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ABSTRACT

Thyroid cancer is the fifth most common cancer in the USA, with differentiated subtype accounting for more
than 95% of neoplasm. Surgery remains the mainstay of treatment, either with lobectomy or total thyroidectomy.
In the last decades, many technological innovations have been introduced in this field. The aim of this review is to
illustrate the most recent advances regarding the classical surgical approach, particularly regarding hemostatic
devices, parathyroid identification with fluorescence systems, intraoperative identification of lymph node metas-
tases, and intraoperative neuromonitoring.
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1 Introduction

Thyroid cancer is the fifth most common cancer in the USA; it is estimated that over 44 000 new cases
occurred in men and women during 2021. The incidence of thyroid cancer is still rising worldwide, probably
due to the increased use of diagnostic imaging and surveillance [1,2]. Differentiated thyroid cancer (DTC) is
the most common subtype, accounting for more than 95% of cases [2,3]. DTC is considered a tumor with a
good prognosis, with an overall survival nearly comparable to that of the general population; nevertheless, a
certain number of patients experience a poor clinical outcome, with local recurrence, mainly due to nodal
metastasis, requiring further medical or surgical treatment, with a considerable worsening of the quality
of life [2,4]. Although conservative techniques have been developed for some benign lesions, such as
radiofrequency ablation or percutaneous ethanol ablation, surgery remains the mainstay of treatment for
thyroid cancer, either with lobectomy or total thyroidectomy; as a result, thyroidectomy represents the
most performed operation in endocrine surgery [2,4,5]. Complications are mainly represented by
hypoparathyroidism (transient or permanent), recurrent laryngeal nerve (RLN) injury (unilateral or
bilateral, transient or permanent), and cervical hematoma [6–15]. Data in the literature shows that re-
operative thyroid surgery is a technical challenge with an higher incidence of complications if compared
to primary surgery. Scarring, edema, and friability of the tissues together with distortion of the landmarks
make re-operative surgery hazardous [16–18]. New technologies have had a positive impact on our
ability to diagnose and treat many surgical conditions, including thyroid cancer: in recent decades, many
technological innovations, either regarding classical ultrasound diagnosis, i.e., utilizing contrast-enhanced
ultrasound (CEUS) in adjunct to standard ultrasound evaluation, or specific molecular tests, have been
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introduced in this field [5,19–23]. Furthermore, these technological innovations could allow to minimize the
need for reoperations, potentially reducing the occurrence of postoperative complications.

The aim of this review is to illustrate the most recent technological advances, particularly regarding
hemostatic devices, parathyroid identification with fluorescence systems, intraoperative identification of
lymph node metastases and intraoperative neuromonitoring. A brief summary of the analyzed
technologies is present in the Table 1.

2 Hemostatic Devices

The thyroid gland is a highly vascularized organ; therefore, postoperative neck hematoma represents a
major concern for surgeons. Achieving accurate hemostasis, preventing bleeding in the operating field, and
allowing an adequate view of the anatomic structures is mandatory to avoid the occurrence of complications.
Furthermore, postoperative neck bleeding may bring airway compression and respiratory distress, if not
promptly treated [11,24].

Hemostasis has historically been considered a crucial point in thyroid surgery. During the 1800s, the
mortality rate from thyroidectomy was approximately 40%, mainly due to intraoperative and
postoperative hemorrhage. At that time many surgeons warned against performing such procedure: in
1846, Robert Liston stated: “there was a grave risk of death from hemorrhage during thyroid operations
and that it was a proceeding by no means to be thought of”; John Dieffenbach, in 1848, described thyroid
surgery as “one of the most thankless, most perilous undertakings which, if not altogether prohibited,
should at least be restricted”. In 1850, thyroidectomy was condemned by the French Academy of
Medicine. In the early 1900s, thyroid surgery was profoundly revolutionized by Emil Theodor Kocher:
through a precise surgical technique and accurate hemostasis, he was able to drastically reduce mortality
and morbidity [11,24–27].

Nowadays, postoperative hematoma occurs approximately in 0.1% to 1.1% of thyroidectomies, with
almost all cases presenting within the first 6 h after the operation, whereas late bleeding after
thyroidectomy is anecdotal [9–11].

