate the approximate model is. Due to the proximity of the first or second type of projection
configuration to the fracture, they should be chosen.

From Fig. 16a, it can be seen that the x-direction projection of f3 is on �12, instead of �23 on
which the x-direction projection of f3 should be if using “smaller distance” and “different sides”
criteria to only determine the projection configuration of f3; From Fig. 16b, it can be similarly
obtained that, the x-direction projection of f3 is on �23, instead of �12. These results fully confirm
the above statement that “when determining the physical projection configuration, it should focus
on a whole fracture, not a fracture cell”.
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Figure 16: Four types of fracture-projection configurations (a) the first type (b) the second type
(c) the third type (d) the fourth type

May as well select the first type of projection configuration, then, the total projection areas
on interfaces �12 and �23 can be calculated as Eq. (20).

Ap12 =A12, Ap23 = 0 (20)

where A12 is the area of �12.

Then, to calculate the transmissibility of the m1-m2 connection, Eq. (21) is obtained:

T1 =
km1(A12−Ap12)

d1x
= 0, T2 =

km2(A12−Ap12)

d2x
= 0, T12 = (T1

−1+T2
−1)−1 = 0 (21)

Similarly, to calculate the transmissibility of the m2-m3 connection, Eq. (22) is obtained:

T2 =
km2(A23−Ap23)

d2x
= km2A23

d2x
�= 0, T3 =

km3(A23−Ap23)

d3x
= km3A23

d3x
�= 0, T23 = (T2

−1+T3
−1)−1 �= 0

(22)

Numerous connections between cells are denoted in the figure by arrows, with a red arrow
indicating that the connection is not transmissible and a blue arrow indicating that the connection
is transmissible. As can be seen, there is no path for the fluid to pass through the flow barrier;
in other words, the flow barrier effectively blocks the flow from left to right, demonstrating that
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the proposed equivalence theorem resolves the limitation that flow barriers cannot be effectively
handled in most cases.

To illustrate the correctness of the equivalence theory more vividly, the following test case
is presented, and the performance of pEDFM based on and without the equivalence theorem is
compared. As illustrated in Fig. 17, the reservoir contains an “impermeable fracture” (i.e., flow
barrier), and the matrix cells are 2 m× 2 m× 2 m in size. The injector is operating at a constant
flow rate of 1 m3/d, the producer is operating at a constant BHP of 10 MPa, and other physical
parameters are provided in Table 1. Fig. 18 compares the oil saturation profiles from pEDFM
using the equivalence theorem and without using it. As can be observed, when the flow barrier is
not based on the equivalent theorem, the flow barrier does not effectively block the flow. However,
when the flow barrier is based on the equivalence theorem, the flow barrier effectively blocks the
flow.

Figure 17: Schematic of the flow barrier and reservoir

Table 1: Physical properties of the formation and fluid in Example 1

Properties Values Properties Values

Matrix porosity 0.1 Matrix permeability 1 mD
Fracture porosity 0.4 Fracture aperture 10 mm
Fracture permeability 20000 mD Flow barrier/fault permeability 0 mD
Oil compressibility 3.02× 10−3 MPa−1 Water compressibility 4× 10−4 MPa−1

Rock compressibility 1.07× 10−4 MPa−1 Oil viscosity 2 mPa·s
Water viscosity 1 mPa·s Initial reservoir pressure 20 MPa
Initial water saturation 0.2
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Figure 18: Oil saturation profiles in the validity case (a) oil saturation profile obtained from
original pEDFM (b) oil saturation profile obtained from pEDFM based on equivalence theory

6 Efficient Applications of pEDFM Based on Equivalence Theorem in Reservoir Models with Complex
Geological Conditions

6.1 A Natural Idea
Because pEDFM based on the equivalence theorem can effectively handle cases where fracture

permeability is less than matrix permeability, particularly flow barriers, an intriguing idea occurs
naturally: pEDFM can be highly efficient when applied in reservoir cases with complex geological
conditions (complex boundary shape or inclined interlayers) by embedding flow barriers to flexibly
cut the reservoir model.

