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ABSTRACT

Large-scale genomic studies are important ways to comprehensively decode the human genomics, and provide
valuable insights to human disease causalities and phenotype developments. Genomic studies are in need of high
throughput bioinformatics analyses to harness and integrate such big data. It is in this overarching context that
artificial intelligence (AI) offers enormous potentials to advance genomic studies. However, racial bias is always an
important issue in the data. It is usually due to the accumulation process of the dataset that inevitability involved
diverse subjects with different races. How can race bias affect the outcomes of AI methods? In this work, we per-
formed comprehensive analyses taking The Cancer Genome Atlas (TCGA) project as a case study. We construct a
survival model as well as multiple artificial intelligence prediction models to analyze potential confusion caused by
racial bias. From the genomic discovery, we demonstrated cancer associated genes identified from the major race
hardly overlap with the discoveries from minor races from the same causal gene discovery model. We demon-
strated that the biased racial distribution will greatly affect the cancer-associated genes, even taking the racial
identity as a confounding factor in the model. The prediction models will be potentially risky and less accurate
due to the existence of racial bias in projects. Cancer genes from the overall patient model with strong racial bias
will be less informative to the minor races. Meanwhile, when the racial bias is less severe, the major conclusion
from the overall analysis can be less useful even for the major group.
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1 Introduction

Large datasets, such as The Cancer Genome Atlas (TCGA) [1], Accelerating COVID‑19 Therapeutic
Interventions and Vaccines (ACTIV) [2], and UK biobank [3], have been widely adopted in
computational genomic studies for uncovering inherent biological mechanisms behind complex diseases.
Conventional computational approaches that use predefined rules can hardly handle such complex data
sets. As a result, there is a growing need for computational approaches that can handle the analysis of
complex, heterogeneous, and high-dimensional data sets and provide accurate solutions in a fast and
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cost-effective manner. AI models trained in a data-driven manner are able to learn to extract unrecognized
patterns or hard-to-detect relationships without requiring explicit rules, which makes them widely applied
in genomic studies [4–8].

The accuracy of an AI technique is highly dependent on the reliability and quality of the training data.
However, imbalanced data is inevitable in large scale data sets and may affect the outcome of the AI models.
Among all imbalanced data, racial imbalance is one of the most commonly faced factor within various large
scale data sets. The main reason of the racial bias is that these large datasets are accumulated from multiple
clinical centers around the world [9], and inevitability involved diverse subjects with different races.
Although race was regarded as a poor marker of genomics for years, it is now regarded as an incomplete
understanding of human genetic variation [10]. Various correlations between race and diseases have been
discovered [11–14], and genomic differences between races have been found to play a role in multiple
genome-wide association studies (GWAS) [15–17] in various ways.

However, opinions on how artificial intelligence algorithms will be affected by racial bias in genomic
studies are divided. One side believed that AI models can be particularly vulnerable to biased training sets,
because medical/clinical data are especially costly to produce and label [18]. The underrepresentation of
minor populations in data sets used to develop or train AI algorithms will lead to clear patterns of
discrimination against minor patients [19]. Others held that race may be imprecisely and inappropriately
used as a biological or epidemiological risk factor [20]. On the contrary, disparities based on socioeconomic
status should be consider more by AI models than race in biomedical studies [21].

Existing understanding of race and human genetics [22] have not led to clear guidelines for AI
applications in genomic studies. But one thing is certain, the performance of an AI model trained on one
specific race is significantly reduced when tested on another race [23]. In fact, before being applied to
genomics studies, researchers have developed many methods to deal with data imbalance when training
AI models [24–29]. Among them, some approaches have already been applied in biomedical studies
[30,31]. Another subtle insertion of race into AI-based approach involves integration of genomics and
clinical data to acquire multi-dimensional input [6]. However, it is usually resource intensive and is hard
to be applied to large-scale population.

In this work, we took the TCGA dataset as a case study and conducted a comprehensive investigation of
the effects of race imbalance on the statistical and machine learning analytical strategies and discoveries of the
project. We quantitatively evaluated how the racial bias could affect the biological outcomes by conducting
racial-biased tests in two respective machine learning tasks, i.e., the causal gene discoveries [32] and patient
survivorship predictions [33]. In the causal gene discoveries, we found causal genes identified from overall
populations were significantly different from those on minor race samples only, even using the race identity
as a confounding adjustment. In the patient survivorship prediction task, we found the models constructed
on the whole large dataset had reasonable performances on the major races but showed poor accuracies for
minor race samples using a wide range of artificial intelligence (AI) algorithms. These conclusions imply
that, when we treat patients from minor race groups, the biological discoveries or application models will
be potentially risky and less accurate because of the existence of racial bias in projects.