Since Kocher, numerous technological innovations have been introduced. In particular, the so-called
energy-based device (EBD) can be considered a milestone in thyroidectomy. Traditionally, the clamp-and-
tie technique, with or without monopolar or bipolar electrocautery, has been used to achieve hemostasis.

Table 1: Summary of the analysed technological innovations

Technological innovation Primary expected benefit Secondary expected
benefit

Hemostatic devices Significant reduction of operating
times

• Blood loss reduction
• Hospital stay
reduction

• Postoperative pain
reduction

Identification of parathyroid glands with
fluorescence systems

Postoperative hypocalcaemia rate
reduction

None

Intraoperative node metastasis identification Avoiding potential
overtreatments

None

Intraoperative neuromonitoring Reducing the recurrent laryngeal
nerve injury

Improve oncological
radicality
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Over the years, innovative energy-based devices, using different forms of energy, have been introduced.
Currently, these instruments are widely used in this kind of surgery [12,22,24,25,27–29]. In addition, so-
called hemostatic agents have also been introduced. These agents have been broadly classified into three
groups: topical hemostats which cause blood to clot at a bleeding surface, sealants which prevent leakage
from tissues including vessels, and adhesives which bond tissues. However, as highlighted in a
2018 meta-analysis performed by Khadra et al. [28–30], their usage in thyroid surgery yields minimal
advantages for the management of perioperative bleeding risk, while they effectively reduce the drain
output and the hospital stays.

Energy-based devices can be classified, based on the mechanism of hemostatic/vascular sealing
provided, into three categories: ultrasonic systems, electrothermal bipolar (radiofrequency) systems, and
hybrid systems combining both energy modalities [25,26].

Given this classification, the most commonly used EBDs are Harmonic Focus plus (HF; Ethicon,
Johnson and Johnson, Cincinnati, OH, USA), which uses ultrasound energy, LigaSure Small Jaw and the
most recent Ligasure Exact dissector (LS and LE; Medtronic, Covidien Products, Minneapolis, MN,
USA), which exploits radio frequencies, and the Thunderbeat Open Fine Jaw (TB; Olympus, Japan),
which belongs to the hybrid systems category [24,26,31].

Since their introduction, several studies in the literature have examined the differences between the use
of EBD and classical clamp and tie techniques and among the devices themselves.

There is now unanimous agreement that EBD significantly reduces operating times compared with the
standard clamp and tie technique.

The use of HF is extensively studied in the literature, and all studies agree that it significantly reduces
operative times compared to standard clamp and tie techniques [32–36].

A meta-analysis, performed by Ecker et al. [35] in 2010, compared the standard clamp and tie technique
vs. the harmonic scalpel (HS), which was the HF precursor. Their results showed a 17 min operative time
reduction when HS was compared to clamp and tie, a 23 min reduction when HS was compared to clamp
and tie combined with monopolar cautery, and a 35 min reduction when HS was compared to clamp and
tie with bipolar cautery. The mean operative time reduction among all the techniques was 22 min.
Therefore, this meta-analysis highlights that HS has been associated with lower blood loss, lower
postoperative pain, and shorter hospital stays than the standard technique, without an increase in the
postoperative complication rate.

Similar results were obtained in several other studies in the literature. Revelli et al. [34], in their
2016 meta-analysis, confronted HS vs. HF vs. standard hemostasis techniques, obtaining a mean
reduction in operative time of 25 min, either with HS or HF, with a significant reduction in blood loss,
postoperative pain, and hospital stay compared to standard hemostatic techniques.

LS was compared with traditional techniques in a 2017 metanalysis by Luo et al. [37], which included
thyroidectomy performed with HS, LS or the standard clamp and tie technique. The authors report a 13 min
reduction in operative time when total thyroidectomy was performed utilizing LS compared to standard
hemostatic techniques. Interestingly, they found that the use of HS was associated with a lower risk of
definitive recurrent laryngeal nerve lesions than standard hemostasis.

A pilot study conducted by Papavramids et al. [31] in 2020 compared LE with other EBD (HS, LS and
TB). The authors founded that LE effectively reduce operative time when compared with the others EBDs [31].