In comparison to obliterating the permeability of the matrix cells that contain fractures, there
are two significant advantages to this approach that can be examined directly: (i) One is flexibility
and efficiency. As we all know, when the reservoir boundary shape is complex or the reservoir
interlayers are sloped, providing zero permeability to the non-reservoir cells is a tedious process.
However, if applying the above idea, the reservoir model can be efficiently and flexibly cut to
meet the needed boundary shape or inclined interlayers. (ii) The other is accuracy; because the
cells employed in reservoir simulations are always a little coarse (10 m or 20 m), if we just assign
them zero permeability, the cells become completely invalid, with the invalid region potentially
considerably greater than the actual region. However, using the proposed idea, it is possible to
obtain a more precise invalid region by modifying the aperture of the embedded barrier (or low-
permeable fracture).



CMES, 2022, vol.131, no.3 1419

6.2 A Numerical Example for Validation of the Above Idea
This section gives a numerical example to verify the above idea. Fig. 19 illustrates the reservoir

model in this example, which has a matrix-cell size of 2 m× 2 m× 2 m and a mesh division of
30× 30× 2. Four vertical flow barriers are used to cut the cuboid reservoir to construct a
polygonal reservoir boundary, and a 20000 mD fracture is embedded in the reservoir, with a
corresponding fracture or flow barrier cells plotted in red. A water-injection vertical well penetrates
matrix cells (15, 5, 1) and (15, 5, 2) with a constant injection rate 1 m3/day, and an oil-production
vertical well penetrates matrix cells (15, 25, 1) and (15, 25, 2) with a constant BHP 10 MPa. Other
physical parameters of reservoir and fluids are listed in Table 1.

Figure 19: Schematics of the reservoir model

Figs. 20 and 21 illustrate the oil saturation profiles over 50, 100, 200, and 300 days using
different mesh sizes (2 m× 2 m× 2 m and 1 m× 1 m× 2 m). The results demonstrate that the four
flow barriers do indeed define the reservoir model’s polygonal boundary and that a denser mesh
can improve the accuracy of the results. The cost of computing is compared in Table 2 for various
mesh sizes in this example, and it is discovered that as the number of meshes increases, the number
of Newton iterations and calculation time increase as well.

Figure 20: (Continued)
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Figure 20: Oil saturation profiles over different days when the mesh size is 2 m× 2 m× 2 m (a) 50
days (b) 100 days (c) 200 days (d) 300 days

Figure 21: Oil saturation profiles over different days when the mesh size is 1 m× 1 m× 2 m (a) 50
days (b) 100 days (c) 200 days (d) 300 days
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Table 2: Computational parameters of this example

Mesh size Set maximum
time step for
nonlinear
solver

Reservoir
production
time

Newton
iterations

Total time
consuming

2 m× 2 m× 2 m 5 days 300 days 278 18.7720 s
1 m× 1 m× 2 m 5 days 300 days 405 98.1700 s

6.3 A Numerical Example with a Thin Interlayer in the Longitudinal Direction
As shown in Fig. 22, the mesh division in this example is 30× 30× 3. The size of matrix cells

in all directions is 10 m, and an inclined thin interlayer is embedded in the second layer. Water
injection wells and production wells are only penetrated in the third layer, and other physical
properties of the reservoir and fluid are the same as those in the above example. The oil saturation
over 2000 days is shown in Fig. 23. As a result of the thin impermeable interlayer, the injected
water in the third layer cannot flow into the first layer, resulting in no obvious change in the oil
saturation profile of the first layer, and the injected water in the third layer will flow in the area
unaffected by the thin interlayer in the second layer. Table 3 shows the computational costs of
this case.

Figure 22: Schematic of the reservoir model of this example (a) 3D perspective (b) left view (c)
front view
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Figure 23: Oil saturation profiles over 2000 days in this example (a) the first layer (b) the second
layer (c) the third layer

Table 3: Computational parameters of this example

Properties Set maximum
time step for
nonlinear
solver

Reservoir
production
time

Newton
iterations

Total time
consuming

Values 5 days 2000 days 849 84.2080 s
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6.4 An Application Case with a Fracture Network
Fig. 24 shows the 3D two-layer reservoir model in this example, including 8 hydraulic frac-

tures, two natural fractures, and one fault (i.e., flow barrier). Five hydraulic fractures penetrate
the upper and lower layers, whereas three fractures and natural fractures only penetrate the lower
layer. There are four water injection wells with a constant water injection rate of 25 m3/day
and a fractured horizontal well with a constant bottom flow pressure of 10 MPa. The real field
situation generally requires history matching, which is another important topic [40], and this paper
focuses on the improvement of numerical algorithm. Therefore, this case directly gives the physical
parameters of reservoir model, which are identical to those in Example 1. The simulation is set
to run for 800 days. Figs. 25 and 26 show the oil saturation distributions of the upper and lower
layers at various times, while Fig. 27 depicts the oil production and water production rates of
the production well. As can be observed, water channeling of injected water occurs along natural
fractures and hydraulic fractures, increasing the water cut of the production well, while the fault
prevents injected water from flowing directly to the production wells. In addition, since the natural
fracture and the hydraulic fractures near injection well #1 only penetrate the lower layer, the water
channeling phenomena are more visible in the lower layer. Table 4 summarizes the computational
costs of this example [40].

