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ABSTRACT

In this paper, Haar collocation algorithm is developed for the solution of first-order of HIV infection CD4+ T-Cells
model. In this technique, the derivative in the nonlinear model is approximated by utilizing Haar functions. The
value of the unknown function is obtained by the process of integration. Error estimation is also discussed, which
aims to reduce the error of numerical solutions. The numerical results show that the method is simply applicable.
The results are compared with Runge-Kutta technique, Bessel collocation technique, LADM-Pade and Galerkin
technique available in the literature. The results show that the Haar technique is easy, precise and effective.
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1 Introduction

Many models have been developed by mathematicians in the last decade to explain the
immunological response to Human Immunodeficiency Virus (HIV) infection. Due to the scarcity
of CD4+ T-cells, HIV disease is considered to result in concealment of the immune system
(referred to generally as T4-cells or T-helper cells), cells which play a focal part in the human
immune system. A class of white blood cells called CD4+ T-cells is essentially infected by HIV
and this selective depletion of CD4+ T-cells means that a focal part in the resistant direction fills
in as a clinical marker to estimate HIV disease movement. Mathematical models play an important
role in the dynamics of these infectious diseases [1–6]. The level of CD4+ T-cells in the fringe
blood is controlled at a level between 800 and 1200 mm−3 in a normal human body. These cells
are the most inexhaustible white blood cell of the human safe framework, which battle against
diseases [7]. Many authors introduced different numerical methods for the investigation of CD4+
T-cells [8–14].
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In recent years, many researchers have studied on new analytical and numerical methods
for model problems characterized by differential equations. Yüzbaşi et al. [15] presented the
Pell–lucas collocation method for the solutions of two population models and residual correction.
Mallawi et al. [16] utilized Legendre collocation method to the space–time variable fractional-order
advection–dispersion equation. Yüzbaşi [17] used an operational method for solutions of Riccati
type differential equations. Chu et al. [18] studied the generalized (2 + 1) dimensional shallow
water equation. The solution for the fractional system of HIV-1 infection of CD4+ T-cells was
studied by Khater et al. [19] by using Atangana–Baleanu fractional derivative. Khater et al. [20]
developed a semi analytical and numerical scheme for a biological model. Khater et al. [21] used
the trigonometric quintic B-spline technique for the solutions of complex nonlinear Fokas–Lenells
equations. In reference [22] the nonlinear phi-four equation is solved through two analytical and
semi-analytical techniques. Khater et al. [23] used trigonometric Quintic B-spline method for
the solution of conformable fractional nonlinear time-space telegraph equation. Khater et al.
[24] investigated the analytical and numerical solutions of the modified Benjamin–Bona–Mahony
equation via the modified B–spline collection method. Khater et al. [25] found the solution of
nonlinear Klein–Fock–Gordon equation by using generalized exponential function and generalized
Riccati expansion methods. Khater et al. [26] investigated the analytical and semi-analytical solu-
tions of the time-fractional Cahn–Allen equation by using the Adomian decomposition method.
Khater et al. [27] found the analytical solutions of the nonlinear Schrodinger equation with
the higher-order through Kudryashov method. They also found the solutions of quadratic cubic
fractional nonlinear Schrodinger equation by Adomian decomposition process [28]. Khater et al.
[29] used the trigonometric quintic and exponential cubic B-spline schemes for the solutions
of the nonlinear Klein-Gordon-Zakharov model. Yue et al. [30] found a solution of the frac-
tional nonlinear Hirota–Satsuma–Shallow water wave equation by using a modified Kudryashov
method. Khater et al. [31] found solutions of the Fisher-Kolmogorov-Petrovskii-Piskunov model
by employing the modified Kudryashov and trigonometric-quantic B-spline methods. Li et al. [32]
found wave solutions of the (2+ 1) dimensional Kadomtsev Petviashvili Benjamin Bona Mahony
model. Smadi et al. [33] study the accuracy of solution for fractional order an SEIR epidemic
model by using the homotopy analysis method. Freihet et al. [34] found a solution of a fractional
stiff system using residual functions algorithm. Smadi et al. [35] developed analytical technique
for coupled system of fractional partial differential equations, for solutions of nonlinear frac-
tional Kundu-Eckhaus equations [36] and for solution of coupled fractional resonant Schrodinger
equations [37]. The same authors analyzed and investigated the analytical solution of the seventh-
order fractional Sawada Kotera Ito, Lax, and Kaup Kupershmidt equations [38]. Moreover, the
authors also analyzed and studied fuzzy fractional differential equations in terms of Atangana-
Baleanu Caputo differential operators equipped with uncertain constraints coefficients and initial
conditions [39].