While some studies found no difference in complication rates when comparing EBDs vs. conventional
clamp and tie techniques [33,35], others highlighted a reduction in postoperative transient hypocalcemia,
postoperative cervical hematoma, and definitive recurrent laryngeal nerve palsies compared to standard
hemostasis [36,37]. Similar results regarding postoperative hemorrhage were found comparing LS vs. the
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conventional clamp and tie technique, as highlighted by Grøndal et al. [38], while other authors did not find
any difference regarding postoperative cervical hematoma or RLN injury rates when EBD was compared to
the standard technique [11,39,40]. It is important to emphasize that some studies in the literature found an
increased RLN thermal injuries and palsy in the EBD group, mainly because of the thermal spread
around the device and the tissue contraction. Therefore it is important to underline that the EBDs must be
used with caution especially in non-expert hands, and in any case at a safe distance from structures
considered noble, such as RLN and parathyroid glands, to preserve their functionality [41–43].

Far fewer studies comparing the different devices exist. Shorter operative times in thyroidectomies
performed with TB compared to those with HF, as reported in the studies of Back et al. [44] and
Papavramidis et al. [31], are probably due to a greater speed of TB in coagulation and cutting of tissues
[24,31,44]. Dionigi et al. [45] found no significant difference in the rates of postoperative morbidity
comparing HS and LS, while they found differences in clinically less significant endpoints, such as
postoperative oral calcium supplementation, which was higher in the HF group.

The reduction in operative times allows optimization of the timing of the operating room, ultimately
allowing the treatment of more patients with thyroid cancer during a single surgical session, balancing the
higher costs of the devices without an increase in postoperative complication rates.

3 Identification of Parathyroid Glands with Fluorescence Systems

Postoperative hypocalcemia due to postoperative hypoparathyroidism represents the most common
complication after thyroid surgery, accounting for more than half of total complications, with rates of
approximately 15% to 30% for transient hypocalcemia and 1% to 7% for definitive [4,6–8,46–48].
Therefore, intraoperative identification and preservation of parathyroid glands (PGs) is mandatory during
thyroidectomy. Particularly, treatment of thyroid carcinoma may require central neck compartment
dissection and, in case of local recurrence, re-do surgeries, both of which increase the risk of
postoperative hypoparathyroidism [2,4,8,16,49–51].

Although the current identification method is usually based on naked eye (N-E) individuation, utilizing
visual inspection and palpation by the surgeon, with careful preservation of the PGs blood supply, some
innovative techniques have gradually established themselves as possible adjuncts to aid the identification
of PGs.

Fluorescence imaging is an exponentially developing technology, that is gaining acceptance in many
surgical fields, including thyroid surgery [52]. Fluorescence occurs when a material is illuminated by light
of shorter wavelengths and, within nanoseconds, emits light with longer wavelengths. In some tissues,
such as PGs, this can result in native fluorescence, or “autofluorescence,” which enables the use of a
label-free autofluorescence detection technique in tissues [53,54].

This technology allows PGs to spontaneously remit light at a wavelength between 820 and 830 nm
(autofluorescence) when exposed to near-infrared light at a wavelength of 785 nm, creating a contrast
between thyroid tissues and parathyroid tissues, allowing intraoperative differentiation without the use of
a contrast agent (NIR-AF) [53]. One limitation of this technique is that, in some cases, the difference
between thyroid and parathyroid tissues can be difficult to distinguish due to the similarity of the
autofluorescence intensities of the two tissues [55].

Another possibility is to use a contrast agent, almost always indocyanine green (ICG), which
concentrates in the parathyroid tissue and emits fluorescence when the affected area is visualized with
dedicated cameras (NIR-ICG). The recommended dose for PG visualization is 0.2–0.5 mg/kg, which may
be repeated as required without exceeding the maximal daily dose of 5 mg/kg [56–58]. Both techniques
have shown promising results in several studies in the literature [46–48,54,59,60].
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The main difference between NIR-AF and NIR-ICG is that the first method allows the identification of
PGs without providing information on their vascularization and, therefore, on their functionality. PG
autofluorescence is also preserved after gland resection, with the fluorophore known to be resistant to
heat, freezing, and formalin fixation [55,61,62].

Using a combination of both methods can correctly identify PGs and provide real-time information
regarding their vascularization and functionality after thyroid resection [55,63–65].

