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ABSTRACT

Gorilla troops optimizer (GTO) is a newly developed meta-heuristic algorithm, which is inspired by the collective
lifestyle and social intelligence of gorillas. Similar to other metaheuristics, the convergence accuracy and stability of
GTO will deteriorate when the optimization problems to be solved become more complex and flexible. To overcome
these defects and achieve better performance, this paper proposes an improved gorilla troops optimizer (IGTO).
First, Circle chaotic mapping is introduced to initialize the positions of gorillas, which facilitates the population
diversity and establishes a good foundation for global search. Then, in order to avoid getting trapped in the local
optimum, the lens opposition-based learning mechanism is adopted to expand the search ranges. Besides, a novel
local search-based algorithm, namely adaptive β-hill climbing, is amalgamated with GTO to increase the final
solution precision. Attributed to three improvements, the exploration and exploitation capabilities of the basic
GTO are greatly enhanced. The performance of the proposed algorithm is comprehensively evaluated and analyzed
on 19 classical benchmark functions. The numerical and statistical results demonstrate that IGTO can provide
better solution quality, local optimum avoidance, and robustness compared with the basic GTO and five other well-
known algorithms. Moreover, the applicability of IGTO is further proved through resolving four engineering design
problems and training multilayer perceptron. The experimental results suggest that IGTO exhibits remarkable
competitive performance and promising prospects in real-world tasks.
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1 Introduction

Optimization refers to the process of searching for the optimal solution to a particular issue
under certain constraints, so as to maximize benefits, performance and productivity [1–4]. With
the help of optimization techniques, a large number of problems encountered in different applied
disciplines could be solved in a more efficient, accurate, and real-time way [5,6]. However, with
the increasing complexity of global optimization problems nowadays, conventional mathematical
methods based on gradient information are challenged by high-dimensional, suboptimal regions,
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and large-scale search ranges that cannot adapt to the real requirements [7,8]. The development of
more effective tools to settle these complex NP-hard problems is an indivisible research hotspot.
Compared to traditional approaches, meta-heuristic algorithms (MAs) are often able to obtain the
global best results on such problems, which is attributed to the merits of their simple structure,
ease of implementation, as well as strong capability to bypass the local optimum [9,10]. As a
result, during the past few decades, MAs have entered the blowout stage and received major
attention from worldwide scholars [11–13].

MAs find out the optimal solution through the simulation of stochastic phenomena in
nature. Based on the different design concepts, the nature-inspired MAs may be generally classi-
fied into four categories [14–16]: evolution-based, physical-based, swarm-based, and human-based
algorithms. Specifically, evolutionary algorithms emulate the laws of Darwinian natural selection
theory, and some well-regarded cases of which are Genetic Algorithm (GA) [17], Differential
Evolution (DE) [18], and Biogeography-Based Optimization (BBO) [19]. Physical-based algo-
rithms simulate the physical phenomenon of the universe such as Simulated Annealing (SA) [20],
Multi-Verse Optimizer (MVO) [21], Thermal Exchange Optimization (TEO) [22], Atom Search
Optimization (ASO) [23], and Equilibrium Optimizer (EO) [24], etc. Swarm-based algorithms
primarily originate from the collective behaviours of social creatures. A remarkable embodiment of
this category of algorithms is Particle Swarm Optimization (PSO) [25], which was first proposed
in 1995 based on the foraging behaviour of birds. Ant Colony Optimization (ACO) [26], Chicken
Swarm Optimization (CSO) [27], Dragonfly Algorithm (DA) [28], Whale Optimization Algorithm
(WOA) [29], Spotted Hyena Optimizer (SHO) [30], Emperor Penguin Optimizer (EPO) [31],
Seagull Optimization Algorithm (SOA) [32], Harris Hawks Optimization (HHO) [33], Tunicate
Swarm Algorithm (TSA) [34], Sooty Tern Optimization Algorithm (STOA) [35], Slime Mould
Algorithm (SMA) [36], Rat Swarm Optimizer (RSO) [37], and Aquila Optimizer (AO) [38] are
also essential parts in this branch. The final type is influenced by human learning habits including
Search Group Algorithm (SGA) [39], Soccer League Competition Algorithm (SLC) [40], and
Teaching-Learning-Based Optimization (TLBO) [41].

With their own distinctive characteristics, these metaheuristics are commonly used in a vari-
ety of computing science fields, such as fault diagnosis [42], feature selection [43], engineering
optimization [44], path planning [45], and parameters identification [46]. Nevertheless, it has been
shown that the most basic algorithms still have the limitations of slow convergence, poor accuracy,
and ease of getting trapped into the local optimum [7,15] in several applications. The non-free
lunch (NFL) theorem indicates that there is no general algorithm that could be appropriate for
all optimization tasks [47]. Hence, encouraged by this theorem, many scholars begin improving
existing algorithms to generate higher-quality solutions from different aspects. Fan et al. [7]
proposed an enhanced Equilibrium Optimizer (m-EO) algorithm based on reverse learning and
novel updating mechanisms, which considerably increase its convergence speed and precision. Jia
et al. [48] introduced the dynamic control parameter and mutation strategies into the Harris
Hawks Optimization, and then proposed a novel method called DHHO/M to segment satellite
images. Ding et al. [49] constructed an improved Whale Optimization Algorithm (LNAWOA)
for continuous optimization, in which the nonlinear convergence factor is utilized to speed up
the convergence. Besides, authors in [50] employed Lévy flight and crossover operation to fur-
ther promote the robust and global exploration capability of the native Salp Swarm Algorithm.
Recently, there is also an emerging trend to combine two prospective MAs to overcome the per-
formance drawbacks of one single algorithm. For instance, Abdel-Basset et al. [51] incorporated
Slime Mould Optimizer and Whale Optimization Algorithm into an efficient hybrid algorithm
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(HSMAWOA) for image segmentation of chest X-ray to determine whether a person is infected
with the COVID-19 virus. Fan et al. [9] proposed a new hybrid algorithm named ESSAWOA,
which has been successfully applied to solve structural design problems. Moreover, Liu et al. [52]
developed a hybrid imperialist competitive evolutionary algorithm and used it to find out the
best portfolio solutions. Dhiman [53] constructed a hybrid bio-inspired Emperor Penguin and Salp
Swarm Algorithm (ESA) for numerical optimization that effectively deals with different constraint
problems in engineering optimization.

In this study, we focus on a novel swarm intelligent algorithm namely Gorilla Troops Opti-
mizer (GTO), which was proposed by Abdollahzadeh et al. in 2021 [54]. The inspiration of
GTO originates from the collective lifestyle and social intelligence of gorillas. Preliminary research
indicates that GTO has excellent performances on benchmark function optimization. Neverthe-
less, similar to other meta-heuristic algorithms, it still suffers from low optimization accuracy,
premature convergence, and the propensity to fall into the local optimum when solving complex
optimization problems [55]. These defects are mainly associated with the poor quality of the initial
population, lack of a proper balance between the exploration and exploitation, and low likelihood
of large spatial leaps in the iteration process. Therefore, NFL theorem motivates us to improve
this latest swarm-inspired algorithm.

In view of the above discussion, to enhance GTO for global optimization, an improved gorilla
troops optimizer known as IGTO is developed in this paper by incorporating three improvements.
Firstly, Circle chaotic mapping is utilized to replace the random initialization mode of GTO
for enriching population diversity. Secondly, a novel lens opposition-based learning mechanism
is adopted to boost the exploration capability of the algorithm, while avoiding falling into the
local optimum. Additionally, adaptive β-hill climbing, a new local search algorithm is embedded
into GTO to facilitate better solution accuracy and exploitation trends. The effectiveness of the
proposed IGTO is comprehensively evaluated and investigated by a series of comparisons with the
basic GTO and several state-of-the-art algorithms, including GWO, WOA, SSA, HHO, and SMA
on 19 classical benchmark functions. The experimental results demonstrate that IGTO performs
better than the other competitors in terms of solution quality, convergence accuracy and stability.
In addition, to further validate its applicability, IGTO is applied to solve four engineering design
problems and train multilayer perceptron. Our results reveal that the proposed method also has
strong competitiveness and superiority in real-life applications.

The remainder of this paper is arranged as follows: the basic GTO algorithm is briefly
described in Section 2. In Section 3, a detailed description of three improved mechanisms and
the proposed IGTO is presented. In Section 4, the experimental results of benchmark function
optimization are reported and discussed. Besides, the applicability of the IGTO for resolving
practical engineering problems and training multilayer perceptron is highlighted and analyzed in
Sections 5 and 6. Finally, the conclusion of this work and potential future work directions are
given in Section 7.