Here we develop an accurate scheme by using HWC technique for the solution of the HIV
infection of CD4+ T-cells. The main contributions of this work as:

• To develop efficient numerical scheme by utilizing HWC technique for HIV infection CD4+
T-cells

• To design numerical scheme using HWC technique
• To evaluate the efficacy of the established technique in some instances and compare the

results with other techniques Runge-Kutta, LADM-Pade [1], Bessel collocation technique
[2], PIA(1,1) [3], MVIM [4], DTM [7] and Galerkin technique [5] available in the literature



CMES, 2022, vol.131, no.2 641

In this article we find the numerical solution of first order model of the form [5]⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dT
dt

= λ−αT + rT
(

1− T + I
Tmax

)
− k∗VT ,

dI
dt

= k∗VT −βI ,

dV
dt

= N∗βI − γ V ,

(1)

with initial conditions:

T(0)= T0, I(0)= I0 and V(0)= V0. (2)

Here T(t), I(t), V(t) are used for concentration of uninfected cells, infected cells and free virus

particles of CD4+ T-cells by HIV in the blood. rT
(

1− T+I
Tmax

)
is logistic growth of the healthy

cells, Tmax is the most extreme level of cells in the human body, k is the steady rate which the
body produces cells, k∗VT is the frequency of HIV infection of healthy cells, k∗ > 0 is the rate of
virus infection, N∗β is the rate of virus production by contaminated cells, where N∗ is the average
number of particles of infection produced by the infected T-cell, and γ is the rate of death of
particles of the virus.

The paper is structured as: In Section 2, Haar functions are defined. HWC technique for
solution of HIV infection is given in Section 3. In Section 4 error estimation about the model is
given. In Section 5, one example is given. Conclusion is given in the last Section 6.

2 Haar Wavelet

Here we discuss Haar functions, integration of Haar functions and collocation points.

Definition 2.1. Scaling function on [α1,α2) is [40]

h1(t)=
{

1 for t ∈ [α1,α2),

0 elsewhere.
(3)

Mother wavelet on [α1,α2) is

h2(t)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 for t ∈
[
α1,

α1 +α2

2

)
,

−1 for t ∈
[
α1 +α2

2
,α2

)
,

0 elsewhere.

(4)

The other terms can be written as

hi(t)=

⎧⎪⎨
⎪⎩

1 for t ∈ [η1,η2),
−1 for t ∈ [η2,η3),
0 elsewhere,

(5)
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where η1 = α1 + (α2 − α1)
ζ
d ,η2 = α1 + (α2 − α1)

ζ+0.5
d ,η3 = α1 + (α2 − α1)

ζ+1
d , where d = 2r, and

r = 0, 1, . . . , d − 1. If we take interval [0, 1], then values of η1, η2 and η3 are: η1 = ζ
d , η2 = 1/2+ζ

d ,

η3 = 1+ζ
d . Any member u(t) in L2[0, 1), is written as u(t)= ∑∞

k=1 λkhk(t), we truncate this series is

u(t)≈ ∑N
k=1 λkhk(t).

Using the notation

pi,1(t)=
∫ t

0
hi(x)dx, (6)

and

pi,1(t)=

⎧⎪⎨
⎪⎩

t− ρ1 for t ∈ [η1,η2),
η3 − t for t ∈ [η2,η3),
0 elsewhere.

(7)

Generally,

pi,n(t)=
∫ t

0
pi,n−1(x)dx. (8)

Thus pi,n(t) is obtained as under [40]

pi,n(t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for t ∈ [0,ρ1),
(t− ρ1)

n

n!
for t ∈ [ρ1,ρ2),

[(t− ρ1)
n − 2(ρ1 − ρ2)

n]
n!

for t ∈ [ρ2,ρ3),
1
n!

[
(t− ρ1)

n − 2(ρ1 − ρ2)
n + (t− ρ3)

n]
, for t ∈ [ρ3, 1).