2 Materials and Methods

2.1 Research Setting, Sample and Data
We use TCGA dataset as our original data. TCGAwas launched by NCI and NHGRI. It was designed to

identify genetic mutations for cancer progression [34,35]. It is now becoming a benchmark to enhance the
ability to diagnose and treat cancer at the basis of the genetic level [36,37]. The dataset includes 31 cancer
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types and each cancer contains transcriptomics data collected by different hospitals and institutes with
various racial backgrounds.

Fig. 1A provided an overall race population distribution of TCGA regardless of the cancer types. There
are 11056 patients in total, among which white people represent the largest proportion. The second-largest
race group is Black or African American; however, the population size is only less than 1/7 of the white
population size. Other minor races contain even much smaller patient numbers. Overall, samples in
TCGA cancer data exhibit a strong racial bias. Fig. 1B indicates that for most cancer types, the major
races accounted for more than 50% while the minor races generally had a proportion lower than 5%.
However, we also notice there were several cancers where patients showed less severe racial bias.

We conduct a three-step research paradigm to investigate the effects of race imbalance on the statistical
and machine learning analysis, as is illustrated in Fig. 2.

� Step 1: Data pre-processing. In this step, we analyze the population distribution of every cancer of
TCGA and divide them into three sub-groups according to their major population ratio, i.e., weak
bias, moderate bias, and strong bias.

� Step 2: Causal gene discoveries. In this step, we conduct cox proportional-hazards [38] models for
every sub-group regarding their sex, age, race, cancer stage, and genes to determine their most
significant genes. These genes are regarded as causal genes.

� Step 3: Survivorship predictions. In this step, we construct four different types of AI models to predict
the survivorship of patients. The models are trained or developed based on the previously determined
significant genes.

Figure 1: An overview of race distribution in TCGA dataset. (A) Overall patient number from different
races in the dataset. (B) Proportions of major, minor and second minor races for all 31 cancer types. uvm
data is empty because it lacks race information. Full names of cancers were listed in Table 1
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Figure 2: The overall research paradigm

Table 1: Division result of cancers in TCGA pan-cancer dataset

Abbr. Cancer name Race bias index Comment

hnsc Head and neck squamous cell carcinoma Strong /

paad Pancreatic adenocarcinoma Strong /

luad Lung adenocarcinoma Moderate /

lusc Lung squamous cell carcinoma Moderate /

lihc Liver hepatocellular carcinoma Weak /

read Rectum adenocarcinoma Weak /

kirc Kidney renal clear cell carcinoma Strong /

kirp Kidney renal papillary cell carcinoma Moderate /

blca Bladder urothelial carcinoma Strong /

brca Breast invasive carcinoma Moderate /

skcm Skin cutaneous melanoma Strong /

stad Stomach adenocarcinoma Moderate /

coad Colon adenocarcinoma Weak /

esca Esophageal carcinoma Moderate /

thca Thyroid carcinoma Moderate

gbm Glioblastoma multiforme Weak N/A in cancer stage

lgg Brain lower grade glioma Strong N/A in cancer stage

cesc Cervical squamous cell carcinoma and
endocervical adenocarcinoma

Moderate N/A in cancer stage

ov Ovarian serous cystadenocarcinoma Moderate N/A in cancer stage

sarc Sarcoma Strong N/A in cancer stage

thym Thymoma Strong N/A in cancer stage

ucec Uterine corpus endometrial carcinoma Moderate N/A in cancer stage
(Continued)
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2.2 Measures of Variables

2.2.1 Racial Bias Index
Racial bias index is a discrete indicator defined based on the population proportion of the major race

(PPMR). It is used to evaluate the severity of racial bias of the population of a certain cancer in the
TCGA dataset. For each cancer type, the major race is defined as the race with the largest population.
Therefore, the population proportion of the major race can be easily calculated by dividing the major race
population by total population. Racial bias index is defined as: strong (PPMR ≥ 75%), moderate (75% >
PPMR ≥ 50%), and weak (50% > PPMR). The selection of the two thresholds (i.e., 50% and 75%) is
empirically determined according to the actual race distribution of TCGA dataset to obtain balanced
cancer sub-groups. Cancers can be categorized into one of the three sub-groups according to their racial
bias index, i.e., they are cancers with either week racial bias, moderate racial bias, or strong racial bias.