2 Gorilla Troops Optimizer

Gorilla troops optimizer is a recently proposed nature-inspired and gradient-free optimization
algorithm, which emulates the gorillas’ lifestyle in the group [54]. The gorilla lives in a group
called troop, composed of an adult male gorilla also known as the silverback, multiple adult
female gorillas and their posterity. A silverback gorilla (shown in Fig. 1) typically has an age
of more than 12 years and is named for the unique hair on his back at puberty. Besides, the
silverback is the head of the whole troop, taking all decisions, mediating disputes, directing others
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to food resources, determining group movements, and being responsible for safety. Younger male
gorillas at the age of 8 to 12 years are called blackbacks since they still lack silver-coloured
back hairs. They are affiliated with the silverback and act as backup defenders for the group.
In general, both female and male gorillas tend to migrate from the group where they were born
to a second new group. Alternatively, mature male gorillas are also likely to separate from their
original group and constitute troops for their own by attracting migrating females. However,
some male gorillas sometimes choose to stay in the initial troop and continue to follow the
silverback. If the silverback dies, these males might engage in a brutal battle for dominance of
the group and mating with adult females. Based on the above concept of gorillas group behaviour
in nature, the specific mathematical model for the GTO algorithm is developed. As with other
intelligent algorithms, GTO contains three main parts: initialization, global exploration, and local
exploitation, which are explained thoroughly below.

Figure 1: Silverback gorilla [54]

2.1 Initialization Phase
Suppose there are N gorillas in the D-dimensional space. The position of the i-th gorilla in the

space can be defined as Xi = (xi,1, xi,2, · · · , xi,D), i = 1, 2, · · · , N. Thus, the initialization process
of gorilla populations can be described as:

XN×D = rand(N, D)× (ub− lb)+ lb (1)

where ub and lb are the upper and lower boundaries of the search range, respectively, and
rand(N, D) denotes the matrix with N rows and D columns, where each element is a random
number between 0 and 1.

2.2 Exploration Phase
Once gorillas depart from their original troop, they will move to diverse environments in

nature that they might or might not have ever seen before. In the GTO algorithm, all gorillas are
considered as candidate solutions, and the optimal solution in each optimization process is deemed
to be the silverback. In order to accurately simulate such natural behaviour of migration, the
position update equation of the gorilla for the exploration stage was designed by employing three
different approaches including migrating towards unknown positions, migrating around familiar
locations, and moving to other groups, as shown in Eq. (2):
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GX(t+ 1)=
⎧⎨
⎩

(ub− lb)× r2 + lb, r1 < p
(r3 −C)×XA(t)+L×Z ×X(t), r1 ≥ 0.5
X(t)−L× (L× (X(t)−XB(t))+ r4 × (X(t)−XB(t))), r1 < 0.5

(2)

where t indicates the current iteration times, X(t) denotes the current position vector of the
individual gorilla, and GX(t+ 1) refers to the candidate position of search agents in the next
iteration. Besides, r1, r2, r3 and r4 are all the random values between 0 and 1. XA(t) and XB(t) are
two randomly selected gorilla positions in the current population. p is a constant. Z denotes a row
vector in the problem dimension with values of the element are randomly generated in [−C, C].
And the parameter C is calculated according to Eq. (3).

C = (cos(2× r5)+ 1)×
(

1− t
Maxiter

)
(3)

where cos(·) represents the cosine function, r5 is a random number in the range of 0 to 1, and
Maxiter indicates the maximum iterations.

As for the parameter L in Eq. (2) could be computed as follows:

L = C × l (4)

where l is a random number in between [−1, 1].

Upon the completion of the exploration, the fitness values of all newly generated candidate
GX(t+ 1) solutions are evaluated. Provided that GX is better than X i.e., F(GX) < F(X), where
F(·) denotes the fitness function for a certain problem, it will be retained and replace the orig-
inal solution X(t). In addition, the optimal solution at this period is selected as the silverback
Xsilverback.

2.3 Exploitation Phase
When the troop was just established, the silverback is powerful and healthy, while the others

male gorillas are still young. They obey all the decisions of silverback in search of diverse food
resources and serve the silverback gorilla faithfully. Undeniably speaking, the silverback also grows
old and then finally dies, with younger blackbacks in the troop might get involved into a violent
conflict with the other males for mating with the adult females and the leadership. As mentioned
previously, two behaviours of following the silverback and competing for adult female gorillas are
modelled in the exploitation phase of GTO. At the same time, the parameter W is introduced to
control the switch between them. If the value C in Eq. (3) is greater than W , the first mechanism
of following the silverback is elected. The mathematical expression is as follows:

GX(t+ 1)= L×M × (X(t)−Xsilverback)+X(t) (5)

where L is also evaluated using Eq. (4), Xsilverback represents the best solution obtained so far,
and X(t) denotes the current position vector. In addition, the parameter M could be calculated
according to Eq. (6):

M =

⎛
⎜⎝
∣∣∣∣∣

N∑
i=1

Xi(t)/N

∣∣∣∣∣
2L
⎞
⎟⎠

1
2L

(6)

where N refers to the population size, and Xi(t) denotes each position vector of the gorilla in the
current iteration.
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If C < W , it implies that the latter mechanism is chosen, in this case, the location of gorillas
can be updated as follows:

GX(t+ 1)= Xsilverback − (Xsilverback ×Q−X(t)×Q)×A (7)

Q = 2× r6 − 1 (8)

A = ϕ ×E (9)

E =
{

N1, r7 ≥ 0.5
N2, r7 < 0.5 (10)

In Eq. (7), X(t) denotes the current position and Q stands for the impact force, which is
computed using Eq. (8). In Eq. (8), r6 is a random value in the range of 0 to 1. Moreover, the
coefficient A used to mimic the violence intensity in the competition is evaluated by Eq. (9), where
ϕ denotes a constant and the values of E are assigned with Eq. (10). In Eq. (10), r7 is also a
random number in [0, 1]. If r7 ≥ 0.5, E would be defined as a 1-by-D array of normal distribution
random numbers, and D is the spatial dimension. Instead, if r7 < 0.5, E would be equal to a
stochastic number that obeys the normal distribution.

Similarly, at the end of the exploitation process, the fitness values of the newly generated can-
didate GX(t+ 1) solution are also calculated. If F(GX) < F(X), the solution GX will be preserved
and participate in the subsequent optimization, while the optimal solution within all individuals
is defined as the silverback Xsilverback. The pseudo-code of GTO is shown in Algorithm 1.

Algorithm 1: Gorilla troops optimizer
1: Initialize the population size N and the maximum number of iterations Maxiter
2: Initialize the random gorilla population Xi(i = 1, 2, · · · , N)

3: Calculate the fitness values of all gorilla individuals
4: While t < Maxiter do
5: Update the parameter C according to Eq. (3)
6: Update the parameter L according to Eq. (4)
7: For each gorilla Xi do // Exploration stage
8: Update the position of the current gorilla according to Eq. (2)
9: End For
10: Evaluate the fitness values of all gorillas
11: Save the optimal solution as a silverback Xsilverback
12: For each gorilla Xi do // Exploitation stage
13: If C ≥ W then
14: Update the position of current gorilla according to Eq. (5)
15: Else
16: Update the position of current gorilla according to Eq. (7)
17: End If
18: End For

(Continued)
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Algorithm 1 (Continued)

19: Update the fitness values of all gorillas
20: Update the global best solution Xsilverback
21: t = t+ 1
22: End While
23: Output the global best solution Xsilverback and its fitness value

3 The Proposed IGTO Algorithm

In order to further improve the performance of the basic GTO algorithm for global optimiza-
tion, a novel variant named IGTO is presented in this section. First, Circle chaotic mapping is
adopted to initialize the gorilla populations, which is considered from increasing the population
diversity. Second, an effective lens opposition-based learning strategy is implemented to expand the
search range and avoid the algorithm falling into the local optimum. Final, the modified algorithm
is hybridized with the adaptive β-hill climbing for better exploitation trend and solution quality.
The specific process is figured out as follows.

3.1 Circle Chaotic Mapping
It is indicated that the quality of the initial population individuals has a significant impact on

the efficiency of most current metaheuristic algorithms [49,56]. When applying the GTO algorithm
to tackle an optimization problem, the population is usually initialized by means of a stochastic
search. Though this method is accessible to implement, yet it suffers from a lack of ergodicity
and excessively depends on the probability distribution, which cannot guarantee that the initial
population is uniformly distributed in the search space, thereby deteriorating the solution precision
and convergence speed of the algorithm.

Chaotic mapping is a complex dynamic method found in nonlinear systems with the prop-
erties of unpredictability, randomness, and ergodicity. Compared to random distribution, chaotic
mapping allows the initial population individual to explore the solution space thoroughly with a
higher convergence speed and sensitivity so that it is widely adopted to improve the optimization
performance of algorithms. Research results have proven that Circle chaotic mapping has superior
exploration performance than the commonly used Logistic chaotic mapping and Tent chaotic
mapping [57]. Consequently, in order to boost the population diversity and take full advantage
of the information in the solution space, Circle chaotic mapping is introduced in this study to
improve the initialization mode of the basic GTO. And the mathematical expression of Circle
chaotic mapping is as follows:

zk+1 = zk + b− a
2π

· sin(2πzk)mod(1),zk ∈ (0, 1) (11)

where a = 0.5 and b = 0.2. Under the same free independent parameters, the random search
mechanism and Circle mapping are selected to be executed independently 300 times. Besides, the
obtained results are shown in Fig. 2. It can be seen from the figure that the traversal of Circle
chaotic mapping is wider and more homogeneously distributed in the feasible domain [0, 1] than
that of random search. Hence, the proposed algorithm has a more robust global exploration
ability after incorporating Circle chaotic mapping.
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Figure 2: Distributions of random search and circle chaotic mapping. (a) Random distribution (b)
Circle distribution

The pseudo-code for initializing the population using Circle chaotic mapping is outlined in
Algorithm 2.