(9)

Definition 2.2. The [β1,β2] interval for HWC scheme is discretized as [40]

ti = β1 + (β2 −β1)
i− 1/2

2M
i = 1, 2, 3, 4, . . . , 2M = N. (10)

In the above Eq. (10), a collocation point (CP) are defined. Some of the recent work using
HWC technique can be seen in [41–47].

3 Numerical Method

The implementation of the HWC method is discussed in this section in order to find the HIV
model solution provided in Eq. (1). Using Haar functions, the derivative of the unknown function
in the method is approximated and the expression for the unknown function is obtained by using
initial condition and integration. By applying the Haar technique to Eq. (1) and putting the CPs,
we get a system of algebraic equations. The Broyden technique is used to find solution of this
system. At last, the approximate solution at CPs is obtained using these coefficients. We use the

symbols 	1 =
N∑

i=1
and 	2 =

M∑
i=1

.
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First, we consider that T ′(t), I ′(t) and V ′(t) are square integrable function and hence can be
written as

T ′(t)=	1aihi(t), I ′(t)=	1bihi(t) and V ′(t)=	1cihi(t). (11)

Integrating with respect to t, we have

TN(t)= T0 +	1aipi,1(t), IN(t)= I0 +	1bipi,1(t), and VN(t)= V0 +	1cipi,1(t). (12)

Putting Eq. (11) and Eq. (12) in Eq. (1), we have

	1aihi(t)= λ−α
(
T0 +	1aipi,1(t)

)− k∗ (
v0 +	1cipi,1(t)

) (
T0 +	1aipi,1(t)

)
+r

(
T0 +	1aipi,1(t)

)[
1−

(
T0 +	1aipi,1(t)

) (
I0 +	1bipi,1(t)

)
Tmax

]
,

	1bihi(t)= k∗ (
v0 +	1cipi,1(t)

) (
T0 +	1aipi,1(t)

)−β
(
I0 +	1bipi,1(t)

)
,

	1cihi(t)= N∗β
(
I0 +	1bipi,1(t)

)− γ
(
V0 +	1cipi,1(t)

)
,

by simplification we have

	1aihi(t)− λ+α
(
T0 +	1aipi,1(t)

)+ k∗ (
v0 +	1cipi,1(t)

) (
T0 +	1aipi,1(t)

)
−r

(
T0 +	1aipi,1(t)

)[
1−

(
T0 +	1aipi,1(t)

) (
I0 +	1bipi,1(t)

)
Tmax

]
= 0,

	1bihi(t)− k∗ (
v0 +	1cipi,1(t)

) (
T0 +	1aipi,1(t)

)+β
(

I0 +
∑N

i=1 bipi,1(t)
)
= 0,

	1cihi(t)−N∗β
(
I0 +	1bipi,1(t)

)+ γ
(
V0 +	1cipi,1(t)

) = 0,

putting the CPs (10), we have

F1,j = 	1ai hi(t)− λ+α
(
T0 +	1aipi,1(t)

)+ k∗ (
v0 +	1cipi,1(t)

) (
T0 +	1aipi,1(t)

)
−r

(
T0 +	1aipi,1(t)

)[
1−

(
T0 +	1aipi,1(t)

) (
I0 +	1bipi,1(t)

)
Tmax

]
,

F2,j =	1bihi(t)− k∗ (
v0 +	1cipi,1(t)

) (
T0 +	1aipi,1(t)

)+β
(
I0 +	1bipi,1(t)

)= 0,

F3,j =	1cihi(t)−N∗β
(
I0 +	1bipi,1(t)

)+ γ
(
V0 +	1cipi,1(t)

) = 0.

This is solved by Broyden’s method. Jacobian is

J = [Jjk]3N×3N , (13)
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where

Jjk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂F1,j

∂ak
= hk(tj)+αpk,1(tj)− rpk,1(tj)− k∗[V0pk,1(tj)+	1cipi,1(tj)pk,1(tj)

+ r
Tmax

[
(T0 +	1aipi,1(tj))2pk,1(tj)+ I0pk,1(tj)+ pk,1(tj)	1cipi,1(tj)

]
,

∂F1,j

∂bk
= T0pk,1(tj)+	1aipi,1(tj)pk,1(tj),

∂F1,j

∂ck
=−k∗T0pk,1(tj)+	1aipi,1(tj)pk,1(tj),

∂F2,j

∂ak
=−k∗V0pk,1(tj)

(
1+	1pk,1(tj)

)
,

∂F2,j

∂bk
= hk(tj)+βpk,1(tj),

∂F2,j

∂ck
=−k∗I0pk,1(tj)

(
1+	1pk,1(tj)

)
,

∂F3,j

∂ak
= 0,

∂F3,j

∂bk
=−N∗βpk,1(tj),

∂F3,j

∂ck
= hk(tj)+ γ pk,1(tj).

