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Abstract: With the increase of software complexity, the security threats faced by 
the software are also increasing day by day. So people pay more and more 
attention to the mining of software vulnerabilities. Although source code has rich 
semantics and strong comprehensibility, source code vulnerability mining has been 
widely used and has achieved significant development. However, due to the 
protection of commercial interests and intellectual property rights, it is difficult to 
obtain source code. Therefore, the research on the vulnerability mining technology 
of binary code has strong practical value. Based on the investigation of related 
technologies, this article firstly introduces the current typical binary vulnerability 
analysis framework, and then briefly introduces the research background and 
significance of the intermediate language; with the rise of artificial intelligence, a 
large number of machine learning methods have been tried to solve the problem of 
binary vulnerability mining. This article divides the current related binary 
vulnerabilities mining technology into traditional mining technology and machine 
learning mining technology, respectively introduces its basic principles, research 
status and existing problems, and briefly summarizes them. Finally, based on the 
existing research work, this article puts forward the prospect of the future research 
on the technology of binary program vulnerability mining. 

Keywords: Binary; vulnerability mining; stain analysis; symbolic execution; 
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1 Introduction 
With the rapid development of the Internet, computers have been integrated into our daily lives, and 

computer software has brought great convenience to our lives. Taking software business as an example, 
the data [1] released by the Ministry of Industry and Information Technology shows that in 2020, there 
will be more than 40,000 enterprises above designated size in the software and information technology 
service industry across the country. The areas involved include daily office, life services, digital finance 
and many other categories. However, Exploitable vulnerabilities pose a potential threat to the safe 
operation of computer systems and affect user information security. 

Security vulnerabilities [2] refer to defects that occur intentionally or unintentionally in the process 
of demand, design, implementation, configuration and operation of information technology, information 
products, and information systems. Once these deficiencies are used by malicious entities, they will affect 
the operation of normal services built on the information system, and cause serious damage to the 
confidentiality, integrity and availability of the information system. Therefore, the study of security 
vulnerabilities is one of the core contents of cyberspace security research. 
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Although propelled by the rapid development of programming language design and program analysis, 
the source code-oriented software vulnerability mining technology has made significant progress [3], but 
there are still some shortcomings. First, out of the protection of commercial interests and intellectual 
property rights, many businesses have not disclosed the source code of the program. Second, the source 
code will eventually be compiled into binary code. Loopholes may also occur in the process of compiling 
the source code. These vulnerabilities are difficult to detect at the source code level. Vulnerability mining 
research for binary code does not need to understand the compilation process of the source code, or even 
the source code of the program and its language.  

With the increase in software complexity, the traditional vulnerability mining methods face high 
labor costs, path explosion and other issues have become increasingly prominent. Machine learning relies 
on its powerful ability to analyze code data to achieve automated research on security vulnerabilities. 
Therefore, it has gradually been widely used in binary vulnerability mining. 

2 Binary Code Vulnerability Analysis Framework 
In terms of vulnerability mining, although many more mature methods have been developed, these 

methods are often used alone and cannot fully combine the advantages of different methods. With the 
improvement of computer performance, it becomes possible to integrate various excellent vulnerability 
analysis techniques into a unified framework. Within the same framework, the complementary advantages 
of technology can be well formed, and the experimental data can be saved. There are existing binary 
vulnerability analysis frameworks. 

2.1 Angr Framework 
The angr binary analysis framework [4] includes the following modules: Intermediate representation 

module (IR), which translates binary codes into intermediate language. Binary program load module 
(CLE), which loads a binary program into the analysis platform. Program state representation module 
(SimuVEX), which represents the state of the program, these states can be specified by the user. The data 
model module (Claripy) provides an abstract representation for the value stored in the SimState register or 
memory. The flow chart of angr processing is shown in Fig. 1. 