2.2.2 Significance Threshold
The significances of genes are evaluated by their p-values calculated during survival analysis. We

reorder genes according to their p-value from low to high and select genes above the significance
threshold for subsequent survivorship predictions. The significance threshold used here is to limit
numbers, not values. For example, the top 10 genes are selected if the significance threshold is set to be
10. We use number instead of value to select genes because it is easier to construct AI models with equal
number of inputs for prediction.

2.3 Data Analysis Procedure
We strictly abide to the previously discussed research paradigm consisting of data pre-processing, causal

gene discoveries, and survivorship predictions.

2.3.1 Data Pre-Processing
The cancers were categorized into strong, moderate, and weak bias categories and were analyzed

separately according to the racial bias index.

For each cancer, the patient information and cancer sample information of the TGCA pan-cancer dataset
are separately stored in two text files. We link them together into one file according to the patient ID and
sample ID. Then, we extract the RNA sequence median zscore of each gene and attach them with the
above linked file to form a gene specific data sheet.

At the cancer level, we firstly remove the entire cancer genomic data if there exists any N/A data within
race, sex, age, cancer stage, gene zscore, or survival status. Because the subsequent survival analysis requires
inputs with not N/A data. Then, we discard the cancer if its minor races population is less than 10. Because
data imbalance and data insufficiency problems are severe for model training.

Table 1 (continued)

Abbr. Cancer name Race bias index Comment

ucs Uterine carcinosarcoma Weak N/A in cancer stage

tgct Testicular germ cell tumors Strong Insufficient patient of minor races

prad Prostate adenocarcinoma Weak Insufficient patient of minor races

acc Adrenocortical carcinoma Strong Insufficient patient of minor races

chol Cholangiocarcinoma Strong Insufficient patient of minor races

meso Mesothelioma Strong Insufficient patient of minor races

uvm Uveal melanoma Weak N/A in cancer stage, sex, age, race
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At the gene level, we drop the gene if its zscore is missing, and we calculate the average zscore of the
gene if we encounter two or more zscores corresponding to the gene. Finally, we convert all the non-digital
value into digital format. For example, sex information is converted into 0 (for female) and 1 (for male), and
race information is converted into 0 (for white), 1 (for Asian), 2 (for Black or African American), etc.

The entire data pre-processing flow chart is illustrated in Fig. 3.

2.3.2 Causal Gene Discoveries
We take survival analysis for each cancer data sheet to account for the contributions of sex, age, race,

cancer stage, and genes to the cancer development for each cancer type in TCGA transcriptomics data. We
separately built three survival models, each based on different race populations. After the survival analysis,
the contributions of each factor can be quantified and sorted by Wald test using p-values. The top significant
cancer genes that greatly impacted the three sub-groups can be identified respectively according to the
previously defined significance threshold (10 for subsequent analysis and 16/32/64 for Appendix).

We use survival 3.2-11 R package to construct the cox proportional hazards model for each of gene
specific data file in every cancer. The covariates to be analyzed are sex, age, race, cancer stage, and gene
zscore. The cox

h tð Þ ¼ h0 tð Þ � exp b1xsex þ b2xage þ b3xrace þ b4xcancer stage þ b5xgene zscore

� �

In the equation, t represents the survival time, h(t) is the hazard function determined by the set of
covariates (xsex, xage, xrace, xcancer_stage, xgene_zscore), coefficients (b1, b2, …, b5) measure the impact (i.e.,
the effect size) of covariates, h0(t) is the baseline hazard, which corresponds to the value of the hazard if
all the covariates are equal to zero.

We want to describe how the covariates jointly impact on survival. We perform a multivariate Cox
regression analysis. We include all 5 factors mentioned above into the multivariate model. A Cox
regression of time to death on the time-constant covariates is specified as follows:

cox<-coxph(Surv(time,status)~sex+age+race+cancer_stage+gene, data=TGCA)

summary(cox)

After survival analysis, we can get the p-value of every gene w.r.t. the three sub-groups of different race
bias. We sort genes in ascending order according to their p-values, and get the most significant genes that
affect the cancer survival status according to the predefined significance threshold.