Algorithm 2: Circle chaotic mapping
1: Initialize the population size N and the dimension D
2: Randomly generate the initial value z0 in the range [0, 1]
3: For i = 1 to N do
4: For k = 1 to D do
5: Generate the chaotic variable zk according to Eq. (11)
6: Si,k = zk
7: End For
8: Map the sequence Si into the search interval of gorillas: Xi = Si × (ub− lb)+ lb
9: End For
10: Return Xi(i = 1, 2, · · · , N) as the initialized population matrix

3.2 Lens Opposition-Based Learning
As a novel technique in the area of smart computing, lens opposition-based learning (LOBL),

incorporating traditional opposition-based learning (OBL) [58] and convex lens imaging discipline,
has been successfully employed in different intelligent algorithm optimizations [59,60]. Its basic
ideology is to simultaneously calculate and compare the candidate solution and corresponding
reverse solution, and then choose the superior one to proceed with the next iteration. Theoretically
demonstrated by Fan et al. [9], LOBL can produce a solution close to the global optimum with
higher possibility. Therefore, in this study, LOBL is utilized to update the candidate solutions
during the exploration phase, in order to enlarge the search range and help the algorithm to
escape from the local optimum. Several conceptions about LOBL are represented mathematically
as follows.

Lens imaging is a physical optics phenomenon, which refers to the fact that while an object is
located at more than two principal focal lengths away from the convex lens, a smaller and inverted
image will be produced on the opposite side of the lens. Taking the one-dimensional search space
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in Fig. 3 for illustration, there is a convex lens with the focal length f set at the base point O
(the midpoint of search range [lb, ub]). Besides, an object p with the height h is placed on the
coordinate axis, and its projection is GX (the candidate solution). Distance from the object to
the lens u is greater than twice f . Through the lens imaging operation, an inverted imaging p′
of height h∗ could be attained, which is projected as GX∗(the reverse solution) on the x-axis. In
accordance with the rules of lens imaging as well as similar triangle, the geometrical relationship
obtained from Fig. 3 can be expressed as:

(lb+ ub)/2−GX
GX∗ − (lb+ ub)/2

= h
h∗

(12)

Figure 3: The principle of LOBL mechanism

Here, let the scale factor n = h/h∗, the reverse solution GX∗ is calculated by transferring the
Eq. (12):

GX∗ = lb+ ub
2

+ lb+ ub
2n

− GX
n

(13)

It is obvious that when n = 1, Eq. (13) can be simplified as the general formulation of OBL
strategy:

GX∗ = lb+ ub−GX (14)

So, we could regard the opposition-based learning strategy as a peculiar case of LOBL. In
comparison to OBL, the latter allows acquiring dynamic reverse solutions and a wider search
range by tuning the scale factor n.

Generally, Eq. (13) could be extended into D-dimensional space:

GX∗
j = (lbj + ubj)/2+ (lbj + ubj)/2n−GXj/n (15)

where lbj and ubj are the lower and upper limits of the j-th dimension, respectively, j = 1, 2, · · ·D,
GX∗

j denotes the inverse solution of GXj in the j-th dimension.

When a new inverse solution is generated, there is no guarantee that it is always better than
the current candidate solution as in the gorilla position. Therefore, it is necessary to evaluate the
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fitness values of the inverse solution and candidate solution, then the fitter one will be selected
to continue participating in the subsequent exploitation phase, which is described as follows:

GXnext =
{

GX∗, ifF(GX∗) < F(GX)

GX , otherwise (16)

where GX∗ indicates the reverse solution generated by LOBL, GX is the current candidate
solution, GXnext is the selected gorilla to continue the subsequent position updating, and F(·)
denotes the fitness function of the problem. The pseudo-code of lens opposition-based learning
mechanism is shown in Algorithm 3.

Algorithm 3: Lens opposition-based learning
1: Input the current candidate solution of gorilla GX , the dimension D and scale factor n
2: For j = 1 to D do
3: Generate the reverse solution GX∗ using Eq. (15)
4: End For
5: Calculate the fitness values of GX and GX∗
6: If F(GX∗) < F(GX) then
7: GXnext = GX∗
8: End If
9: Output the new candidate solution GXnext

3.3 Adaptive β-Hill Climbing
Adaptive β-hill climbing (AβHC) [61] is a newly proposed local search-based algorithm, which

is, in essence, a modified version of β-hill climbing (βHC). Research has found that AβHC
provides better performance than many other famous local search algorithms, including Simulated
Annealing (SA) [20], Tabu Search (TS) [62], and Variable Neighborhood Search (VNS) [63]. To
boost the algorithm’s exploitation ability and the quality of final solutions, AβHC is integrated
into the basic GTO to help search the neighborhoods of the optimal solution in this study. And
the definition of AβHC is represented mathematically as follows.

For the given current solution Xi = (xi,1, xi,2, . . . , xi,D), AβHC will iteratively generate
an enhanced solution X ′′

i = (x′′
i,1, x′′

i,2, . . . , x′′
i,D) on the basis of two control operators: N -

operator and β-operator. The N-operator first transfers Xi to a new neighborhood solution
X ′

i = (x′
i,1, x′

i,2, . . . , x′
i,D), which is defined in Eqs. (17) and (18) as:

x′
i,j = xi,j ±U(0, 1)×N , j = 1, 2, . . . , D (17)

N (t)= 1− t
1
K

Maxiter
1
K

(18)

where U(0, 1) denotes a random number in the interval [0, 1], xi,j denotes the value of the decision
variable in the j-th dimension, t denotes the current iteration, Maxiter refers to the maximum
number of iterations, N represents the bandwidth distance between the current solution and its
neighbor, D is the spatial dimension, and the parameter K is a constant.
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Immediately after, the decision variables of new solution X
′′
i are assigned either from the

existing solution or randomly from the available range of β-operator, as follows:

x
′′
i,j ←

{
xi,r, ifr8 < β

x′
i,j, else (19)

β(t)= βmin + (βmax −βmin)× t
Maxiter

(20)

where r8 is a random number in the interval [0, 1], xi,r denotes another random number chosen
from the possible range of that particular dimension of the problem, βmax and βmin denote
the maximum and minimum values of probability value β ∈ [0, 1], respectively. If the generated
solution X

′′
i is better than the current solution under consideration Xi, then Xi is replaced by X

′′
i .

The pseudo-code of adaptive β-hill climbing is given in Algorithm 4.

Algorithm 4: Adaptive β-hill climbing algorithm
1: Initialize the parameters βmax, βmin, and K
2: Input the current solution Xi = (xi,1, xi,2, . . . , xi,D)

3: Calculate the fitness value F(Xi)

4: While t ≤ Maxiter do
5: Generate the neighbouring solution X ′

i using Eq. (17)
6: For j = 1 to D do
7: If r8 < then
8: x

′′
i,j = xi,r

9: Else
10: x

′′
i,j = x′

i,j
11: End If
12: End For
13: Calculate the fitness value F(X

′′
i )

14: If F(X
′′
i ) < F(Xi) then

15: Xi = X
′′
i

16: End If
17: t = t+ 1
18: End while

3.4 Algorithm Flowchart
Based on the improved mechanisms mentioned in Subsections 3.1∼3.3 above, the flowchart of

the proposed IGTO algorithm for global optimization problems is illustrated in Fig. 4. Moreover,
Algorithm 5 outlines the pseudo-code of IGTO.
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Algorithm 5: Improved gorilla troops optimizer
1: Initialize the population size N and the maximum number of iterations Maxiter
2: Initialize the chaotic gorilla population Xi using Circle chaotic mapping
3: Calculate the fitness values of all gorilla individuals
4: While t < Maxiter do
5: Update the parameter C according to Eq. (3)
6: Update the parameter L according to Eq. (4)
7: For each gorilla do //Exploration stage
8: Update the position of the current gorilla according to Eq. (2)
9: Calculate and evaluate the candidate position and its reverse position using LOBL strategy,

then select the better one
10: End For
11: Evaluate the fitness values of all gorillas
12: Set the best solution as a silverback Xsilverback
13: For each gorilla do //Exploitation stage
14: If C ≥ W then
15: Update the position of current gorilla according to Eq. (5)
16: Else
17: Update the position of current gorilla according to Eq. (7)
18: End If
19: End For
20: Update the fitness values of all gorillas
21: Update the global optimal solution Xsilverback
22: Perform AβHC strategy for the global optimal solution Xsilverback
23: t = t+ 1
24: End While
25: Output the global best solution Xsilverback and its fitness value