 

Figure 1: The processing flow of the angr framework 

Although the angr framework supports cross-platform and cross-architecture, it has good 
compatibility, and has greatly improved analysis capabilities by introducing a powerful symbolic 
execution engine. However, angr still needs manual assistance for subsequent analysis because it only 
provides the path information of the program, and has not integrated other more typical analysis 
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techniques. At present, it is not possible to conduct a complete vulnerability analysis. Therefore, angr 
needs further research in automation and integration of other analysis technologies. 

2.2MBVA Framework 
MBVA is a binary program vulnerability analysis tool, which checks program specifications through 

a combination of abstract program modeling and model checking, so as to accurately detect and analyze 
the vulnerabilities in binary programs. The flow chart of MBVA framework is shown in Fig. 2. 

 
Figure 2: The processing flow of the MBVA framework 

3 Background and Significance of Intermediate Language Research 
Vulnerability analysis technology for binary programs has the difficulty of complex underlying 

instruction set and lack of corresponding semantic and type information. Researchers proposed to use 
intermediate language [5] to represent binary codes. This method is to convert binary codes into 
intermediate codes with semantic information to facilitate subsequent analysis and research. After 
analyzing the intermediate language with rich semantic information, we can obtain the required program 
CFG diagram, and then obtain the information flow of the program. Therefore, obtaining the intermediate 
language translated from the binary code is of great significance to the follow-up work. 

There are currently some methods and tools used to convert binary to intermediate language. Jiang et al. 
[6] proposed an intermediate representation method called VINST, which follows the basic principle of 
keeping the frequently executed parts efficient and keeping other parts correct. This method is relatively 
simple in form but very inefficient. Zhang et al. [7] developed the dynamic binary translation technology 
TCG, which uses basic blocks as the translation unit to translate binary codes. The dynamic translator will 
cache the translation and optimization results, which can provide more space for dynamic translation.  

However, the current vulnerability analysis technology based on intermediate language also faces 
some problems. Some information may be lost in the process of translation into an intermediate language. 
The intermediate language translates one instruction into several instructions, which may reduce 
efficiency. Regarding the efficiency and accuracy of the translation process, firstly, you can set translation 
rules to delete redundant and redundant segments. Secondly, try to ensure the integrity of semantic 
information during the deletion process. 

4 Traditional Binary Vulnerability Analysis Technology 
There are many existing traditional binary vulnerability analysis techniques [8]. For example, from 

the perspective of software operation, it can be divided into dynamic analysis, static analysis, and 
dynamic and static analysis; from the perspective of openness of software code, it can be divided into 
black box testing, white box testing and gray box testing; from the perspective of the research object form, 
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it can be divided into Intermediate language and vulnerability analysis technology based on the 
underlying instruction set. Among the typical technologies are stain analysis, symbolic execution and 
fuzzing testing. These three technologies almost cover these classification standards. 

4.1 Stain Analysis Technology 
Stain analysis was first proposed by Denning [9] in 1976. At present, taint analysis techniques are 

widely used in information leakage detection, vulnerability detection, and reverse engineering. The taint 
analysis technology marks the data in the system or application as tainted or non-stained. When the 
tainted data can affect the non-stained data according to the information flow dissemination strategy, the 
label of the non-stained data is modified as a tainted. When the tainted label is finally propagated along 
with the data to the designated storage area or information leakage point, it is considered that the program 
has a security risk. The treatment process of stain analysis technology can be divided into three stages: 
identification of stain source, stain propagation analysis, and harmless treatment. The basic process is 
shown in Fig. 3. 

 

Figure 3: The process of stain analysis 

Static stain analysis mainly uses methods such as lexical and grammatical analysis to analyze the 
data and control dependencies between variables offline. During this process, neither the target program is 
run nor the code needs to be modified. However, because the target program is not run and additional 
information cannot be obtained when the program is running, static stain analysis technology still has the 
problem of insufficiently accurate analysis results. 

The principle of dynamic taint analysis technology is to mark data from untrusted sources, track and 
record its propagation process during program execution, and detect the illegal use of tainted data to 
achieve the purpose of detecting vulnerabilities. 