Figure 24: The reservoir model and mesh division in this example
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Figure 25: Oil saturation profiles of the upper layer (a) 50 days (b) 200 days (c) 500 days (d) 800
days
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Figure 26: Oil saturation profiles of the lower layer (a) 50 days (b) 200 days (c) 500 days (d) 800
days
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Figure 27: Production rates of the production well in this example (a) oil production rate (b) water
production rate

Table 4: Computational parameters of this example

Properties Set maximum
time step for
nonlinear
solver

Reservoir
production
time

Newton
iterations

Total time
consuming

Values 5 days 800 days 642 350.1020 s

7 Conclusions and Future Work

Throughout the whole paper, several key conclusions can be obtained:

(i) The original pEDFM fails to handle flow barriers in most cases due to unphysical fracture
projection configurations, and determining the physical projection configuration of fractures is the
critical step in pEDFM.

(ii) When determining the physical projection configuration, the focus should be on the entire
fracture, not on individual fracture cells. Then, the equivalence theorem is presented and proved
to explain the geometric equivalent nature of physical fracture projection configurations. The
equivalence theorem-based pEDFM can truly handle cases where fracture permeability is lower
than matrix permeability, especially flow barriers.

(iii) pEDFM can efficiently handle reservoir models with complex geological conditions (com-
plex boundary shapes or inclined interlayers) by embedding flow barriers to flexibly ‘cut’ the
reservoir models.

In addition, it should be pointed out that, the current topological theory seems to be applica-
ble only to disjoint fractures (i.e., individual fractures), and a more general theory for intersecting
fractures needs to be studied, which is deserving of significant future work. If topological theory,
such as that discussed in this study, is still applied, it will be difficult to ensure that fluxes agree
with the actual physical process of multiple fracture intersections.



CMES, 2022, vol.131, no.3 1427

Funding Statement: This work was supported by the National Natural Science Foundation of
China (No. 52104017), and National Key Research and Development Program of China (Grant
No. 2019YFA0705501), and State Center for Research and Development of Oil Shale Exploita-
tion, and Cooperative Innovation Center of Unconventional Oil and Gas (Ministry of Education
& Hubei Province), Yangtze University (No. UOG2020-17).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. He, Y., Cheng, S., Sun, Z., Chai, Z., Rui, Z. (2020). Improving oil recovery through fracture injection and

production of multiple fractured horizontal wells. Journal of Energy Resources Technology, 142(5), 053002.
DOI 10.1115/1.4045957.

2. Taleghani, A. D., Ahmadi, M. (2020). Thermoporoelastic analysis of artificially fractured geothermal
reservoirs: A multiphysics problem. Journal of Energy Resources Technology, 142(8), 081302. DOI
10.1115/1.4045925.

3. Xue, Y., Liu, J., Ranjith, P. G., Liang, X., Wang, S. (2021). Investigation of the influence of gas fracturing on
fracturing characteristics of coal mass and gas extraction efficiency based on a multi-physical field model.
Journal of Petroleum Science and Engineering, 206, 109018. DOI 10.1016/j.petrol.2021.109018.

4. Xue, Y., Teng, T., Dang, F.,Ma, Z.,Wang, S. et al. (2020). Productivity analysis of fracturedwells in reservoir
of hydrogen and carbon based on dual-porosity medium model. International Journal of Hydrogen Energy,
45(39), 20240–20249. DOI 10.1016/j.ijhydene.2019.11.146.

5. Slough, K. J., Sudicky, E. A., Forsyth, P. A. (1999). Grid refinement for modeling multiphase
flow in discretely fractured porous media. Advances in Water Resources, 23(3), 261–269. DOI
10.1016/S0309-1708(99)00009-3.

6. Karimi-Fard, M., Firoozabadi, A. (2001). Numerical simulation of water injection in 2D fractured media
using discrete-fracture model. SPE Annual Technical Conference and Exhibition, OnePetro, New Orleans,
Louisiana.