4 Experimental Results and Discussion

In this section, a total of 19 benchmark functions from the literature [64] are selected for
contrast experiments to comprehensively evaluate the feasibility and effectiveness of the proposed
IGTO algorithm. First, the definitions of these benchmark functions, parameter settings, and
measurements of algorithm performance are presented. Afterwards, the basic GTO and other
five advanced meta-heuristic algorithms, such as GWO [65], WOA [29], SSA [66], HHO [33],
and SMA [36], are employed as competitors to validate the improvements and superiority of
the proposed algorithm based on the solution accuracy, boxplot, convergence behavior, average
computation time, and statistical result. Final, the scalability of IGTO is investigated by solving
high dimensional problems. All the simulation experiments are implemented in MATLAB R2014b
with Microsoft Windows 7 system, and the hardware platform of the computer is configured as
Intel(R) Core(TM) i5-7400 CPU @ 3.00 GHz, and 8 GB of RAM.
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Figure 4: Flowchart of the proposed IGTO algorithm

4.1 Benchmark Function
The benchmark functions used in this paper could be divided into three various categories:

unimodal (UM), multimodal (MM), and fix-dimension multimodal (FM). The unimodal functions
(F1∼F7) contain only one global minimum, which are frequently used to detect the development
competence and convergence rate of algorithms. The multimodal functions (F8∼F13), consisting of
several local minima and a single global optimum in the search space, are well suited for assessing
the algorithm’s capability to explore and escape from local optima. The fix-dimension multimodal
functions (F14∼F19) are combinations of the previous two forms of functions, but with lower
dimensions, and they are designed to evaluate the stability of the algorithm. Table 1 shows the
formulations, spatial dimensions, search ranges, and theoretical minimum of these functions. In
addition, 3D images for the search space of several typical functions are displayed in Fig. 5.
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Table 1: Benchmark functions

Type Function Dim Range Fmin

UM F1(x)=
n∑

i=1
x2

i 30 [−100, 100] 0

F2(x)=
n∑

i=1
|xi| +

n∏
i=1

|xi| 30 [−10, 10] 0

F3(x)=
n∑

i=1
(

i∑
j=1

xj)
2 30 [−100, 100] 0

F4(x)= max{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

F5(x)=
n−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2] 30 [−30, 30] 0

F6(x)=
n∑

i=1
(|xi + 0.5|)2 30 [−100, 100] 0

F7(x)=
n∑

i=1
ix4

i + random[0, 1] 30 [−1.28, 1.28] 0

MM F8(x)=
n∑

i=1
−xi sin

(√|xi|
)

30 [−500, 500] −418.9829 × Dim

F9(x)=
n∑

i=1
[x2

i − 10 cos(2πxi)+ 10] 30 [−5.12, 5.12] 0

F10(x)=−20 exp(−0.2

√
1
n

n∑
i=1

x2
i )−

exp( 1
n

n∑
i=1

cos(2πxi))+ 20+ e

30 [−32, 32] 0

F11(x)= 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos( xi√
i
)+ 1 30 [−600, 600] 0

F12(x)= π
n {10 sin(πy1)+

n−1∑
i=1

(yi − 1)2[1+ 10sin2(πyi+1)]+

(yn − 1)2}+
n∑

i=1
u(xi, 10, 100, 4)

yi = 1+ xi+1
4 , u(xi, a, k, m)=

⎧⎨
⎩

k(xi − a)mxi > a
0− a < xi < a
k(−xi − a)mxi <−a

30 [−50, 50] 0

F13(x)= 0.1{sin2(3πxi)+
n∑

i=1
(xi − 1)2[1+ sin2(3πxi + 1)]+

{(xn − 1)2[1+ sin2(2πxn)]}(xn − 1)2[1+ sin2(2πxn)]}+
n∑

i=1
u(xi, 5, 100, 4)

30 [−50, 50] 0

(Continued)
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Table 1 (continued)

Type Function Dim Range Fmin

FM F14(x)= ( 1
500 +

25∑
j=1

(j +
n∑

i=1
(xi − aij)

6)−1)−1 2 [−65, 65] 0.998

F15(x)=
11∑

i=1
[ai − x1(b2

i +bix2)

b2
i +bix3+x4

] 2 4 [−5, 5] 0.00030

F16(x)= 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

F17(x)=−
4∑

i=1
ci exp(−

3∑
j=1

aij(xj − pij)
2) 3 [1, 3] −3.86

F18(x)=−
4∑

i=1
ci exp(−

6∑
j=1

aij(xj − pij)
2) 6 [0, 1] −3.32

F19(x)=−
10∑

i=1
[(X − ai)(X − ai)

T + ci]
−1

4 [0, 10] −10.5363

Figure 5: Search space of typical benchmark functions in 3D

4.2 Parameter Setting
In order to estimate the performance of the improved IGTO algorithm in solving global

optimization problems, we select the basic GTO [54] and five state-of-the-art algorithms, namely
GWO [65], WOA [29], SSA [66], HHO [33], and SMA [36]. For fair comparisons, the maximum
iteration and population size of seven algorithms are set as 500 and 30, respectively. As per the
references [9,61] and extensive trials, in the proposed IGTO algorithm, we set the scale factor
n = 12000, K = 30,βmax = 1 and βmin = 0.1. Besides, all parameter values of the remaining six algo-
rithms are set the same as those recommended in the original papers, as shown in Table 2. These
parameter settings assure the fairness of the comparison experiments by allowing each algorithm
to make the most of its optimization property. All algorithms are executed independently 30 times
within each benchmark function to decrease accidental error.
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Table 2: Parameter setting of the optimization algorithms

Reference Algorithm Parameter setting

[65] GWO Convergence constant a = [0, 2]
[29] WOA Convergence constant a = [0, 2]; Spiral factor b = 1
[66] SSA Coefficient c2, c3 ∈ [0, 1]
[33] HHO Random jump strength J ∈ [0, 2]
[36] SMA Constant z = 0.03
[54] GTO ϕ = 3; W = 0.8; p = 0.03
— IGTO ϕ = 3; W = 0.8; p = 0.03; n = 12000; K = 30;βmax = 1; βmin = 0.1

4.3 Evaluation Criteria of Performance
In this study, two metrics are used to measure the performance of the proposed algorithm

including the average fitness value (Avg) and standard deviation (Std) of optimization results. The
average fitness value intuitively characterizes the convergence accuracy and the search capability
of the algorithm, which is calculated as follows:

Avg = 1
n

n∑
i=1

Si (21)

where n denotes the times that an algorithm has run, and Si indicates the obtained result of each
operation.

And the standard deviation indicates the deviation degree between the experimental results
and the average value. The equation of standard deviation is available as follows:

Std =
√√√√ 1

n− 1

n∑
i=1

(Si −Avg)2 (22)

4.4 Comparison with IGTO and Other Algorithms
In this subsection, to examine the performance of the proposed algorithm, IGTO is com-

pared with the basic GTO and five other advanced algorithms according to benchmark function
optimization results. For fair comparisons, the maximum iteration and population size of seven
algorithms are set as 500 and 30, respectively, and the rest parameter settings have been given in
Subsection 4.2 above. Meanwhile, each algorithm runs 30 times independently on the test function
F1-F19 in Table 1 to decrease random error. The average fitness value (Avg) and standard deviation
(Std) of each algorithm obtained from the experiment are reported in Table 3. In general, the
closer the average fitness (Avg) to the theoretical minimum, the higher convergence accuracy of
the algorithm. While the smaller the value of the standard deviation (Std), the better the stability
and robustness of the algorithm.

As seen from Table 3, when solving the unimodal benchmark functions (F1∼F7), IGTO
obtains the global optimal minima with regard to the average fitness on functions F1∼F4. For
function F5, the convergence accuracy of IGTO has a great improvement over its predecessors
GTO and it is the winner among all algorithms. For test function F6, the results of IGTO are
similar to SSA and GTO, yet still marginally better them. Besides, IGTO shows superior results on
function F7 in contrast to other optimizers. In terms of standard deviation, the proposed IGTO
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has excellent performance on all test problems. Given the properties of the unimodal functions,
these results show that IGTO has outstanding search precision and local exploitation potential.

Table 3: Comparison results of different algorithms on 19 benchmark functions

Function Criteria GWO WOA SSA HHO SMA GTO IGTO

F1 Avg 2.49E−27 1.32E−73 1.03E−07 2.81E−98 3.68E−275 0.00E+00 0.00E+00
Std 6.42E−27 5.40E−73 6.64E−08 1.12E−97 0.00E+00 0.00E+00 0.00E+00

F2 Avg 1.12E−16 1.42E−51 1.95E+00 3.62E−49 7.08E−149 3.69E−191 0.00E+00
Std 7.66E−17 4.38E−51 1.23E+00 1.70E−48 3.88E−148 0.00E+00 0.00E+00

F3 Avg 1.35E−05 4.60E+04 1.58E+03 2.55E−75 2.61E−318 0.00E+00 0.00E+00
Std 2.66E−05 1.27E+04 8.20E+02 1.32E−74 0.00E+00 0.00E+00 0.00E+00

F4 Avg 8.38E−07 4.43E+01 1.09E+01 7.11E−50 2.19E−146 9.71E−193 0.00E+00
Std 1.10E−06 2.92E+01 3.59E+00 2.50E−49 1.20E−145 0.00E+00 0.00E+00

F5 Avg 2.75E+01 2.78E+01 1.15E+02 1.24E−02 1.17E+01 4.95E+00 7.46E−05
Std 4.47E−01 6.10E−01 3.14E+01 1.81E−02 1.44E+01 1.11E+01 8.57E−05