Dynamic binary instrumentation analysis focuses on the real behavior of the program when it is 
running. It directly monitors the process during program execution and inserts the instruction stream on 
the basis of not destroying the original logic of the target program. Taking the Pin [10] platform as an 
example, the dynamic binary instrumentation framework is shown in Fig. 4. 
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Figure 4: The dynamic binary instrumentation framework 

4.1.1 Research Status 
There are already many tools that use taint analysis techniques to mine binary vulnerabilities. Dong 

et al. [11] proposed a dynamic taint analysis system ODDTA for binary vulnerability mining. The system 
expands the taint status definition in the taint identification process, and refines the taint status attributes 
defined in the taint marking process. In the taint detection stage, the security detection rules are further 
expanded, and different response strategies are designed according to the different levels of the security 
rules. Yin et al. [12] proposed an extended platform TEMU based on the QEMU virtualizer. TEMU uses 
a system-wide perspective to analyze the interaction between activities in the kernel and multiple 
processes, and conduct in-depth analysis in a fine-grained manner. 

In order to overcome the shortcomings of dynamic stain analysis and static stain analysis, some 
researchers have combined the two. This analysis method can not only compensate for the loss of 
information caused by insufficient path coverage in dynamic analysis, but also provide some accurate 
operating information that cannot be obtained by static analysis. 

4.1.2 Existing Problems 
(1) Implicit flow analysis problem 
The core problem faced by static implicit flow analysis is that accuracy and efficiency cannot be 

achieved at the same time. Path-sensitive data flow analysis tends to cause path explosion problems, 
resulting in unacceptable overhead. In order to reduce the cost, a simple method of statically propagating 
the taint of branch statements is to mark all the statements whose control depends on it. However, this 
method will cause some variables that do not carry private data to be marked, leading to the occurrence of 
excessive pollution. 

The primary concern of dynamic implicit flow analysis is how to determine the range of sentences 
that need to be marked under taint control conditions. Current research mostly uses offline static analysis 
to assist judgment. Clause et al. [13] proposed to use the post-dominate relationship between control flow 
graph nodes obtained by offline static analysis to solve the implicit flow labeling problem in dynamic 
taint propagation. The second problem is the underreporting of potential security issues due to the leakage 
of some tainted information. Vogt et al. [14] added offline static analysis on the basis of traditional 
dynamic taint analysis to track the control dependency in the dynamic execution process and mark the 
variables in all assignment statements within the control range of the taint branch. But there will still be 
pollution. The third problem is how to choose the appropriate taint marking branch for taint propagation. 
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The selection strategy of the taint marking branch can be designed quantitatively according to the 
different scope of information leakage.  

(2) The problem of lack of semantic information 
Because the binary code lacks necessary semantic and type information, the application of dynamic 

stain analysis technology in binary program analysis is limited. Zhuge et al. [15] proposed dynamic stain 
analysis technology based on type perception and symbolic execution technology oriented to type variables. 
This technology promotes dynamic stain analysis in binary program analysis to variable granularity. 

(3) Analyze overhead problem 
The operating efficiency of dynamic stain analysis directly affects user experience. Therefore, it is 

necessary to reduce the cost of analysis as much as possible. One of the current solutions is to selectively 
control the number of instructions that need to be tainted, and combine other means to achieve better 
optimization results. 

4.2 Symbolic Execution Technology 
The idea of symbolic execution was first proposed by King et al. [16] in 1975. Its basic principle is 

to use abstract symbols to replace program variables. The output of program calculations is expressed as a 
function of input symbol values, and the execution space of the program is traversed according to the 
semantics of the program, so as to carry out relevant analysis. Symbolic execution, as an important formal 
method and software analysis technique, plays an important role in software testing and program 
verification, and can be applied to program vulnerability detection [17]. When performing vulnerability 
analysis on a binary program through symbolic execution, it is first necessary to obtain the intermediate 
representation of the program. Then perform symbolic execution and constraint solving to obtain the 
vulnerability analysis result. The analysis process is shown in Fig. 5. 