Figure 3: The data pre-processing process
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2.3.3 Survivorship Predictions
After acquiring the top significant genes, we construct four representative machine learning models, i.e.,

Deep Neural Network (DNN) model [39], Support-Vector Machine (F) model [40], K-Nearest Neighbor
(KNN) model [41], and Random Forest Classification (RFC) model [42], to extensively test the
prediction performances. Similar to the previously constructed survival models, we also develop four AI
models for each of the population groups to analyze and compare their prediction performances. To be
more specific, the inputs of all 4 models are the zscores of the most significant genes. The single output
is the survival status of the cancer in binary format, i.e., 1 for survival and 0 for not survival.

We assume that the significant threshold is Ni, which is equal to the number of inputs. The DNNmodel is
a simple 3 layer fully-connected network with layers size of {Ni-64-16-1} and with ReLU activation
function. The DNN model is trained by Adam optimizer. The SVM model has an RBF kernel with
parameters C = 1 and γ = 0.01. The KNN model uses k = 10 neighbors. The RFC model uses 10 trees in
the forest, and uses Gini impurity to measure the quality of a split. The number of features to consider
when looking for the best split is the square root of Ni.

Before training, all the patient data are divided into a train set and a test set using a ratio of 8:2. Then,
both the train set and the test set are further divided into 2 sets corresponding to patient races: the major set
and the minor set. We can obtain 6 datasets after the 2-step division. All models are trained 10 times to get an
average performance by following a 5-fold cross-validation manner.

In order to verify the effectiveness of the sample reweighting method commonly applied in AI models
when handling unbalanced data, we weigh the importance of each sample based on their racial attendance
rates. We calculate the weight of minor race samples mw by the following equation:

mw ¼ Nmajor

Nminor
;

where N* is the number of patients of the subscript race. The weight of major race samples is 1.

3 Results

3.1 Racial Bias in TCGA
Fig. 4 illustrate the racial bias of all cancers in TCGA. Fig. 4A shows the population of both the major

race (purple bars) and other races of all cancers (gray bars). Fig. 4B shows the detailed three sub-groups
division result of all cancers according to significance threshold equal to 10. Further results involving
significance thresholds of 16, 32, and 64 are given in Appendix.

Figure 4: Racial bias of all cancers. (A) the population of the major race and the other races. (B) The
division result of all cancers according to the population proportion of major race
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Regarding to the above-mentioned racial bias index, we have acc, blca, chol, hnsc, kirc, lgg,meso, paad,
sarc, skcm, lgct, and thym cancer types in strong racial bias category, brca, cesc, esca, kirp, luad, lusc, ov,
stad, thca, and ucec in moderate racial bias category, and coad, gbm, lihc, prad, read, ucs, and uvm in
weak racial bias category, respectively. The detailed division is shown in Table 1. We select
6 representative cancers for subsequent analysis (bold texts in Table 1). Analysis results of the latter
9 cancers are discussed in Appendix. The remaining cancers are discarded due to N/A data or insufficient
minor race patients. The various levels of race imbalance in different cancer types provided a great
opportunity for us to evaluate the effects from various bias levels.

3.2 Effects of Racial Bias on Cancer Gene Discoveries
Two cancer types from each category (hnsc and paad from strong; luad and lusc from moderate; lihc and

read from weak) were selected for illustration. The top 10 significant genes (significant threshold is set to be
10) were selected to plot their overlaps among each other (Fig. 5A). For cancer types with strong racial bias,
results from all patients shared many cancer genes with analysis on major race only while the model cannot
identify any shared genes from the minor group. This represented that the conclusions drawn from the overall
population can be largely applicable to the major race but not to the minor race. For the cancer types with
moderate racial bias, the shared cancer gene number between all and major populations is decreasing and
again there is no overlapped gene between all and minor. For cancer types with weak bias, the overall
analysis also identified genes that were detectable from analysis on minor races. Fig. 5B provided the
proportion statistic of overlapped genes between all/major and all/minor for all cancer types in three bias
levels. See Figs. S1 and S2 in Appendix for similar results concerning the top 16/32/64 significant genes.

Based on the analyses, we demonstrated with the strong race bias, the cancer genes from the overall
patient model will be less informative to the minor races. Meanwhile, when the race bias is less severe,
the major conclusion from the overall analysis can be less useful even for the major group.