F6 Avg 8.69E−01 4.60E−01 2.44E−07 2.31E−04 5.95E−03 3.81E−07 1.01E−07
Std 3.26E−01 2.15E−01 5.24E−07 3.21E−04 4.11E−03 5.37E−07 1.15E−07

F7 Avg 1.97E−03 3.78E−03 1.57E−01 1.40E−04 1.84E−04 9.46E−05 3.16E−05
Std 1.36E−03 4.83E−03 6.77E−02 1.11E−04 1.61E−04 6.91E−05 2.47E−05

F8 Avg −6189.550 −10334.835 −7512.488 −12410.223 −12569.055 −12568.778 −12569.487
Std 7.97E+02 1.77E+03 8.87E+02 8.28E+02 3.51E−01 1.23E−04 3.02E−05

F9 Avg 2.69E+00 0.00E+00 4.50E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 3.61E+00 0.00E+00 1.57E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F10 Avg 1.02E−13 5.03E−15 2.45E+00 8.88E−16 8.88E−16 8.88E−16 8.88E−16
Std 1.64E−14 2.30E−15 8.82E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F11 Avg 2.49E−03 6.44E−03 1.93E−02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 5.96E−03 3.53E−02 1.54E−02 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F12 Avg 4.54E−02 1.81E−02 7.45E+00 8.26E−06 5.18E−03 4.75E−08 3.17E−08
Std 2.28E−02 7.45E−03 2.86E+00 1.06E−05 6.88E−03 1.24E−07 5.09E−08

F13 Avg 6.21E−01 4.98E−01 1.36E+01 7.38E−05 5.71E−03 3.60E−03 1.14E−07
Std 2.17E−01 2.90E−01 1.33E+01 1.32E−04 5.67E−03 6.49E−03 3.34E−07

F14 Avg 3.35E+00 2.41E+00 1.10E+00 1.43E+00 9.98E−01 9.98E−01 9.98E−01
Std 3.65E+00 2.54E+00 4.00E−01 1.261E+00 1.38E−12 6.54E−17 4.12E−17

F15 Avg 4.42E−03 8.05E−04 1.86E−03 4.32E−04 4.58E−04 4.45E−04 3.07E−04
Std 8.18E−03 5.85E−04 4.36E−03 3.04E−04 1.57E−04 3.35E−04 4.06E−19

F16 Avg −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Std 1.93E−08 6.89E−10 3.76E−14 4.27E−09 9.20E−10 6.45E−16 1.32E−17

F17 Avg −3.8615 −3.8594 −3.8628 −3.8603 −3.8628 −3.8628 −3.8610
Std 2.46E−03 4.01E−03 3.96E−12 2.82E−03 9.39E−08 2.63E−15 1.69E−18

F18 Avg −3.2581 −3.2503 −3.2165 −3.1178 −3.2503 −3.2784 −3.3101
Std 8.42E−02 8.41E−02 4.89E−02 1.21E−01 5.95E−02 5.83E−02 3.63E−02

F19 Avg −10.5341 −6.8840 −8.0801 −5.1232 −10.5360 −10.5360 −10.5364
Std 1.14E−03 3.56E+00 3.56E+00 5.95E−03 4.02E−04 3.23E−15 1.09E−15

Note: The best result obtained is highlighted in bold.

The multimodal benchmark functions (F8∼F13) have many local minima in the search space,
so these functions are usually employed to analyze the algorithm’s potential to avoid the local
optima. For functions F8, F12 and F13, the average fitness and standard deviation of IGTO are
obviously better than the rest of the algorithms. For function F9, IGTO obtains the same global



832 CMES, 2022, vol.131, no.2

optimal minima as WOA, HHO, SMA, GTO. Moreover, HHO, SMA, GTO and IGTO obtains
the same performance on functions F10 and F11. It hopefully validates that the proposed IGTO
can effectively bypass the local optimum and find high quality solutions.

The fix-dimension multimodal functions (F14∼F19) consist of few local optima, which are
designed to evaluate the stability of the algorithm in switching between exploration and exploita-
tion processes. As far as the average fitness values are concerned, IGTO performs the same
as SMA and GTO on function F14, albeit better than others. For functions F15, F18 and F19,
IGTO can generate superior results to all competitors. For function F16, the performance of
seven optimizers is identical. Although the result of the proposed IGTO is worse than HHO on
function F17, it still ranks second and shows significant improvements over the basic GTO to a
certain extent. On the other hand, IGTO achieves the optimal standard deviation on all test cases.
This proves that our proposed IGTO is able to keep a better balance between exploration and
exploitation.

In view of the above, a summary can be drawn that the proposed multi-strategy combination
IGTO algorithm exhibits strong global search capability and is superior to the other six intelligent
algorithms in comparison. Benefiting from the hybrid AβHC with GTO operation, the solution
precision of IGTO is greatly strengthened. At the same time, LOBL strategy is effective to expand
the unknown search area and avoid the algorithm falling into the local optima.

In order to better illustrate the stability of the proposed algorithm, the corresponding boxplots
of functions 1, 2, 3, 5 and 6 from UM benchmark functions, functions 9, 10 and 12 from
MM benchmark functions, and function 15 selected from FM benchmark functions are shown in
Fig. 6. From Fig. 6, it can be seen that IGTO algorithm shows remarkable consistency in most
issues with respect to the median, maximum and minimum values compared with the others. In
addition, IGTO generates no outliers during the iterations with the more concentrated distribution
of convergence values, thereby verifying the strong robustness and superiority of the improved
IGTO.

Fig. 7 visualizes the convergence curves of different algorithms on nine representative bench-
mark functions. Likewise, where functions 1, 2, 3, 5 and 6 are unimodal, functions 9, 10 and 12
are multimodal, and function 15 belongs to the fix-dimension multimodal category. From Fig. 7,
it is clear that the convergence speed of IGTO is the fastest among all algorithms on functions
F1∼F3, and the proposed algorithm can rapidly reach the global optimal solution at the beginning
of the search process. For functions F5 and F6, IGTO has a similar trend to HHO and GTO in
the initial stage, but its efficiency is fully demonstrated in the late iterations, and eventually the
proposed IGTO obtains the best result. For functions F9, IGTO remains a superior convergence
rate and obtains the global optimum within 20 iterations. Although the convergence accuracy of
IGTO is the same as that of HHO, SMA and the basic GTO on functions F10, yet it converges
more quickly. For function F12, the proposed algorithm is still the champion compared with the
remaining six optimizers in terms of final accuracy and speed. Besides, the convergence curves
of seven algorithms are pretty close on the fix-dimension multimodal function F15. However, the
performance of IGTO is slightly better than the others.
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Figure 6: Boxplot analysis of different algorithms on partial benchmark functions

Figure 7: Convergence curves of different algorithms on nine benchmark functions
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On the basis of experimental results of boxplot analysis and convergence curves, IGTO has
a considerable enhancement in convergence speed and stability compared with the basic GTO,
which is owed to the good foundation of global search laid by Circle chaotic mapping and LOBL
strategy.

The average computation time spent by each algorithm on test functions F1∼F19 is reported
in Table 4. For a more intuitive conclusion, the total runtime of each method is calculated
and ranked as follows: SMA(14.118 s)>IGTO(8.073 s)>GTO(6.690 s)>HHO(6.568 s)>GWO(4.912
s)>SSA(4.897 s)>WOA(4.065 s). It can be found that IGTO uses more computation time than
GTO, which is the second to last. Compared with the basic GTO algorithm, the introduction of
three improved strategies increases the steps of the algorithm and extra time. Of course, the high
computation cost of GTO algorithm itself is also a primary cause of this. However, the IGTO
takes less time than SMA on most test functions. To improve the solution accuracy, a little more
runtime is sacrificed. On the whole, the proposed algorithm is acceptable in view of the optimal
search performance, and its limitation is still the need to decrease the computational time.

