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ABSTRACT

In the “shared manufacturing” environment, based on fairness, shared manufacturing platforms often require
manufacturing service enterprises to arrange production according to the principle of “order first, finish first”
which leads to a series of scheduling problems with fixed processing sequences. In this paper, two two-machine
hybrid flow-shop problems with fixed processing sequences are studied. Each job has two tasks. The first task is
flexible, which can be processed on either of the two machines, and the second task must be processed on the
second machine after the first task is completed. We consider two objective functions: to minimize the makespan
and to minimize the total weighted completion time. First, we show the problem for any one of the two objectives is
ordinary NP-hard by polynomial-time Turing Reduction. Then, using the Continuous Processing Module (CPM),
we design a dynamic programming algorithm for each case and calculate the time complexity of each algorithm.
Finally, numerical experiments are used to analyze the effect of dynamic programming algorithms in practical
operations. Comparative experiments show that these dynamic programming algorithms have comprehensive
advantages over the branch and bound algorithm (a classical exact algorithm) and the discrete harmony search
algorithm (a high-performance heuristic algorithm).
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Hybrid flow-shop; dynamic programming algorithm; computational complexity; numerical experiments;
shared manufacturing

1 Introduction

1.1 Problem Statement
In this paper, we study two two-machine hybrid flow-shop scheduling problems with fixed

processing sequences. In this problem, a set of n jobs J = {J1,J2, · · · ,Jn} is processed in a two-
machine two-stage flow-shop with machine M1 at Stage 1 and machine M2 at Stage 2. Each job
Ji has two tasks Ai and Bi, where task Ai is flexible which can be processed on either of the two
machines (M1 and M2) for ai time units, and task Bi is inflexible which must be processed on
M2 for bi time units. Task Bi cannot be processed until task Ai is completed, and pre-emption
is not allowed. The processing order of the jobs is given in advance. Without losing generality,
we assume that the jobs are processed according to the subscript order, i.e., for any two tasks
processed on the same machine, the task with a small subscript must be completed before the task
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with a large subscript. The objectives are to minimize the makespan (the maximum completion
time) and minimize the total weighted completion time.

Hybrid flow-shop problems are widely used in the traditional manufacturing industry [1], com-
puter graphics processing [2], medical operation scheduling [3], and other fields. For the research
on the hybrid flow-shop problem, please refer to the latest review [4]. A typical application
scenario of the two-stage hybrid flow-shop scheduling is as follows. In integrated circuit manufac-
turing or mechanical manufacturing, product processing usually includes two stages: preliminary
processing and finishing processing. The factories are equipped with two sets of equipment, one
set of low-precision equipment for preliminary processing and the other set of high-precision
equipment for finishing processing. However, when necessary, the high-precision equipment can
also be degraded for preliminary processing. Reasonably arrange the processing sequence and
processing machines can make all products complete as soon as possible.

The scheduling problems with fixed processing sequences refer to the scheduling problem
in which the processing order of the jobs is determined in advance. This kind of problem is
originally mainly applied to the stock control systems [5]. In recent years, with the integration
of the sharing economy into the traditional manufacturing industry, there has been a shared
manufacturing mode that shares manufacturing resources and demands on the network platform
and matches supply and demand through advanced algorithms [6]. “Alibaba Taobao Factory” and
“Aerospace Cooperative Manufacturing Network” in China, “Wanju-gun Local Food Processing
Center” in Korea, and many other share manufacturing practices have been vigorously developed.
Based on fairness, shared manufacturing platforms often require manufacturing service enterprises
to arrange production according to the principle of “order first, finish first” which forms a con-
straint of fixed processing sequences. Suppose the two-stage hybrid flow-shop scheduling problem
with two machines described above is considered in the shared manufacturing environment. It is
equivalent to adding the constraint of fixed processing sequences in the above typical application
scenario. Obviously, the mathematical model of this problem is the scheduling model described in
the first paragraph of this section.