Figure 5: Relations of the top 10 significant genes of the selected six cancers after survival analysis. (A)
Venn diagrams reflecting the similarity and overlap of gene number and composition of major and minor
races w.r.t. all races. (B) Boxplot diagrams reflecting the repetition of most significant genes between all
patients and major race patients, and between all patients and minor races patients
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3.3 Effects of Racial Bias on Survivorship Predictions
The differences in prediction accuracies on data with all, major and minor populations represented the

transferability of biological conclusions from the training groups to the test groups (Fig. 6). For models
trained on all patients but tested on all/major/minor race populations (first row of Fig. 6), accuracies of all
and major groups were similar even the racial bias levels were different (from left to right: strong,
moderate, weak racial bias). However, in the test on minor races, accuracies decreased a lot when the
racial bias was strong. We observed similar trends for models trained on major patients only (second row
of Fig. 6). This indicated that for prediction tasks, the major race group was easy to dominate
classification models. Therefore, models fitted on all patients or the major group performed similarly. For
models training on minor race patients only (third row of Fig. 6), we observed higher accuracies on
minor survival predictions as expected. And when the racial bias level was weak (lihc and read), tested
accuracies for all or major also increased. The analysis and prediction result of the selected six cancers
concerning the top 16/32/64 significant genes were provided in Fig. S3. The analysis and prediction
result of the rest of the cancers concerning the top 16/32/64 significant genes were provided in Fig. S4.

From the results, we concluded that when considering all collected samples and neglecting the racial
differences, survival prediction can be strongly biased towards the major race group and yields poor
prediction accuracies for the minor, when the major group occupied >50% of the sample size. However,
when the race bias is relatively weak (major <50%), the trained models on all patients showed reasonable
accuracies on both major and minor races.

We select hnsc and paad to show the survivorship prediction performance with or without sample
reweighting. We select these two cancers because they suffer from strong racial bias. The prediction

Figure 6: Prediction accuracies of 4 models trained on different training sets under the three major racial
bias situations. The first row refers to models trained on all training set, the second row refers to models
trained on major training set, and the third row refers to models trained on minor training set. The input
number of all 4 models is 10, i.e., inputting the zscores of the 10 most significant genes. The first two
columns refer to prediction result on hnsc and paad, both of which are strong major racial bias cancers.
The center two columns are result on moderate major racial bias cancers. The latter two columns are
results on weak major racial bias cancers
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accuracies of the DNN models considering 64 inputs are shown in Fig. 7. hnsc has 440 major race patients
and 60 minor race patients as training samples, so the minor weight is 440/60 = 7.33. Similarly, paad has
117 major race patients and 12 minor race patients as training samples with the minor weight of 117/
12 = 9.75. The result indicates that the survivorship prediction accuracy of minor race patients cannot be
improved by simply applying the sample reweighting under certain circumstances.

4 Discussion

In this work, we studied how the imbalance of races affected AI algorithms on genomic analyses. The
biased distribution of different races in large-scale data is highly risky to favor majority groups. This
challenge is especially inevitable when studies involve less-common diseases here patient samples are
valuable. In other words, the minority groups might not share the benefits from the costly and long-term dataset.

In the current context, we considered major metrics (causal genes that are associated with certain cancer
types, and prediction accuracy of cancer survivorship) that are closely related to the cancer studies. We note
these results can only reflect partial effects on biased race distribution. Other metrics, such as classical
machine learning accuracy and F score, might express differences in a different aspect.

In results, we observed that the conclusion can be quite different for different AI approaches. This is
because tested algorithms were constructed based on various loss functions and can be yield diverse
outcomes for the same but complex input data like human genomes. However, we noticed the
performances can be much stable when the imbalance level is weak. This highlighted the effects from
severe imbalance data to the methods’ accuracies. We also observed that applying sample reweighting
can improve the performances of AI models for minor groups, but this method fails when racial bias
become extremely severe. Although many methods to alleviate data imbalance have been proposed in the
field of machine learning [28–31] from the perspective of samples, evaluation indicators, and algorithms,
we should not completely rely on these methods to solve the problem of racial bias. Because some
methods that is effective in other fields for AI models may further exacerbate issues of bias in clinical
studies. Examples of these methods include fine-tuning of AI models by oversampling under-represented
groups and introducing racial information into model as input to adjust prediction results [19]. Contrary
to the latter example, AI models should be trained to reduce its direct dependence on sensitive attributes,
such as race, gender, income, etc. [18].