7. Karimi-Fard, M., Durlofsky, L. J., Aziz, K. (2004). An efficient discrete-fracture model applicable for
general-purpose reservoir simulators. SPE Journal, 9(2), 227–236. DOI 10.2118/88812-PA.

8. Fu, Y., Yang, Y. K., Deo, M. (2005). Three-dimensional, three-phase discrete-fracture reservoir simulator
based on control volume finite element (CVFE) formulation. SPE Reservoir Simulation Symposium, The
Woodlands, Texas. DOI 10.2118/93292-MS.

9. Monteagudo, J. E. P., Firoozabadi, A. (2004). Control-volume method for numerical simulation of two-
phase immiscible flow in two-and three-dimensional discrete-fractured media. Water Resources Research,
40(7), 7045.DOI 10.1029/2003WR002996.

10. Alboin, C., Jaffré, J., Roberts, J. E., Serres, C. (2002). Modeling fractures as interfaces for flow and trans-
port. Fluid Flow and Transport in Porous Media, Mathematical and Numerical Treatment, 295, 13. DOI
10.1090/conm/295/04999.

11. Bahrainian, S. S., Dezfuli, A. D., Noghrehabadi, A. (2015).Unstructured grid generation in porous domains
for flow simulations with discrete-fracture network model. Transport in Porous Media, 109(3), 693–709.
DOI 10.1007/s11242-015-0544-3.

12. Li, L., Lee, S. H. (2008). Efficient field-scale simulation of black oil in a naturally fractured reservoir through
discrete fracture networks and homogenized media. SPE Reservoir Evaluation & Engineering, 11(4), 750–
758. DOI 10.2118/103901-PA.

13. Panfili, P., Cominelli, A. (2014). Simulation of miscible gas injection in a fractured carbonate reservoir using
an embedded discrete fracture model. Abu Dhabi International Petroleum Exhibition and Conference, Abu
Dhabi, UAE. DOI 10.2118/171830-MS.

http://dx.doi.org/10.1115/1.4045957
http://dx.doi.org/10.1115/1.4045925
http://dx.doi.org/10.1016/j.petrol.2021.109018
http://dx.doi.org/10.1016/j.ijhydene.2019.11.146
http://dx.doi.org/10.1016/S0309-1708(99)00009-3
http://dx.doi.org/10.2118/88812-PA
http://dx.doi.org/10.2118/93292-MS
http://dx.doi.org/10.1029/2003WR002996
http://dx.doi.org/10.1090/conm/295/04999
http://dx.doi.org/10.1007/s11242-015-0544-3
http://dx.doi.org/10.2118/103901-PA
http://dx.doi.org/10.2118/171830-MS


1428 CMES, 2022, vol.131, no.3

14. Shakiba, M., de Araujo Cavalcante Filho, J. S., Sepehrnoori, K. (2018). Using embedded discrete
fracture model (EDFM) in numerical simulation of complex hydraulic fracture networks calibrated
by microseismic monitoring data. Journal of Natural Gas Science and Engineering, 55, 495–507. DOI
10.1016/j.jngse.2018.04.019.

15. Dachanuwattana, S., Jin, J., Zuloaga-Molero, P., Li, X., Xu, Y. et al. (2018). Application of proxy-
based MCMC and EDFM to history match a Vaca Muerta shale oil well. Fuel, 220, 490–502. DOI
10.1016/j.fuel.2018.02.018.

16. Norbeck, J. H., McClure,M.W., Lo, J.W., Horne, R.N. (2016). An embedded fracturemodeling framework
for simulation of hydraulic fracturing and shear stimulation. Computational Geosciences, 20(1), 1–18. DOI
10.1007/s10596-015-9543-2.

17. Jiang, J., Younis, R. M. (2016). Hybrid coupled discrete-fracture/matrix and multicontinuum models for
unconventional-reservoir simulation. SPE Journal, 21(3), 1009–1027. DOI 10.2118/178430-PA.

18. Fumagalli, A., Scotti, A. (2013). A numerical method for two-phase flow in fractured porous media with
non-matching grids. Advances in Water Resources, 62, 454–464. DOI 10.1016/j.advwatres.2013.04.001.

19. Fumagalli, A., Zonca, S., Formaggia, L. (2017). Advances in computation of local problems for a flow-
based upscaling in fractured reservoirs. Mathematics and Computers in Simulation, 137, 299–324. DOI
10.1016/j.matcom.2017.01.007.