The solution of this gives the values of unknown coefficients ai’s, bi’s and ci’s. The required
solution TN(t), IN(t) and VN(t) at CPs is calculated by putting ai, bi ci’s in Eq. (12).

4 Error Estimation

Here, we study the residual error estimation [5] for HIV model (1) utilizing HWC technique.
The residual functions R1,N(t), R2,N(t) and R3,N(t) are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1,N(t)= T ′
N − λ+αTN − rTN

(
1− TN + IN

Tmax

)
+ k∗VNTN ,

R2,N(t)= I ′N − k∗VNTN +βIN ,

R3,N(t)= V ′
N −N∗βIN + γ VN ,

(14)

Define the error function as⎧⎪⎪⎨
⎪⎪⎩

e1,N(t)= T(t)−TN(t),

e2,N(t)= I(t)− IN(t),

e2,N(t)= V(t)−VN(t),

(15)

where T(t), I(t) and V(t) are exact solutions. So, we have⎧⎪⎪⎨
⎪⎪⎩

T(t)= e1,N(t)+TN(t),

I(t)= e2,N(t)+ IN(t),

V(t)= e3,N(t)+VN(t).

(16)
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Also, we can write⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T ′(t)−T ′
N(t)= [T(t)−TN(t)]′ = [

e1,N(t)
]′

I ′(t)− I ′N(t)= [I(t)− IN(t)]′ = [
e2,N(t)

]′
V ′(t)−V ′

N(t)= [V(t)−VN(t)]′ = [
e3,N(t)

]′ .
(17)

By subtracting system (14) from system (1), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T ′(t)−T ′
N(t)=−α [T(t)−TN(t)]+ r [T(t)−TN(t)]− r

Tmax

[
T2(t)−T2

N(t)+T(t)I(t)

−TN(t)IN(t)]− k∗ [V(t)T(t)−VN(t)TN(t)]−R1,N(t),

I ′(t)− I ′N(t)= k∗ [V(t)T(t)−VN(t)TN(t)]−β [I(t)− IN(t)]−R2,N(t),

V ′(t)−V ′
N(t)= N∗β [I(t)− IN(t)]− γ [V(t)−VN(t)]−R3,N(t).

(18)

By using systems (5)–(6) in Eq. (7) and simplifying, we obtain⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
e1,N(t)

]′ = −αe1,N(t)+ re1,N(t)− r
Tmax

[
e2

1,N(t)+ e1,N(t)e2,N(t)+ e1,N(t)IN + e2,N(t)TN

]
−k∗ [

e1,N(t)e3,N(t)+ e3,N(t)TN + e1,N(t)VN
]−R1,N(t),[

e2,N(t)
]′ = k∗ [

e1,N(t)e3,N(t)+ e3,N(t)TN + e1,N(t)VN
]−βe2,N(t)−R2,N(t),[

e3,N(t)
]′ = N∗βe2,N(t)− γ e3,N(t)−R3,N(t).

(19)

where e1,N(t), e2,N(t) and e3,N(t) are unknowns functions. The initial conditions for approximate
solution TN(t), IN(t) and VN(t) are

TN(0)= T0, IN(0)= I0 and VN(0)= V0, (20)

so initial conditions for system (19) are e1,N(0) = 0, e2,N(0) = 0 and e3,N(0) = 0, where e1,N(t),
e2,N(t) and e3,N(t) are estimated by e1,N,M(t), e2,N,M(t) and e3,N,M(t) the Haar wavelet technique.