A recently published meta-analysis by Kim et al. [54] investigated the diagnostic accuracy of the NIR-
AF method to identify the parathyroid glands during thyroidectomy. The authors included 1198 patients from
17 studies. Their results demonstrated that this technique can correctly identify PGs, with a sensitivity,
specificity, negative predictive value, and positive predictive value of 0.9693 (0.9491; 0.9816), 0.9248
(0.8885; 0.9499), 0.9517 (0.8981; 0.9778), and 0.9488 (0.9167; 0.9689), respectively. This study proved
that NIR-AF PG detection is a useful auxiliary method for identifying PGs during thyroid surgery.

In a multicentric randomized clinical trial, published in 2020, including 241 patients, NIR-AF lowered
the temporary postoperative hypocalcemia rate from 22% to 9% and parathyroid inadvertent resection rates
from 14% to 3%, suggesting that this technology could limit postoperative hypoparathyroidism [64].

In a 2020 meta-analysis of 13 studies, Barbieri et al. [46] compared the use of NIFI techniques, either
NIR-AF, NIR-ICG, or both, in reducing short-, medium-, and long-term hypocalcemia and
hypoparathyroidism following total thyroidectomy compared to standard N-E individuation. They found that
NIFI techniques significantly reduced short- and medium-term hypocalcemia following total thyroidectomy,
with risk differences of 0.10 (0.07; 0.17) and 0.03 (0.01; 0.05), respectively. However, no significant
differences were found in long-term hypocalcemia and short-medium- and long-term hypoparathyroidism [46].

Another meta-analysis, published in 2021 by Weng et al. [60], evaluated whether NIR-AF imaging
reduces the risk of hypocalcemia after total thyroidectomy. The authors included 6 studies involving
2180 patients. The prevalence of transient hypocalcemia was 8.11% in the NIR-AF group and 25.19% in
the N-E group (p < 0.0001), while the prevalence of permanent hypocalcemia was 0% in the NIR-AF
group and 2.19% in the N-E group (p = 0.05) [60].

NIR-AF and NIR-ICG necessarily imply longer operative times: Lerchenberger et al. [66], in a study that
compared these two methods during thyroid surgery, showed that the additional time needed to perform NIR-
AF imaging and NIR-ICG imaging amounts to 5 to 10 min and 8 to 13 min, respectively, when compared to
standard N-E identification [66].

To our knowledge, no cost-effectiveness study exists comparing NIFI techniques and N-E identification
in thyroid surgery. These techniques could lead to a decrease in postoperative hypoparathyroidism; however,
a clear usage protocol has not yet been validated.

4 Intraoperative Node Metastasis Identification

DTC represents the most common subtype of thyroid cancer, mainly due to the high incidence of
papillary thyroid cancer (PTC). PTCs are considered slow-growing tumors with an excellent prognosis.
However, the incidence of node metastases is high, ranging from 20% to 90% [1–4,51,67–69].

The real impact of node metastases on prognosis is still a matter of debate: reports in the literature
demonstrate a reduction in disease-free survival but are divergent in overall survival [49,51,68,70,71].

The American Thyroid Association guidelines suggest prophylactic central lymph node compartment
dissection (CLND) in patients with high-risk PTC [4].

Nevertheless, prophylactic CLND is still a controversial topic in the literature, as some authors suggest
that it might reduce the incidence of local lymph node recurrence, while others highlight that it has a higher
incidence of postoperative complications, especially hypoparathyroidism and RLN palsy [68,70–74].
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Molecular biologic techniques have spread widely, both for preoperative diagnosis of many cancers,
including DTC, and for intraoperative diagnosis of node metastases, mainly in breast carcinoma [19–20,75].

These assays allow us to quickly isolate, amplify and quantify mRNA encoding proteins selectively
present in neoplastic cells, such as cytokeratine-19 (CK-19). One-step nucleic acid amplification (OSNA)
is routinely used in the diagnosis of node metastasis in the sentinel lymph node of patients affected by
breast cancer [75].

Several studies in the literature have evaluated whether the OSNA technique could be applicable in the
intraoperative identification of PTC nodal metastases [75–83]. This could permit to perform a therapeutic
CLND, that is based on the objective presence of lymph node metastases, hopefully improving the
disease-free survival rate, reducing the locoregional recurrence incidence, and avoiding potential
overtreatment of these patients.

There is a consensus among the studies in the literature that the OSNA technique is effective in the
identification of lymph node metastases from PTC, with an optimal value of sensitivity, ranging from
87.5% to 89%, specificity, ranging from 86% to 94.4%, and a concordance rate with a standard
histological evaluation of more than 90% [75–83].