Biases may arise due to the availability of data, the way data are processed and combined, the way
questions are formulated, and pre-existing biases in society [4]. Therefore, careful tests and well-prepared
data are needed when applying the conclusions of genomic analyses to minor groups. It has been reported
that bias is likely mitigated by carefully choosing appropriate databases and applying data harmonization
methods [13], but methods like this are like addressing symptoms but not root causes. To fully address
the issue of racial bias in AI models for clinical use, a top-down intervention involving regulatory bodies
and publishing standards are claimed to be required [19]. Among them, a fundamental principle to hold is

Figure 7: Prediction accuracies of DNN models trained without/with sample reweighting
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to increase the awareness of the significance of the logic of ethics, especially when there is a contradiction
between the logic of technology which pursues the speed of development, and the logic of ethics which
guarantee everyone’s rights to enjoy the technology’s achievement. The idea of this principle is highly
crucial for the change of unfairness inherent in medical programs with large-scale datasets. To address
this issue, a series of institutional designs can be added. For instance, concerning the data collection, we
can make extra efforts to collect the minority’s data since the small number of samples is a source of
potential bias and limits the interpretation of results [14]; concerning the data process, we can set up an
independent algorithm auditing process to check if there is lower accuracy for the vulnerable people;
concerning the result interpretation, researches need to be cautious when applying the conclusion to
minor races; concerning the application of the project outcomes, race must be a key patient information
for doctors to consider [20,43,44].

The results also inspire us to explore why the challenge happens from the view of project management.
By referring to the TCGA data policy, we can see that TCGA highly values ethical issues. However, it seems
that the privacy issue represents all the ethical concerns in TCGA data policy. TCGA program has made fine
regulations to protect patients’ privacy. From BCR to DCC which are established by TCGA to integrate all
tissues and clinical data into the form ready for direct genetic research, a highly sensitive awareness to
privacy protection can be noted. However, privacy is only one part of AI ethics. For the TCGA program
which is highly valued by the national institutions, it seems incomprehensible for the neglection of the
algorithm fairness that increasingly becomes the hot issue in AI ethics [31]. The reason can be the nature
of the genomic programs themselves. The collection of genomic data is not as easy as the collection of
the data used for AI technologies in other fields, such as facial recognition or automatic speech
recognition. For example, the generation of the cancer information of TCGA dataset are based on the
miserable individual experience, and the production of their clinical annotation and extensive genomic
data are based on the well-enacted regulations. Therefore, it is necessary to make the best of each
patient’s genomic information. However, achieving algorithm fairness might mean sacrificing the value of
the majorities’ data. It is the insurmountable difficulties for this issue. Because even if the researchers will
aware of their blind spot and implicit biased assumptions, they still need to reconstruct the model based
on existing biased data, which means the possibility of slowing down the whole genetic research progress.

5 Conclusion

To summarize, this paper discusses the race imbalance problem that could bias the AI model for multiple
types of genomics studies. This conclusion is substantiated by racial-biased tests in two respective machine
learning tasks: causal gene discoveries task and patient survivorship predictions task. In the causal gene
discoveries task, significant genes of minor race patients are almost entirely different from those of major
race patients. In the survivorship prediction task, AI models yield diverse but trending outcomes for the
same but complex human genomes input, which highlights the effects from severe imbalance data to the
methods’ accuracies. Racial bias problem can be technically alleviated before and during training, but it
should not be completely hoped for, especially when the imbalance is severe.

This study provided a quantitative insight of race bias effects on TGCA and will be valuable to offer
guidance for genomic population study design. The conclusions from this work can be extended to other
large biological and medical research projects that are not limited in genomics. However, the effect
degree of imbalance bias in a new dataset can be dramatically different and must be calibrated independently.
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Appendix

Figure S1: Venn diagrams of top 16 (A), 32 (B), and 64 (C) significant genes between the three parts of
patients. We only give the number of genes in each proportion for simplicity
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Figure S2: Boxplot of repetition ratios of the selected six cancers concerning top 16 (A), 32 (B), and 64 (C)
significant genes
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Figure S3: Prediction result of the selected six cancers (hnsc, lihc, luad, lusc, paad, and read) concerning
top 16 (A), 32 (B), and 64 (C) significant genes
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Figure S4: Prediction result of the rest of the nine cancers (blca, brca, coad, esca, kirc, kirp, skcm, stad, and
thca) concerning top 16 (A), 32 (B), and 64 (C) significant genes. In these figures, characters after gene
names refer to their race types: ‘(s)’ means strong major race bias, ‘(m)’ means moderate major race bias,
‘(w)’ means weak major race bias. skcm has only 11 patients of minor races, its test set of minor races
has only 5 patients. The insufficient number of test patients makes the prediction of the survival status
fluctuates greatly
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