Let
[
e1,N,M(t)

]′, [
e2,N,M(t)

]′ and
[
e3,N,M(t)

]′ are in L2[0, 1), so[
e1,N,M(t)

]′ =	2ξihi(t),
[
e2,N,M(t)

]′ =	2μihi(t) and
[
e3,N,M(t)

]′ =	2νihi(t). (21)

Integrating the above system (21), with respect to t we obtain the following expression:

e1,N,M(t)=	2ξipi,1(t), e2,N,M(t)=	2μipi,1(t), and e3,N,M(t)=	2νipi,1(t). (22)

Applying Haar approximations, we have

	2ξihi(t) = −α	2ξipi,1(t)− k∗ [
	2ξipi,1(t)	2νipi,1(t)+TN	2νipi,1(t)+VN	2ξipi,1(t)

]
− r

Tmax

[(
	2ξipi,1(t)

)2 +	2ξipi,1(t)	2μipi,1(t)+ IN	2ξipi,1(t)+TN	2μipi,1(t)
]
−R1,N(t),

	2μihi(t) = k∗ [
	2ξipi,1(t)	2νipi,1(t)+TN	2νipi,1(t)+VN	2ξipi,1(t)

]−β	2μipi,1(t)−R2,N(t),

	2νihi(t) = N∗β	2μipi,1(t)− γ	2νipi,1(t)−R3,N(t),
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After simplification, we have

F1,j=	2ξihi(t)+α	2ξipi,1(t)+ k∗ [
	2ξipi,1(t)	2νipi,1(t)+TN	2νipi,1(t)+VN	2ξipi,1(t)

]
+ r

Tmax

[(
	2ξipi,1(t)

)2 +	2ξipi,1(t)	2μipi,1(t)+ IN	2ξipi,1(t)+TN	2μipi,1(t)
]
+R1,N(t)= 0,

F2,j=	2μihi(t)− k∗ [
	2ξipi,1(t)	2νipi,1(t)+TN	2νipi,1(t)+VN	2ξipi,1(t)

]
+β	2μipi,1(t)+R2,N(t)= 0,

F3,j=	2νihi(t)−N∗β	2μipi,1(t)+ γ	2νipi,1(t)+R3,N(t),

putting the discrete CPs (10), we obtain

F1,j=	2ξihi(tj)+α	2ξipi,1(tj)+ k∗ [
	2ξipi,1(tj)	2νipi,1(tj)+TN	2νipi,1(tj)+VN	2ξipi,1(tj)

]
+ r

Tmax

[(
	2ξipi,1(tj)

)2 +	2ξipi,1(tj)	2μipi,1(tj)+ IN	2ξipi,1(tj)+TN	2μipi,1(tj)
]
+R1,N(tj),

F2,j=	2μihi(tj)− k∗ [
	2ξipi,1(tj)	2νipi,1(tj)+TN	2νipi,1(tj)+VN	2ξipi,1(tj)

]
+β	2μipi,1(tj)+R2,N(tj),

F3,j=	2νihi(tj)−N∗β	2μipi,1(tj)+ γ	2νipi,1(tj)+R3,N(tj).

Broyden method is used for solution of above system. Jacobian is

J = [Jjk]3M×3M , (23)

where

Jjk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂F1,j

∂ξk
= hk(tj)+αpk,1(tj)+ k∗ [

pk,1(tj)	2νipi,1(tj)+VNpk,1(tj)
]

+ r
Tmax

[
2	2ξipi,1(tj)pk,1(tj)+ pk,1(tj)	2pi,1(tj)+ INpk,1(tj)

]
,

∂F1,j

∂μk
= r

Tmax

[
	2ξipi,1(tj)pk,1(tj)+TNpk,1(tj)

]
,

∂F1,j

∂νk
=−k∗ [

	2xiipi,1(tj)pk,1(tj)+TNpk,1(tj)
]

,

∂F2,j

∂ξk
=−k∗ [

pk,1(tj)	2νpk,1(tj)+VNpk,1(tj)
]

,

∂F2,j

∂μk
= hk(tj)+βpk,1(tj),

∂F2,j

∂νk
=−k∗ [

pk,1(tj)	2ξipi,1(tj)+TNpk,1(tj)
]

,

∂F3,j

∂ξk
= 0,

∂F3,j

∂μk
=−N∗βpk,1(tj),

∂F3,j

∂νk
= hk(tj)+ γ pk,1(tj).
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The unknown coefficients ξi, μi and νi are obtained from the solution of this system. The
approximate solution at discrete CPs is obtained by plugging ξi, νi νi i = 1, 2, . . .M in Eq. (22).
Substituting the values of e1,N,M(t), e2,N,M(t) and e3,N,M(t) in system (16), we get the required
solution.