20. Cao, R., Fang, S., Jia, P., Cheng, L., Rao, X. (2019). An efficient embedded discrete-fracture model for
2D anisotropic reservoir simulation. Journal of Petroleum Science and Engineering, 174, 115–130. DOI
10.1016/j.petrol.2018.11.004.

21. Xu, S. Q., Li, Y. Y., Zhao, Y., Wang, S., Feng, Q. H. (2020). A history matching framework to characterize
fracture network and reservoir properties in tight Oil. Journal of Energy Resources Technology, 142(4),
042902. DOI 10.1115/1.4044767.

22. Hajibeygi, H., Karvounis, D., Jenny, P. (2011). A hierarchical fracturemodel for the iterativemultiscale finite
volume method. Journal of Computational Physics, 230(24), 8729–8743. DOI 10.1016/j.jcp.2011.08.021.

23. Moinfar, A., Varavei, A., Sepehrnoori, K., Johns, R. T. (2014). Development of an efficient embedded
discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs. SPE Journal,
19(2), 289–303. DOI 10.2118/154246-PA.

24. Yan, X., Huang, Z., Yao, J., Li, Y., Fan, D. (2016). An efficient embedded discrete fracture model based
on mimetic finite difference method. Journal of Petroleum Science and Engineering, 145, 11–21. DOI
10.1016/j.petrol.2016.03.013.

25. Zhang, Q., Huang, Z., Yao, J., Wang, Y., Li, Y. (2017). Multiscale mimetic method for two-phase flow in
fractured media using embedded discrete fracture model. Advances in Water Resources, 107, 180–190. DOI
10.1016/j.advwatres.2017.06.020.

26. Zeng, Q., Liu, W., Yao, J. (2018). Hydro-mechanical modeling of hydraulic fracture propagation based on
embedded discrete fracture model and extended finite element method. Journal of Petroleum Science and
Engineering, 167, 64–77. DOI 10.1016/j.petrol.2018.03.086.

27. Rao, X., Cheng, L., Cao, R., Jia, P., Dong, P. et al. (2019). A modified embedded discrete fracture model
to improve the simulation accuracy during early-time production of multi-stage fractured horizontal well.
SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Society of Petroleum Engineers, Bali,
Indonesia.

28. Wu, Y., Cheng, L., Fang, S., Huang, S., Jia, P. (2020). A green element method-based discrete fracturemodel
for simulation of the transient flow in heterogeneous fractured porous media. Advances in Water Resources,
136, 103489. DOI 10.1016/j.advwatres.2019.103489.

29. Rao, X., Cheng, L., Cao, R., Jia, P., Wu, Y. et al. (2019). A modified embedded discrete fracture model to
study the water blockage effect on water huff-n-puff process of tight oil reservoirs. Journal of Petroleum
Science and Engineering, 181, 106232. DOI 10.1016/j.petrol.2019.106232.

30. Li, L., Guo, X., Zhou, M., Chen, Z., Zhao, L. et al. (2021). Numerical modeling of fluid flow in tight oil
reservoirs considering complex fracturing networks and Pre-Darcy flow. Journal of Petroleum Science and
Engineering, 207, 109050. DOI 10.1016/j.petrol.2021.109050.

http://dx.doi.org/10.1016/j.jngse.2018.04.019
http://dx.doi.org/10.1016/j.fuel.2018.02.018
http://dx.doi.org/10.1007/s10596-015-9543-2
http://dx.doi.org/10.2118/178430-PA
http://dx.doi.org/10.1016/j.advwatres.2013.04.001
http://dx.doi.org/10.1016/j.matcom.2017.01.007
http://dx.doi.org/10.1016/j.petrol.2018.11.004
http://dx.doi.org/10.1115/1.4044767
http://dx.doi.org/10.1016/j.jcp.2011.08.021
http://dx.doi.org/10.2118/154246-PA
http://dx.doi.org/10.1016/j.petrol.2016.03.013
http://dx.doi.org/10.1016/j.advwatres.2017.06.020
http://dx.doi.org/10.1016/j.petrol.2018.03.086
http://dx.doi.org/10.1016/j.advwatres.2019.103489
http://dx.doi.org/10.1016/j.petrol.2019.106232
http://dx.doi.org/10.1016/j.petrol.2021.109050


CMES, 2022, vol.131, no.3 1429
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