However, its effectiveness in reducing the recurrence rate has yet to be evaluated, as none of the current
studies exploit this aspect. Furthermore, the use of OSNA in thyroid cancer is still “off label”, thus further
studies should define a standardized utilization, other than evaluating the cost-effectiveness.

5 Intraoperative Neuromonitoring

RLN injury is the most well-known complication of thyroid cancer surgery. It accounts for
approximately 20% of all postoperative complications of thyroid surgery; it can be transient or definitive,
unilateral or bilateral, with a total incidence in total thyroidectomy of approximately 4%–6% [84,85].

Unilateral vocal cord paralysis, arising from unilateral RLN injury, can present with symptoms such as
dysphonia, aspiration, dysphagia, ineffective cough, and difficulty with maneuvers requiring glottic closure
such as lifting. Voice changes may be significant enough to result in a change in vocation, or may be
asymptomatic, making it difficult to correctly estimate the incidence of RLN injury [86,87].

Bilateral vocal cord paralysis has been described by Lahey as a “serious surgical calamity”, mainly due
to the risk of needing to secure the airway surgically with a tracheostomy; overall, 50% of patients with
bilateral vocal cord paralysis require acute airway intervention [88,89].

Visual identification of the RLN is considered the gold standard in the prevention of nerve injury during
thyroid surgery [88,90,91]. In recent decades, the introduction of intraoperative neuromonitoring (IONM)
has opened new perspectives for the study and preservation of the RLN. This is of relevance in the case
of advanced thyroid cancer with local infiltration of the RLN; in fact, nerves invaded with malignancy
may maintain electric stimulability. Numerous reports, as well as surgical guidelines, suggest that IONM
is necessary for the optimal management of RLN invasion by malignant disease [87,90,92–94].

IONM can be distinguished into intermittent (I-IONM) and continuous (C-IONM).

I-IONM utilizes a stimulation probe to perform nerve stimulation during thyroidectomy;
electromyography (EMG) activity is then shown on a screen, which provides useful information
regarding nerve functionality [90]. Herein we report the recommendations of the International Neural
Monitoring Study Group (INMSG) regarding the basic equipment and the standard procedure for
performing IONM [95]:

“The basic equipment include the recording electrodes connected to the endotracheal tube to place in
contact with the bilateral vocal fold, the neural stimulating electrodes to stimulate the external branch of
superior laryngeal nerve, the Vagus nerve, and the recurrent laryngeal nerve during thyroid surgery. The
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standard procedure for performing IONM should include the laryngeal examination before and after surgery
(L1-L2), stimulating the superior laryngeal nerve before and after upper thyroid pole dissection (S1-S2), and
stimulating the vagus nerve and recurrent laryngeal nerve before and after the dissection”.

I-IONM contributes to RLN protection in several ways, allowing early and definite localization of the
RLN and confirming the actual identification of the RLN (preventing visual RLN misidentification).
However, I-IONM has relevant limitations. With I-IONM, assessment of the functional integrity of the
RLN is limited to the short time interval of direct nerve stimulation. Moreover, with I-IONM the integrity
of the laryngeal nerve is assessed only at the site of direct nerve stimulation: for proximal neurogenic
lesions of the RLN, distal stimulation near the larynx may produce a false negative, “normal”, IONM
signal [96,97].

The actual usefulness of I-IONM is still a matter of debate in the literature. Some authors suggest that
routine I-IONM does not decrease unilateral RLN injuries, both transient and permanent, compared with
visualization alone [90,91,98], while others report a lower incidence of transient vocal cord paralysis
following RLN injury when I-IONM is utilized, particularly in high-risk surgery, such as reinterventions
and advanced thyroid cancers [99–101]. As reported by Barczyński et al. [102] in 2011, the use of IONM
in thyroid cancer surgery decreased the risk of RLN injury by 3.7%, including a 3% drop in the risk of
transient damage and a 0.7% drop in the risk of permanent damage. The improvement of these outcomes
was accompanied by a significant increase in the radicality of thyroid tissue resection in the group
operated on with IONM as assessed by postoperative 131I uptake, and the percentage of patients with
iodine uptake below 1% increased when IONM was employed by as much as 45% [90,102].