5 Numerical Applications

The performance of the HWC technique is tested on example in this section. The numerical
results are compared with Runge-Kutta technique, Bessel collocation technique, LADM-Pade and
Galerkin technique available in the literature.

Problem 1. Consider the following system [5]

dT
dt

= 0.1− 0.02+T
(

1− T + I
1500

)
− 0.0027VT

dI
dt

=−0.0027VT − 0e.3I ,

dV
dt

= 10(0.3)I − 2.4V ,

(24)

with T(0)= 0.1, I(0)= 0 and V(0)= 0.1. The interval of study is 0 ≤ t ≤ 1.

The first order derivatives dT
dt , dI

dt and dV
dt in above system (24) are approximated by Haar

functions. Let dT
dt , dI

dt and dV
dt are square integrable functions then

dT(t)
dt

=	1aihi(t),
dI(t)

dt
=	1bihi(t) and

dV(t)
dt

=	1cihi(t). (25)

By using initial conditions and integration, we obtain the approximate solution of this system
in terms of Haar functions

T(t)= 0.1+	1aipi,1(t), I(t)=	1bipi,1(t), and V(t)= 0.1+	1cipi,1(t). (26)

Putting these approximations and CPs in above system (24), we obtain a system of nonlinear
algebraic equations which is then solved by the method of Broyden’s. Error estimation is also
calculated in a similar way, which aims to reduce the error of numerical solution. The residual
functions R1,N(t), R2,N(t) and R3,N(t) are calculated as discussed in Eq. (14). The errors functions
e1,N(t), e2,N(t), and e3,N(t) are obtained as discussed in Eq. (15).

The error functions for distinct CPs and distinct values of time are given in Tables 1–3.
The error functions obtained for variable N = 3 at different values of t are compared with
Laplace Adomian decomposition technique, Runge-Kutta technique, modified variational iteration
technique, Pade approximation, the perturbation-iteration algorithm, Bessel collocation technique,
differential transform technique and exponential Galerkin technique available in literature. From
the tables we see that as N increases, the values of our results near to those of the other
techniques. This show that our approximate solution become accurate as the number of discrete
CPs N increases. Even a batter accuracy is obtained by taking more discrete CPs. The graph of
numerical solution is also given in Fig. 1. The estimated results of error functions for distinct
number of CPs are shown in Fig. 2. Due to the simplicity of the Haar wavelet it is effective
for solution of the first-order of HIV infection CD4+ T-Cells model. However, HWC scheme
has disadvantages too. This method use constant box functions and due to this we need a
large number of collocation points in order to achieve better accuracy. This disadvantage can
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be overcome if Haar wavelet is replaced with some other wavelets having better approximating
properties.

Table 1: Comparison for uninfected cells T(t)

t Runge-Kutta LADM-Pade Bessel coll. PIA(1,1) MVIM
[1] N = 8 [2] [3] [4]

0.2 0.2087297222 0.2088072731 0.2038616561 0.2087295073 0.2088080868
0.4 0.4059409955 0.4061052625 0.3803309335 0.4059404993 0.4062407949
0.6 0.7635801781 0.7611467713 0.6954623767 0.7635790156 0.7644287245
0.8 1.4119574363 1.3773198590 1.2759624442 1.4119543417 1.4140941730
1.0 2.5867778755 2.3291697610 2.3832277428 2.5867690583 2.5919210760

t DTM Galerkin Galerkin Galerkin Our solution
N = 6 [7] technique technique technique N = 3

N = 3 [5] N = 4 [5] N = 5 [5] (HWC method)

0.2 0.211648 0.2722229510 0.2345157340 0.1982953765 0.2073431784
0.4 0.422685 0.3065308713 0.4201803666 0.4183153468 0.3930921357
0.6 0.817940 0.7075440591 0.7255920466 0.7603331972 0.6453087042
0.8 1.546211 1.5297610198 1.4170402360 1.4077147917 1.3978540981
1.0 2.854053 2.6678673734 2.5916251711 2.5915947135 2.5709802316

t Present technique
N = 3 (Results
of errors)