Table 4: Comparison results of the average computation time of different algorithms (unit: s)

Function GWO WOA SSA HHO SMA GTO IGTO

F1 1.66E−01 1.53E−01 1.79E−01 1.82E−01 8.34E−01 2.05E−01 3.09E−01
F2 1.73E−01 1.50E−01 1.27E−01 1.60E−01 8.08E−01 2.15E−01 2.90E−01
F3 4.75E−01 4.28E−01 5.89E−01 8.03E−01 1.09E+00 6.14E−01 7.06E−01
F4 1.78E−01 1.45E−01 2.10E−01 1.85E−01 8.39E−01 2.02E−01 2.77E−01
F5 1.88E−01 1.50E−01 1.34E−01 2.60E−01 8.51E−01 2.38E−01 3.04E−01
F6 2.17E−01 1.70E−01 1.53E−01 2.66E−01 8.18E−01 2.40E−01 3.18E−01
F7 1.99E−01 1.23E−01 1.77E−01 3.03E−01 8.71E−01 2.97E−01 3.69E−01
F8 1.58E−01 1.48E−01 1.94E−01 2.69E−01 8.73E−01 2.90E−01 3.52E−01
F9 1.53E−01 1.30E−01 1.95E−01 2.38E−01 8.29E−01 2.56E−01 2.99E−01
F10 1.90E−01 1.57E−01 1.31E−01 2.35E−01 8.57E−01 2.96E−01 3.60E−01
F11 1.45E−01 1.38E−01 1.70E−01 2.83E−01 8.93E−01 3.08E−01 3.51E−01
F12 4.96E−01 3.80E−01 4.01E−01 6.30E−01 1.01E+00 6.37E−01 7.05E−01
F13 4.94E−01 3.52E−01 4.34E−01 6.48E−01 1.00E+00 6.39E−01 7.10E−01
F14 6.92E−01 6.34E−01 6.77E−01 7.85E−01 7.57E−01 8.27E−01 9.22E−01
F15 1.72E−01 1.24E−01 2.07E−01 1.91E−01 3.18E−01 2.23E−01 3.03E−01
F16 1.54E−01 1.31E−01 1.90E−01 2.03E−01 2.90E−01 2.02E−01 2.71E−01
F17 2.00E−01 1.73E−01 2.31E−01 2.72E−01 3.25E−01 2.79E−01 3.47E−01
F18 2.24E−01 1.87E−01 2.34E−01 2.48E−01 3.80E−01 2.76E−01 3.61E−01
F19 2.38E−01 1.92E−01 2.64E−01 4.07E−01 4.75E−01 4.46E−01 5.19E−01

Note: The best result obtained is highlighted in bold.

Moreover, since the average fitness (Avg) and standard deviation (Std) of the algorithm after
30 runs are not compared with the results of each run, it is often not accurate to evaluate the
performance of an algorithm based only on the mean and standard deviation. To represent the
robustness and fairness of the improved algorithm, the Wilcoxon rank-sum test [67], a nonpara-
metric statistical test approach is used to estimate the significant differences between IGTO and
other algorithms. For Wilcoxon rank-sum test, the significance level is set to 0.05 and acquired
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p-values are listed in Table 5. In this table, the sign “+” denotes that IGTO performs significantly
better than the corresponding algorithm, “=” denotes that the performance of IGTO is analogous
to that of the compared algorithm, “-” denotes that IGTO is poorer than the compared one,
and the last line counts the total number of all signs. It can be seen from the table that for the
19 benchmark test functions, the proposed IGTO algorithm outperforms GWO on 19 functions,
WOA and SSA on 18 functions, HHO on 16 functions, SMA on 14 functions, and the basic GTO
on 13 functions, respectively. Therefore, according to the statistical theory analysis, our proposed
IGTO has a significant enhancement over the other algorithms and it is the optimal optimizer
among them.

Table 5: Statistical results of IGTO on Wilcoxon rank-sum test

Function IGTO vs. GWO IGTO vs. WOA IGTO vs. SSA IGTO vs. HHO IGTO vs. SMA IGTO vs. GTO

p-value win p-value win p-value win p-value win p-value win p-value win

F1 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.61E−01 - NaN =
F2 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 +
F3 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.61E−01 - NaN =
F4 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 + 1.21E−12 +
F5 3.02E−11 + 3.02E−11 + 6.70E−11 + 4.21E−02 + 1.04E−04 + 2.56E−02 +
F6 3.02E−11 + 3.02E−11 + 1.00E+00 − 3.02E−11 + 3.02E−11 + 1.05E−02 +
F7 3.02E−11 + 3.34E−11 + 3.02E−11 + 5.53E−08 + 4.44E−07 + 4.35E−05 +
F8 3.02E−11 + 3.02E−11 + 3.02E−11 + 3.02E−11 + 2.15E−10 + 9.35E−04 +
F9 1.19E−12 + NaN = 1.21E−12 + NaN = NaN = NaN =
F10 1.12E−12 + 9.79E−11 + 1.21E−12 + NaN = NaN = NaN =
F11 2.16E−02 + 3.34E−04 + 1.21E−12 + NaN = NaN = NaN =
F12 3.02E−11 + 3.02E−11 + 3.02E−11 + 1.46E−10 + 3.02E−11 + 3.79E−08 +
F13 3.02E−11 + 3.02E−11 + 3.02E−11 + 6.07E−11 + 3.02E−11 + 1.61E−06 +
F14 1.72E−12 + 1.72E−12 + 1.45E−12 + 1.72E−12 + 1.72E−12 + 5.57E−09 +
F15 6.67E−08 + 6.67E−08 + 6.67E−08 + 6.67E−08 + 6.67E−08 + 1.54E−01 -
F16 7.57E−12 + 7.57E−12 + 7.56E−12 + 7.57E−12 + 7.57E−12 + 5.70E−04 +
F17 5.20E−12 + 5.20E−12 + 5.20E−12 + 5.20E−12 + 5.20E−12 + 1.96E−08 +
F18 2.00E−09 + 2.00E−09 + 4.43E−11 + 8.14E−11 + 3.60E−10 + 6.25E−08 +
F19 1.25E−11 + 1.25E−11 + 1.25E−11 + 1.25E−11 + 1.25E−11 + 5.35E−03 +
+/=/− 19/0/0 18/1/0 18/0/1 16/3/0 14/3/2 13/5/1

Lastly, the mean absolute error (MAE) of all algorithms on 19 benchmark problems is evalu-
ated and ranked. MAE is also a useful statistical tool to reveal the gap between the experimental
results and the theoretical values [1], and its mathematical expression is as follows:

MAE = 1
N

N∑
i=1

|ai − oi| (23)

In Eq. (23), N is the number of benchmark functions used, oi represents the desired value
of each test function, and ai is the actual value obtained. The MAE and relative rankings of
each algorithm are reported in Table 6. From this table, it is obvious that IGTO outperforms all
competitors and the MAE of IGTO is reduced by 2 orders of magnitude compared to GTO,
which once again demonstrates the superiority of the proposed algorithm statistically.
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Table 6: Ranking of different algorithms by MAE on 19 benchmark functions

Algorithm MAE Rank

GWO 3.3758E+02 5
WOA 2.5428E+03 7
SSA 3.5980E+02 6
HHO 8.7013E+00 4
SMA 6.4326E−01 3
GTO 3.0040E−01 2
IGTO 1.4797E−03 1
Note: The best result obtained is highlighted in bold.

4.5 Scalability Test
Scalability reflects the execution efficiency of an algorithm in different dimensional spaces.

As the dimensions of the optimization problem increase, most current intelligent algorithms are
highly prone to be ineffective and subject to “dimensional disaster”. To investigate the scalability
of IGTO, the proposed algorithm is utilized to optimize 13 benchmark functions F1∼F13 in
Table 1 with higher dimensions (i.e., 50, 100 and 200 dimensions). The average fitness values
(Avg) obtained by the basic GTO and IGTO on each function are reported in Table 7. From the
data in the table, it is clear that the convergence accuracy of both algorithms gradually decreases
with the increase in dimensions, which is due to the fact that the larger the dimensions, the
more elements an algorithm needs to optimize. However, the experimental results of IGTO are
consistently superior to GTO on functions F1∼F8, F12 and F13, and the disparity in optimization
performance between them is increasingly obvious as the dimension increases. Besides, it is notable
that the proposed IGTO can always obtain the theoretical optimal solution on functions F1∼F4.
For functions F9∼F11, two algorithms obtain the same performance.

Table 7: Fitness values of GTO and IGTO in 50, 100, 200 dimensions on 13 test functions

Function 50 100 200

GTO IGTO GTO IGTO GTO IGTO

F1 5.39E−322 0.00E+00 1.77E−319 0.00E+00 2.88E−304 0.00E+00
F2 2.48E−154 0.00E+00 4.39E−152 0.00E+00 6.60E−136 0.00E+00
F3 1.05E−296 0.00E+00 8.78E−239 0.00E+00 6.21E−221 0.00E+00
F4 4.80E−156 0.00E+00 3.34E−128 0.00E+00 1.92E−110 0.00E+00
F5 4.52E+00 5.96E−03 1.58E+01 6.39E−02 1.95E+01 5.09E−02
F6 3.35E−04 2.21E−04 6.19E−02 8.23E−04 1.08E−01 6.53E−04
F7 3.37E−02 1.44E−05 6.30E−01 3.20E−05 5.36E−01 4.34E−04
F8 −20948 −20949 −41897 −41898 −83794 −83796

(Continued)
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Table 7 (continued)

Function 50 100 200

GTO IGTO GTO IGTO GTO IGTO

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F10 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16 8.88E−16
F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F12 3.18E−06 8.82E−07 2.42E−04 4.91E−06 1.99E−03 4.91E−05
F13 1.18E−03 1.98E−06 5.43E−03 2.45E−05 9.43E−02 3.61E−05
Note: The best result obtained is highlighted in bold.

The overall results fully prove that IGTO is not only able to solve low-dimensional functions
at ease, but also maintain good scalability in high-dimensional functions, that is to say, the
performance of IGTO does not deteriorate significantly when tackling high-dimensional problems,
and it can still provide high-quality solutions effectively with well exploitation and exploration
capabilities.