 

Figure 5: The process of symbolic execution 

Symbolic execution can be divided into classic symbolic execution and dynamic symbolic execution. 
The classical symbolic execution is based on the analytical procedure, and the execution is simulated by 
the symbolic value. Due to the lack of program dynamic runtime information in the classic symbols, 
program execution is difficult to be fully simulated, and the analysis is not accurate enough. To solve this 
problem, related researchers have proposed dynamic symbolic execution technology. Dynamic symbolic 
execution combines the advantages of specific execution and classic symbolic execution, which improves 
the accuracy of analysis. 
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4.2.1 Research Status 
Symbolic execution was proposed in the 1970s [18]. After a period of development, Bush et al. [19] 

proposed a vulnerability mining tool Prefix based on static symbolic execution, which uses path 
sensitivity and process analysis to improve the accuracy rate. So symbolic execution technology can be 
applied in the field of vulnerability mining. 

The static symbolic execution technology is difficult to be completely simulated due to its lack of 
relevant information when the program is dynamically running. The analysis is not accurate enough. To 
solve this problem, researchers proposed to use dynamic symbolic execution for vulnerability analysis. 
Since the dynamic symbolic execution technology [20] was proposed, it has been widely used in the field 
of vulnerability mining and has produced many related projects and tools, such as KLEE [21], Mayhem 
[22], SAGE [23–24], S2E [25], etc. Among them, KLEE was developed by Cadar [21]. It is an open 
source tool that uses symbolic execution technology to construct program test cases. While analyzing the 
program to construct test cases, it also uses symbolic execution and constraint solving techniques at key 
program points. Analyze the value range of the symbol. If it is found that the value of the symbol cannot 
meet the safety regulations during the analysis, it is considered that there is a corresponding loophole in 
the program. 

Researchers have also developed many tools for vulnerability analysis at the binary code level, such 
as BitBlaze [26], SmartFuzz [27], etc. BitBlaze [26] is a binary analysis platform, which integrates 
mainstream binary analysis techniques, among which Vine, TEMU and Rudder correspond to static 
analysis, dynamic analysis, and dynamic symbolic execution functions. SmartFuzz [27] is a tool based on 
the Valgrind binary instrumentation platform, which can be used to find integer vulnerabilities in binary 
programs under Linux systems. 

4.2.2 Existing Problems 
(1) Path explosion problem 
The path explosion problem is the main factor restricting the application of symbolic execution in 

real-world program analysis. Because in the analysis process of symbolic execution, at each branch node, 
symbolic execution will derive two symbolic execution instances, and the number of program branch 
paths increases exponentially with the number of program branches. The main ideas to alleviate the path 
explosion problem are as follows: 

1) Use heuristic search method to search the program path space. Sen et al. [28] used a hybrid 
random symbol search strategy in CUTE and jCUTE to improve the breadth and depth of the test.  

2) State consolidation. In 2014, Avgerinos et al. [29] proposed the concept of Veritesting, which 
reduces the state space of the program through state fitting and improves the usability of dynamic 
symbolic execution. 

3) Redundant path pruning. In the process of program analysis, some paths are redundant. The 
redundant paths are determined through analysis and pruned. The challenge is that the judgment of 
redundant paths is more complicated, it is difficult to judge them comprehensively. The misjudgment of 
redundant paths may lead to the final analysis of the target.  

(2) Constraint solving problem 
The efficiency of symbolic execution in program analysis largely depends on the efficiency of 

constraint solving. The core problem of constraint solving is to convert the arithmetic constraints of path 
conditions into basic solver problems. 

1) Non-linear integer constraints often make path conditions unsolvable, and the solvability of 
constraint sets with nonlinear constraints is generally undecidable [30]. 

2) The solver cannot handle the external library function calls included in the path constraint 
conditions [31]. 

Researchers have also proposed some optimization methods for constraint solving: irrelevant 
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constraint elimination technology and cache solution strategy [20].  
1) Elimination of irrelevant constraints. The purpose of irrelevant constraint elimination is to reduce 

the number of constraint items through analysis. The reason is that a program branch usually only 
depends on a small part of the program variables, and the program variables that the branch depends on 
may be independent of the variables contained in other constraints on the path.  