0.2 3.336883e–004
0.4 3.373781e–004
0.6 2.869852e–003
0.8 1.341768e–003
1.0 1.130869e–002

Table 2: Comparison for infected I(t)

t Runge-Kutta LADM-Pade Bessel coll. PIA(1,1) [3] MVIM [4]
[1] N = 8 [2]

0.2 0.0000060315 0.0000060327 0.0000062478 0.0000060315 0.0000060327
0.4 0.0000131530 0.0000131591 0.0000129355 0.0000131530 0.0000131583
0.6 0.0000212106 0.0000212683 0.0000203526 0.0000212101 0.0000212233
0.8 0.0000301518 0.0000300691 0.0000283730 0.0000301480 0.0000301745
1.0 0.0000399942 0.0000398736 0.0000369084 0.0000399785 0.0000400254

t DTM Galerkin Galerkin Galerkin Our solution
N = 6 [7] technique technique technique N = 3

N = 3 [5] N = 4 [5] N = 5 [5] (HWC method)

(Continued)
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Table 2 (continued)

0.2 0.0000063666 0.0000091673 0.0000058251 0.0000059641 0.0000070416
0.4 0.0000139924 0.0000155229 0.0000134051 0.0000131340 0.0000140251
0.6 0.0000226514 0.0000228459 0.0000213405 0.0000212682 0.0000230126
0.8 0.0000332836 0.0000318486 0.0000301313 0.0000301754 0.0000309231
1.0 0.0000485399 0.0000421057 0.0000400369 0.0000400377 0.0000403894

t Present
technique
N = 3 (Results
of errors)

0.2 1.688238e–008
0.4 1.754047e–008
0.6 1.732461e–006
0.8 1.865676e–006
1.0 1.961419e–006

Table 3: Comparison for free virus particles V(t)

t Runge-Kutta LADM-Pade Bessel coll. PIA(1,1) MVIM
[1] N = 8 [2] [3] [4]

0.2 0.0618798121 0.0618799602 0.0618799185 0.0618796999 0.0618799087
0.4 0.0382948730 0.0383132488 0.0382949349 0.0382939096 0.0382959576
0.6 0.0237045402 0.0243917434 0.0237043186 0.0237016917 0.0237102948
0.8 0.0146803506 0.0099672189 0.0146795698 0.0146744145 0.0147004190
1.0 0.0091008270 0.0033050764 0.0090993030 0.0090905052 0.0091572387

t DTM Galerkin Galerkin Galerkin Our solution
N = 6 [7] technique technique technique N = 3

N = 3 [5] N = 4 [5] N = 5 [5] (HWC method)

0.2 0.061880 0.0618823466 0.0618790041 0.0618799035 0.0617912741
0.4 0.038309 0.0383077329 0.0382950148 0.0382947890 0.0380026874
0.6 0.023920 0.0237055266 0.0237053683 0.0237046061 0.0236011879
0.8 0.016212 0.0146708169 0.0146798882 0.0146803810 0.0139672890
1.0 0.016050 0.0091056907 0.0091009339 0.0091008486 0.0089053621

t Present technique
N = 3 (Results
of errors)

0.2 1.421018e–014
0.4 1.854715e–014
0.6 1.908546e–014
0.8 2.842172e–014
1.0 2.943048e–014
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Figure 1: Numerical solution of problem 1
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Figure 2: Estimated error functions for problem 1

6 Conclusion

Haar collocation scheme is developed for the solution of the HIV CD4+ T-cells model. Also,
we discussed a procedure known as residual error estimation, whose aim is to get better arrange-
ments utilizing the obtained solution. The technique is tested on one example, and the results are
compared with other methods available in the literature. The comparison of the present HWC
technique with Runge-Kutta technique, Bessel collocation technique, LADM-Pade and Galerkin
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technique is given. The results demonstrate that Haar technique is effective and precise for distinct
numbers of CPs. The results show that taking the large value of variable N, the HWC technique
give the accurate results of the numerical solution. The error functions using various numbers of
CPs are also calculated and reported in the table. From results, it is seen that proposed technique
gives good results for this model. The proposed technique is easily implemented in any software
packages. MATLAB software is used to obtain the numerical results.
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