5 IGTO for Solving Engineering Design Problems

In this section, the applicability of the proposed IGTO is tested by solving four practical
engineering design problems including pressure vessel design problem, gear train design problem,
welded beam design problem and rolling element bearing design problem. For the sake of con-
venience, the death penalty [68] function is used here to handle the infeasible solutions subjected
to constraints. IGTO runs independently 30 times for each issue, with the maximum iterations
and population size are set to 500 and 30, respectively. At last, the obtained results are compared
against those of different advanced meta-heuristic algorithms in the literature, as well as the
corresponding analysis are presented.

5.1 Pressure Vessel Design
The pressure vessel design problem was first purposed by Kannan et al. [69], the purpose

of which is to minimize the overall fabrication cost of a pressure vessel. There are four decision
variables involved in this optimum design: Ts (z1, thickness of the shell), Th (z2, thickness of the
head), R (z3, inner radius), and L (z4, length of the cylindrical portion). Fig. 8 illustrates the
structure of pressure vessel used in this study and its related mathematical model can be defined
as follows:

Figure 8: Pressure vessel design problem
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consider
−→z = [z1z2z3z4] = [TsThRL]

minimize

f (−→z )= 0.6224z1z3z4+1.7781z2z2
3 + 3.1661z2

1z4 + 19.84z2
1z3

subject to

g1(
−→z )=−z1 + 0.0193z3 ≤ 0

g2(
−→z )=−z3 + 0.00954z3 ≤ 0

g3(
−→z )=−πz2

3z4 − 4
3πz3

3 + 1296000 ≤ 0
g4(

−→z )= z4 − 240 ≤ 0

variable range: 0 ≤ z1 ≤ 99, 0 ≤ z2 ≤ 99, 10 ≤ z3 ≤ 200, 10 ≤ z4 ≤ 200

The experimental results of IGTO for this problem are compared against those resolved
by GTO, SMA [36], HHO [33], AOA [4], SSA, WOA [29], and GWO [65], as shown in
Table 8. It is shown that IGTO can provide the best design among all algorithms, and the
minimum cost obtained is f (�z)min = 5904.2189, which corresponds to the optimum solution
�z = [0.7889 0.3900 40.8764 192.4031]. Thus, the proposed IGTO algorithm is regarded as more
suitable for solving such problem.

Table 8: Comparison results of pressure vessel design

Algorithms Optimum variables Minimum cost

Ts(z1) Th(z2) R(z3) L(z4)

IGTO 0.7889 0.3900 40.8764 192.4031 5904.2189
GTO 0.7785 0.3849 40.8908 197.8512 5935.7284
SMA [36] 0.7931 0.3932 40.6711 196.2178 5994.1857
HHO [33] 0.8176 0.4073 42.0917 176.7196 6000.4626
AOA [4] 0.8304 0.4162 42.7513 169.3454 6048.7844
SSA 0.7907 0.3908 40.9677 195.9182 6012.1885
WOA [29] 0.8125 0.4375 42.0987 176.6390 6059.7410
GWO [65] 0.8125 0.4345 42.0892 176.7587 6051.5639
Note: The best solution obtained is highlighted in bold.

5.2 Gear Train Design
This is a classical mechanical engineering problem developed by Sandgren [70]. Fig. 9 shows

the schematic view of the gear train. As its name suggests, the ultimate aim of this problem is
to find four optimal parameters that minimize the gear ratio ( z2z3

z1z4
) as much as possible. The test

case can be also represented mathematically as follows:
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Figure 9: Gear train design problem

consider
−→z = [z1 z2 z3 z4] = [nA nB nC nD]

minimize

f (−→z )=
(

1
6.931

− z2z3

z1z4

)2

variable range: 12 ≤ z1, z2, z3, z4 ≤ 60

Table 9 reports the detailed results of comparative experiments for the gear train design
problem. From the data in Table 9, it is apparent that the proposed IGTO is better than other
optimizers in handling this case and effectively finds a brilliant solution.

Table 9: Comparison results of gear train design

Algorithms Optimum variables Minimum gear ratio

nA(z1) nB(z2) nc(z3) nD(z4)

IGTO 48.6044 16.3242 19.3289 43.2518 2.7009E−12
GTO 53.0248 12.9137 19.8583 33.5390 2.3078E−11
SMA 39.0400 12.0187 15.2520 31.6773 2.3576E−09
HHO 57.4901 17.0467 14.6957 31.2659 1.0936E−09
SCA 33.1692 17.1429 13.9093 49.8355 1.3616E−09
WOA 23.3375 12.0000 12.5454 46.8061 9.9216E−10
GWO 55.9250 21.5029 17.8696 48.5747 1.2634E−09
Note: The best solution obtained is highlighted in bold.

5.3 Welded Beam Design
As its name implies, the purpose of this welded beam design problem is to reduce the total

manufacturing cost as much as possible. This optimum design contains four decision parameters:
the width of weld (h), the length of the clamped bar (l), the height of the bar (t), and the bar
thickness (b). Besides, in the optimization process, several constraints should not be contravened
such as bending stress in the beam, buckling load, shear stress and end deflection. The schematic
view of this issue is shown in Fig. 10, and the related mathematical formulation is illustrated as
follows: consider
−→z = [z1 z2 z3 z4] = [h l t b]
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minimize

f (−→z )= 1.10471z2
1z2 + 0.04811z3z4(14+ z2)

subject to

g1(
−→z )= τ(−→z )− τmax ≤ 0

g2(
−→z )= σ − σmax ≤ 0

g3(
−→z )= δ− δmax ≤ 0

g4(
−→z )= z1 − z4 ≤ 0

g5(
−→z )= P−PC(−→z )≤ 0

g6(
−→z )= 0.125− z1 ≤ 0

g7(
−→z )= 1.10471z2

1 + 0.04811z3z4(14+ z2)− 5 ≤ 0

variable range: 0.1 ≤ z1, z4 ≤ 2, 0.1 ≤ z2, z3 ≤ 10
where

τ(−→z )=
√

(τ ′)2 + 2τ ′τ ′′
z2

2R
+ (τ ′′)2

τ ′ = P√
2z1z2

, τ ′ = MR
J

, M = P
(

L+ z2

2

)

R =
√

z2
2

4
+
(

z1 + z3

2

)2

J = 2

{√
2z1z2

[
z2

2

4
+
(

z1 + z3

2

)2
]}

σ(−→z )= 6PL

Ez2
3z4

, δ(−→z )= 6PL3

Ez2
3z4

PC(−→z )=
4.013E

√
z2

3z6
4

36
L2

(
1− z3

2L

√
E

4G

)

P = 6000lb, L = 14in, E = 30× 106psi, G = 12× 106psi,
δmax = 0.25in, τmax = 13,600psi, σmax = 30,000psi

Figure 10: Welded beam design problem



CMES, 2022, vol.131, no.2 841

The optimal results of IGTO vs. those achieved by GTO, MVO [21], SSA [66], HHO [33],
WOA [29], MTDE [71], ESSWOA [9] are reported in Table 10. As can be seen from
Table 10, it is obvious that the proposed IGTO provides better design than majority of
other algorithms. The minimum cost f (�z)min = 1.72485 is obtained with the related optimal
solution �z = [0.2057 3.4705 9.0366 0.2057]. Therefore, it is justifiable to believe that the proposed
IGTO has the superior capability to deal with such problem.

Table 10: Comparison results of welded beam design

Algorithms Optimum variables Minimum cost

h(z1) l(z1) t(z3) b(z4)

IGTO 0.2057 3.4705 9.0366 0.2057 1.72485
GTO 0.2068 3.4570 9.0140 0.2068 1.72890
MVO [21] 0.2055 3.4732 9.0445 0.2057 1.72645
SSA [66] 0.2057 3.4714 9.0366 0.2057 1.72491
HHO [33] 0.2040 3.5311 9.0275 0.2061 1.73199
WOA [29] 0.2054 3.4843 9.0374 0.2063 1.73050
MTDE [71] 0.2057 3.4705 9.0366 0.2057 1.72485
ESSAWOA [9] 0.2055 3.4753 9.0367 0.2057 1.72516
Note: The best solution obtained is highlighted in bold.