2) Cache solution strategy. The constraint information between adjacent executions is only slightly 
different, so theoretically, there are only minor differences in the solution results. Ramos et al. [32] 
proposed a lazy constraint solution strategy in 2015. The core idea is that only when the branch judgment 
reaches the target location, the query solver verifies the reachability of the path and generates test cases. 

4.3 Fuzzing Technology 
Fuzzing technology was first proposed by Miller et al. [33] in 1989. Fuzzing is an automatic 

software testing technology based on defect injection. It uses a large amount of semi-valid data as the 
input of the application, and uses the abnormality of the program as a sign to discover possible security 
vulnerabilities in the application. 

The workflow of fuzzing [8] roughly goes through three basic stages. The preprocessing stage 
collects target-related information and develops a fuzzing test strategy to make necessary preparations for 
monitoring the running status of the target in the test. After entering a data link to obtain a large amount 
of data in the testing phase, filter the data through the input selection link to filter out invalid input data. 
The judgment part is mainly to design appropriate experiments and evaluate and judge the fuzz test 
according to the end conditions. The workflow of the fuzzing test is shown in Fig. 6. 

 

Figure 6: The workflow of the fuzzing test 

According to the magnitude of the analysis of the internal structure of the program, the fuzz testing 
technology can be divided into white box, black box, and gray box fuzz testing. Divided by the way of 
sample generation, the test input of fuzz testing can be divided into two ways: mutation-based and 
generation-based [8]. The mutation-based fuzzing method uses the technology of mutating existing data 
to create new test cases. The generation-based fuzzing method is to generate test cases from scratch by 
modeling the specific program to be tested. 

4.3.1 Research Status 
Fuzzing can be traced back to 1989, and its main purpose was to try to use unconventional data to 

detect the robustness of the target. In 1999, the protocol testing project team of the University of Oulu in 
Finland developed the network protocol security testing software PROTOS [34], which used the gray-box 
testing method and applied the fuzzing test to the test of the network protocol for the first time.This is the 
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beginning of fuzzing technology as a practical tool. 
In 2004, IOACTIVE released the famous cross-platform fuzzing framework Peach [35], which can 

fuzz test almost all common objects, such as file structure, network protocol, API interface, etc. Peach can 
manually define the data model used to generate input data by the user. It is an early application of the 
idea of generating input based on grammar. In the same year, Dave released the open source fuzzer 
SPIKE [36], which implements a block-based method and has the ability to describe variable-length data 
blocks. In 2008, Godefroid [37–38] of Microsoft Research introduced the idea of white box testing in the 
fuzzing method, and at the same time applied symbolic execution and constraint solving methods to the 
fuzzing test, which improved the coverage of the fuzzing test. 

In response to the limitations of fuzz testing when encountering checksum protection mechanisms, in 
2010, Wang of Beijing University [39] combined symbolic execution and fine-grained dynamic stain 
propagation technology. He proposed a method to bypass verification and developed the corresponding 
tool TaintScope. Remove the obstacles for the application of fuzz testing to find deep vulnerabilities. 
American fuzzy lop (AFL) [40] fuzzing tool that appeared in 2013 is a gray box fuzzing test that uses a 
small amount of internal information to carry out fuzzing ideas. AFL is a coverage-oriented fuzzing 
testing tool. Through the method of instrumentation, the edge coverage corresponding to the input data is 
collected as a measure of the selection of the fuzzing test seed. 

4.3.2 Existing Problems 
(1) Optimization problem of test case generation strategy 
Traditional fuzzing tests often blindly mutate a certain part of normal test cases when generating test 

cases, which causes the scale of test cases to explode and the test effect is bad. The current improvement 
methods are:  

1) The introduction of annealing genetic algorithm [41–42] to improve the test rules, so that the 
smallest set of test cases can cover the largest code execution path, in order to discover those hidden 
software vulnerabilities.  

2) You can also consider combining fuzz testing with other binary vulnerability analysis techniques 
to learn from each other. 