A 2019 Cochrane library meta-analysis found no difference in transient or permanent RLN injury
following thyroidectomy performed either with or without I-IONM [103]. Similar results were obtained in
a 2016 meta-analysis performed by Lombardi et al. [98], which found no difference in terms of RLN
injury when I-IONM was utilized.

Against that, Yang et al., in their 2017 meta-analysis highlighted a lower incidence of transient RLN
lesions when I-IONM was performed, although no difference in terms of permanent injury was found [99].

Some authors suggested that I-IONM could be an educational adjunct. Younger, less experienced
surgeons have outcomes equivalent to experienced surgeons if they use IONM during their learning
curve; IONM has been shown to lower the incidence of permanent RLN palsy in the hands of low-
volume surgeons [104,105].

Moreover, Sari et al. [106] showed that I-IONM decreases the operative time compared to visualization
alone by shortening the time needed to identify the RLN [104,106,107].

To overcome the I-IONM limits, continuous IONM technology has been proposed. This technology
comprises automatic periodic stimulation of the vagus nerve with an electrode placed on the vagus nerve
between the common carotid artery and internal jugular vein and an automatic software-based assessment
of changes in EMG amplitude during surgery, providing permanent visual and acoustic feedback to the
surgeon of the current RLN conductivity and allowing continuous evaluation of the RLN [96,108–112].

Continuous IONM demonstrated a statistically significant difference in terms of permanent RLN lesions
in a retrospective analysis conducted by Schneider et al. [113], in which there were no cases of permanent
lesions in the C-IONM group, whereas four cases of permanent injury were noted in the I-IONM group
[111,113].

Notably, Terris et al. [114] reported that C-IONM might cause serious patient harm (i.e., hemodynamic
instability and reversible vagal neuropraxia) attributable to the monitoring apparatus and the manipulations
of the vagus nerve, although it is important to highlight that these are extremely rare complications [114].
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While the usefulness of I-IONM in preventing unilateral RLN lesions is still uncertain, the
implementation of recent protocols in the case of unilateral loss of signal (LOS) while utilizing IONM,
either I-IONM or C-IONM, has made it possible to reduce the risk of bilateral RLN injury to nearly zero,
introducing the so-called “two-stage thyroidectomy”, by which we mean the postponement of resection of
the contralateral side due to LOS during resection of the first thyroid lobe [86,87,104,115–118].

The INMSG has classified nerve injury into two categories: segmental injury (Type I), which involves a
clear-cut RLN segment that is lesioned; and global injury (Type II), where the entire RLN and vagus nerve
are nonconductive, indicating an intralaryngeal focus of injury [107,119,120].

The INMSG guideline 2018 on Staging Bilateral Thyroid Surgery with LOS, recommend [86]:

1. That neural monitoring information should be obtained and utilized in the strategy of a planned
bilateral procedure by staging the surgery in the setting of ipsilateral LOS. This algorithm should
be shared and discussed with the patient during the preoperative informed consent process.

2. The INMSG feels a surgeon should prioritize concern for the obvious significant medical and
psychological morbidity of bilateral VCP and possible tracheotomy (even temporary) over
perceived surgical convenience, the routine of doing the “planned procedure” or the potential
perceived impact on surgical reputation by openly acknowledging the surgical complication of
ipsilateral loss of signal. The full benefit of neural monitoring information in this surgical setting
is appreciated through both optimization of the patient’s quality of life and surgical cost.

As IONM use in thyroid surgery increased, surgical residency programs have begun including IONM
courses in their core curricula. The training evolution for implementation of basic and advanced IONM
system (IONM needs, stages and benefits) will improve the surgical residency and surgeon’s practice and
maturity of autonomous IONM operations [95].

There is unanimous agreement that when thyroid surgery is performed using IONM it is necessary to
give the patient adequate informed consent, which fully explains the various possibilities described in the
case of LOS [121].

The implementation of this protocol has made it possible to virtually eliminate the possibility of bilateral
RLN injuries and represents the major advantage of IONM.

6 Conclusions

The past few decades have seen a dramatic improvement in the available technologies for thyroid cancer
surgery, aiming for a lower complication incidence and an improvement in patient quality of life. Although
the real usefulness of some of these techniques has yet to be proven, such as fluorescence techniques and the
intraoperative study of lymph node metastases with the OSNA technique, there is no doubt that the use of
EBD and IOMM has brought considerable advantages in the treatment of these malignancies.
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