5.4 Rolling Element Bearing Design
Unlike the previous problems, the final objective of this issue is to maximize the dynamic

load capacity of rolling element bearings as possible. The structure of a rolling element bearing
is illustrated in Fig. 11. There is a total of ten structural variables involved in the solution of this
optimization problem, namely: pitch diameter (Dm), ball diameter (Db), the number of balls (Z),
the inner and outer raceway curvature radius coefficient (fi and fo), Kdmin, Kdmax, δ, e as well as
ζ . Mathematically, the description of this problem is given as follows:

maximize

Cd =
{

fcZ2/3D1.8
b , if Db ≤ 25.4 mm

3.647fcZ2/3D1.4
b , if Db > 25.4 mm

subject to

g1(
−→z )= φ0

2sin−1(Db/Dm)
−Z + 1 ≤ 0

g2(
−→z )= 2Db −Kdmin(D− d) > 0

g3(
−→z )= Kdmax(D− d)− 2Db ≥ 0

g4(
−→z )= ζBw −Db ≤ 0

g5(
−→z )= Dm − 0.5(D+ d)≥ 0

g6(
−→z )= (0.5+ e)(D+ d)−Dm ≥ 0

g7(
−→z )= 0.5(D−Dm −Db)− δDb ≥ 0

g8(
−→z )= fi ≥ 0.515

g9(
−→z )= fo ≥ 0.515
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where

fc = 37.91

⎡
⎣1+

{
1.04

(
1− γ

1+ γ

)1.72( fi(2fo − 1)

fo(2fi − 1)

)0.41
}10/3

⎤
⎦
−0.3

×
[

γ 0.3(1− γ )1.39

(1+ γ )1/3

][
2fi

2fi − 1

]0.41

x = [{(D− d)/2− 3(T/4)}2 +{D/2−T/4−Db}2 −{d/2+T/4}2]
y = 2{(D− d)/2− 3(T/4)}{D/2−T/4−Db}
φ0 = 2

∏−cos−1(
x
y
),γ = Db

Dm
, fi = ri

Db
, fo = ro

Db
, T = D− d − 2Db

D = 160, d = 90, Bw = 30, ri = ro = 11.033, 0.5(D+ d)≤ Dm ≤ 0.6(D+ d)

0.15(D− d)≤ Db ≤ 0.45(D− d), 4 ≤ Z ≤ 50, 0.515 ≤ fiandfo ≤ 0.6
0.4 ≤ Kdmin ≤ 0.5, 0.6 ≤ Kdmax ≤ 0.7
0.3 ≤ δ ≤ 0.4, 0.02 ≤ e ≤ 0.1, 0.6 ≤ ζ ≤ 0.85

Figure 11: Rolling element bearing design problem

The results of optimum variables and fitness fetched applying different intelligent algorithms
are listed in Table 11. Compared with other well-known optimizers, the proposed IGTO reveals
the superior quality solution at �z = [125 21.41885 10.94110 0.515 0.515 0.40.7 0.3 0.02 0.6] corre-
sponding to the best fitness Cd = 85067.962 with a significant improvement. This case once again
highlights the applicability of IGTO algorithm.

Table 11: Comparison results of rolling element bearing design

Algorithms IGTO TLBO [41] SHO [30] HHO [33] PVS [72] COOT [73]

Dm 125 125.71910 125 125 125.71906 125
Db 21.41885 21.42559 21.40732 21.00000 21.42559 21.87500
Z 10.94110 11.00000 10.93268 11.09207 11.00000 10.77700

(Continued)
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Table 11 (continued)

Algorithms IGTO TLBO [41] SHO [30] HHO [33] PVS [72] COOT [73]

fi 0.51500 0.51500 0.51500 0.51500 0.51500 0.51500
fo 0.51500 0.51500 0.51500 0.51500 0.51500 0.51500
Kdmin 0.40000 0.42427 0.40000 0.40000 0.40043 0.43190
Kdmax 0.70000 0.63395 0.70000 0.60000 0.68016 0.65290
δ 0.30000 0.30000 0.30000 0.30000 0.30000 0.30000
e 0.02000 0.06886 0.02000 0.05047 0.07999 0.02000
ζ 0.60000 0.79950 0.60000 0.60000 0.70000 0.60000
Optimum cost 85067.962 81859.740 85054.532 83011.883 81859.741 83918.492
Note: The best solution obtained is highlighted in bold.

As a summary, it is reasonable to believe that the proposed IGTO is equally feasible and
competitive in practical engineering design problems from the observed results. In addition, the
excellent performance in resolving engineering design problems indicates that IGTO is able to be
widely used in real-world optimization problems as well.

6 IGTO for Training Multilayer Perceptron

Multilayer perceptron (MLP), as one of the most extensively used artificial neural network
models [74], has been successfully implemented for solving various real-world issues such as
pattern classification [75] and regression analysis [76]. The MLP is characterized by multiple
perceptron, in which there is at least one hidden layer in addition to one input layer and one
output layer. The information is received as input on one side of the MLP and the output is
supplied from the other side via one-way transmission between nodes in different layers. For the
MLP, since the sample data space is mostly high-dimensional and multimodal, at the same time
there is also a potential for data interference by noise, data redundancy and data loss. Thus, the
main purpose of training the MLP is to update two crucial parameters that dominate the final
output: the weights W and biases θ , which is a very challenging optimization problem [15,77]. In
this section, the Balloon and Breast cancer datasets from the University of California at Irvine
(UCI) repository [78] are utilized for examining the applicability of the proposed IGTO algorithm
for training MLP. Table 12 presents the specification of these datasets.

Table 12: Specification of the datasets

Datasets Number of attributes Number of training samples Number of classes

Balloon 4 16 2
Breast cancer 9 599 2
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In order to measure the algorithm performance of training the MLP, the average mean square
error criteria (MSE) for all training samples are defined as follows:

MSE =
q∑

k=1

m∑
i=1

(ok
i − dk

i )
2

q
(24)

In Eq. (24), q represents the number of training samples, m is the number of outputs, and
dk

i and ok
i denote the desired and actual output for i-th input with k-th training sample is used,

respectively. If the actual output data is closer to the desired one, the value of MSE is smaller,
which means that the trained model gains a better performance.

Besides the optimization algorithms shown in Table 2, Tunicate Swarm Algorithm (TSA) [34],
Sooty Tern Optimization Algorithm (STOA) [35], and Seagull Optimization Algorithm (SOA) [32]
are also taken into account in this experiment. The variables are assumed to be in the range
of [−10, 10]. Each optimizer executes independently 10 times, with the maximum iterations and
population size are set to 250 and 30, respectively. Meanwhile, the parameters of all algorithms
are consistent with the original literature. With regard to the structure of the MLP, the number of
nodes in the hidden layer is equal to 2n+1 as recommended in [74], where n denotes the number
of attributes in the dataset. Fig. 12 illustrates an example for the process of training the MLP by
IGTO.

Figure 12: Training MLP by the proposed IGTO

The MSE and classification accuracy attained by each method on the datasets are listed in
Table 13. In consideration of the simplicity of the Ballon dataset, all optimisers have achieved
100% classification accuracy except WOA and SMA, yet the proposed IGTO provides a better
value of MSE than the others. In relation to the Breast cancer dataset, it is obvious that IGTO
still obtains the best result with the MSE of 7.35E–04% and 100% classification accuracy.

All these results demonstrate that the proposed algorithm has a stable and consistent ability
to get rid of the local optimum and eventually find the global minima in the complex search
space. Besides, this case also highlights the applicability of IGTO algorithm. IGTO is capable of
finding more suitable crucial parameters for MLP, thus making it perform better.
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Table 13: Comparison results of two datasets

Datasets Algorithm MSE Classification accuracy (%)

Balloon GWO 6.13E−09 100
WOA 2.99E−02 58
SSA 3.68E−08 100
HHO 2.15E−08 100
SMA 9.37E−03 70
TSA 1.43E−06 100
STOA 2.50E−06 100
SOA 3.88E−07 100
GTO 4.95E−10 100
IGTO 1.48E−14 100

Breast cancer GWO 1.51E−03 96
WOA 4.43E−03 81
SSA 4.16E−03 87
HHO 1.84E−03 98
SMA 3.20E−03 96
TSA 3.01E−03 91
STOA 1.86E−02 67
SOA 2.57E−02 84
GTO 1.48E−03 98
IGTO 7.35E−04 100

Note: The best result obtained is highlighted in bold.

7 Conclusion and Future Work

In this paper, a novel improved version of the basic gorilla troops algorithm named IGTO
was put forward to solve complex global optimization problems. First, Circle chaotic mapping was
introduced to enhance the diversity of the initial gorilla population. Second, the lens opposition-
based learning strategy was adopted to expand the search domain, thus avoiding the algorithm
falling into the local optima. Moreover, the adaptive β-hill climbing algorithm was hybridized with
GTO to boost the quality of final solutions. In order to evaluate the effectiveness of the proposed
algorithm, IGTO was compared with the basic GTO and five other state-of-the-art algorithms
based on 19 classical benchmark functions, including unimodal, multimodal, and fix-dimension
multimodal functions. Besides, the non-parametric Wilcoxon’s rank-sum test and average absolute
error (MAE) were used to analyze the experimental results. The statistical results demonstrate
that the proposed IGTO algorithm provides better local optimum avoidance, solution quality, and
robustness than the other competitors. Three improvements can significantly boost the perfor-
mance of IGTO. In order to further test the applicability of IGTO in real-world applications,
IGTO was applied to solve four engineering design problems and train multilayer perceptron. The
experimental results show that IGTO has strong competitive performance in terms of optimization
accuracy.

Nevertheless, as mentioned in the experiment section above, IGTO still has the main limitation
of high computation time, which needs to be improved. It is believed that this situation could be
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mitigated via the introduction of several parallel mechanisms, e.g., master-slave model, cell model
and coordination strategy.

In the future work, we will aim to further enhance the solution accuracy of IGTO while
reducing the total process consumption. Also, we plan to further investigate the impact of the
lens opposition-based learning and adaptive β-climbing strategies on the performance of other
meta-heuristic algorithms. In addition, we hope to apply the proposed technique to solve more
practical problems, such as the parameter self-tuning of speed proportional integral differential
(PID) controller for brushless direct current motors, the global path planning for autonomous
underwater vehicles in a complex environment, and the maximum power point tracking of solar
photovoltaic systems.
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