(2) The degree of automation needs to be improved 
Fuzzing is a blind injection method, which often requires manual participation in determining the 

constraints of input data and generating test cases, which affects its practical value. Therefore, the focus 
of current research is mostly on automated and intelligent fuzzing testing methods. On the one hand, 
genetic algorithms can still be considered to improve the degree of automation of testing. On the other 
hand, with the rapid development of machine learning, if you find a suitable combination of the two, you 
can maximize the advantages of the two. 

5 Machine Learning Technology 
Machine learning [43] refers to the study of computer simulations or the realization of human 

learning behaviors in order to acquire new knowledge or skills, and reorganize the existing knowledge 
structure to continuously improve the performance of the computer system itself. In recent years, with the 
rapid development of machine learning, researchers have begun to use machine learning techniques to 
alleviate some bottlenecks in the field of software vulnerability mining. Through the use of machine 
learning technology, help corresponding vulnerability mining tools to train massive vulnerability data and 
generate models to classify and predict samples. Finally, improve the accuracy and efficiency of software 
vulnerability mining. 

In machine learning, first, the data acquisition module collects a large amount of software 
program-related data used for training and evaluation, and applies them to the training phase and the 
detection phase respectively. Experiment [44] shows that: in the software defect prediction method based 
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on machine learning, data preprocessing is more important than the choice of classifier. Therefore, in the 
training phase, the training data set needs to be balanced and preprocessed through a series of sampling 
methods. In the model training module, the vector obtained from the data characterization module is used 
as input, and the feature expression extracted by the model is used as output. After several trainings, a 
classifier model for the detection stage is obtained. In the detection phase, the target code data set is first 
characterized by the same method. Then, the vector obtained by the characterization is sent to the 
classifier model obtained in the training phase to obtain the classification or prediction result of the target 
code. Finally, evaluate and tune the model. The basic process of machine learning is shown in Fig. 7. 

 

Figure 7: The basic process of machine learning 

5.1 Research Status 
In recent years, researchers have conducted in-depth research on the principles and conditions of 

loopholes, and used machine learning algorithms to mine loopholes, and achieved good results. The work of 
using machine learning to mine software vulnerabilities can be divided into the following categories [45]. 

(1) Vulnerability prediction based on software measurement 
Software measurement [46] is a process of continuous quantitative analysis of products in the 

software development process. Software metrics are quantitative representations of specific software 
attributes, including metrics such as complexity, coupling, and cohesion. The software measurement 
method only needs to use the software measurement as the feature set, and then use the supervised 
learning method in machine learning to train the model to predict the vulnerabilities of the software 
component. 

(2) Vulnerability prediction based on anomaly detection 
Anomaly detection refers to the process of discovering data that does not conform to normal 

behavior patterns. In 2010, Gruska et al. [47] proposed a cross-project anomaly detection model, which 
extracts all possible function call sequences and related information in a specified function, and finally 
establishes a finite automata model of the function. In 2013, Yamaguchi et al. [48] proposed a system that 
combines machine learning and static code analysis to check for missing checks in the source code. By 
using the nearest neighbor technology to find the neighbors of the specified function, then map the 
function and its neighbor functions to the vector space, calculate the vector center after the mapping, and 
mark the function far from the center as anomalies. Its advantage is that it can automatically find software 
vulnerabilities caused by improper use of API and logic vulnerabilities caused by neglected conditions 
and missing inspections. 

(3) Vulnerability prediction based on vulnerability pattern recognition 



175                                                                      JIHPP, 2021, vol.3, no.4                                                                                                                                              
 

Use machine learning methods to extract vulnerable code patterns from vulnerable code samples, 
and then use pattern matching technology to detect and locate vulnerabilities in software. In 2012, 
Yamaguchi et al. [49] used information retrieval technology to propose a vulnerability extraction method 
to assist software security audits. Two years later, Yamaguchi et al. [50] merged the concepts of abstract 
syntax tree, control flow graph and program dependency graph in classic program analysis into a code 
attribute graph, and then carried out vulnerability modeling in the form of graph traversal. 

In 2014, Pewny [51] first proposed a preliminary study of using text analysis techniques to predict 
vulnerable software components. In 2017, Young et al. [52] proposed a deep learning-based assembly 
code representation method. Based on Word2Vec, they proposed an Instruction2vec method suitable for 
assembly instruction vector representation, and then adopted a convolutional neural network model and 
loop the neural network model is used to predict software defects, and the results show that the effect is 
very good. 

Now, most of the research is on source code, and only a few are on binary software. Binary program 
function recognition is the basis of binary analysis. However, because the binary code lacks information 
in high-level language programs, it is often difficult to recognize functions. Bao proposed the ByteWeight 
scheme, which uses machine learning algorithms to realize the recognition of binary program functions. 
First, a weighted prefix tree is used to learn the signature of the function, and the function is identified by 
the way the signature matches the binary fragment. Then, the value set analysis and incremental control 
flow recovery algorithm are used to realize the identification of the function boundary.  

5.2 Existing Problems 
(1) Data collection 
To apply machine learning to vulnerability mining, we must first build a unified and standardized 

vulnerability data set. Only a normative data set can scientifically evaluate existing research in an 
all-round way. However, there is currently no publicly available vulnerability data set that can be used as 
a benchmark. For binary programs, since they do not contain syntactic and semantic information, they 
often need to be converted into intermediate language before using machine learning models for training. 
Therefore, to introduce machine learning into the vulnerability mining of binary programs, an open and 
capable intermediate language data set containing relevant semantic information needs to be established. 

(2) Feature selection 
For machine learning models, how to select features that can fully represent the data set is the key to 

constructing a model with superior performance. This requires comprehensive consideration of the model 
itself, vulnerability information, and program operating environment. In a binary program, static features 
can be obtained from call graphs, control flow graphs, data flow graphs, etc., but there is a problem of a 
large amount of calculation for the established graph-based structure. Dynamic features can be executed 
by instrumentation to track actual function calls and the method of calling parameters is captured, but the 
overhead of instrumentation is also very large. It may even affect the space layout of the memory when 
the program is actually executed. 

(4) Model selection 
The application of machine learning to vulnerability research, especially the vulnerability mining of 

binary programs, is still in its infancy. How to use the powerful performance of the machine learning 
model to conduct vulnerability mining and vulnerability assessment is a difficult problem. Some machine 
learning models are often only suitable for specific scenarios, and even in the same scenario, the effects of 
different models will be quite different. 

6 Expectation 
In future research, mature technologies can be combined to build a comprehensive binary 

vulnerability mining platform, so as to analyze the vulnerabilities in binary programs. (1) When directly 
exploiting vulnerabilities in the binary code, build a corresponding binary information database for 
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subsequent analysis; (2) When using an intermediate language for vulnerabilities mining, ensure that the 
binary information is complete. (3) Before analyzing the program using taint analysis, symbolic execution 
and fuzzing testing, machine learning can be used to pre-train the data and generate models to guide the 
generation of high-quality test input samples. (4) Using taint analysis technology to track the bytes that 
affect the conditional branch in the test input to reduce the number of paths; At the same time, it combines 
symbolic execution technology and fuzz testing to conduct vulnerability mining. The process of binary 
vulnerability analysis framework is shown in Fig. 8. 

 
Figure 8: Binary vulnerability analysis framework process 

7 Conclusion 
Vulnerability mining is an emerging topic. Due to its complexity, it usually requires a combination 

of multiple fields and multiple technologies for research. In the future, it is a relatively important research 
direction to combine various vulnerability mining technologies and learn from each other to make up for 
the shortcomings faced by a single vulnerability analysis technology.  

This article summarizes the current research status of binary vulnerability mining by investigating 
the current typical binary vulnerability analysis framework, as well as introducing the principle, current 
situation and existing problems of traditional binary code vulnerability mining technology and machine 
learning vulnerability mining technology. Finally, a binary vulnerability analysis framework combining 
traditional techniques and machine learning is proposed. 
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