1.2 Related Problems and Results
Wei et al. [2] first considered this two-stage hybrid flow-shop scheduling problem without fixed

processing sequences constraint (denoted by SHFS) in 2005. They proved that this problem is
ordinary NP-hard and presented an approximation algorithm with polynomial-time computational
complexity whose worst-case ratio is 2. For the same problem, Jiang et al. [7] designed an
improved approximation algorithm whose worst-case ratio is 1.5. Recently, for the case where
every job has a deadline and must be processed in a given order, Wei et al. [8] proposed efficient
algorithms.

The research results of other hybrid flow-shop scheduling problems with two stages close to
the problems studied in this paper are as follows. A special hybrid flow-shop scheduling problem
with two machines was considered by Vairaktarakis et al. [1]. In their problem, the two tasks
of each job can be processed on any one of the two machines, i.e., there are four processing
methods in total. An excellent approximate algorithm was presented whose worst-case ratio is only
1.618. Zhang et al. [9] studied another similar problem where the later task of each job can be
jointly processed by multiple machines, but the former task cannot. An approximate algorithm
was presented in their paper whose worst-case ratio is only 2 − ε. For the special case of the
above problem raised by Zhang et al. [9], an improved approximation algorithm was presented by
Peng et al. [10–12] respectively studied two hybrid flow-shop problems where all batching machines
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are at two stages. The objective function of the former problem considered by Wang et al. [11] is
to minimize the total weighted completion time. Mixed-integer linear programming (MILP) was
constructed, and an efficient heuristic algorithm was presented. The objective of the latter problem
studied by Tan et al. [12] is to minimize the total weighted delay time. They proposed an iterative
decomposition method to solve it. Some scholars have also studied the two-stage hybrid flow-shop
where no buffer capacity exists between the two stages. For the latest research results on such
problems, please refer to the research of Dong et al. [13–15]. For other latest studies on two-stage
hybrid flow-shop under different parameter conditions and objective functions, please refer to Feng
et al. [16–21], etc. However, these problems do not consider the constraint of fixed processing
sequences.

The earliest scheduling problem with fixed processing sequences was presented by Shafran-
sky et al. [22]. They considered the model with fixed processing sequences in an open-shop
problem, showed this problem is NP-hard in the strong sense, and proposed a very accurate
polynomial-time approximate algorithm whose worst-case ratio is only 1.25. Lin et al. [5] studied a
two-stage differentiation flow-shop to minimize the total completion time and proposed a dynamic
programming algorithm. Hwang et al. [23,24] firstly studied the general two-machine flow-shop
problem with a given sequence and presented an optimal algorithm for each of the two special
cases. Then, they studied the general flow-shop scheduling with batching machines and proposed
optimal algorithms for several models. With the gradual emergence of the application value of
the scheduling problem with fixed processing sequences, the related research has increased a lot
in recent years. Lin et al. [25] considered a relocation scheduling problem with fixed processing
sequences corresponding to resource-constrained scheduling on two parallel dedicated machines.
They proposed polynomial-time optimal algorithms or approximate algorithms for several models
with different objective functions. Halman et al. [26] further gave a fully polynomial-time approxi-
mation scheme for the above problem. Cheref et al. [27] studied a scheduling problem considering
production and delivery with a given sequence. They showed that this problem is NP-hard and
proposed a dynamic programming algorithm with good effect. A server scheduling problem on
parallel dedicated machines with fixed processing sequences was considered by Cheng et al. [28,29].
For the two-machine case, a polynomial-time approximation algorithm was presented; for the case
where each loading time is unit, two heuristic algorithms were proposed; and for the general
case, a pseudo-polynomial algorithm was presented. However, the two-stage hybrid flow-shop
scheduling with fixed processing sequences and the goal of minimizing makespan or total weighted
completion time has not been considered yet.

1.3 Our Results
In the “shared manufacturing” environment, we introduce the constraint of fixed processing

sequences into the two-machine two-stage hybrid flow-shop scheduling problem SHFS. We con-
sider two objectives of this problem: to minimize the makespan and to minimize the total weighted
completion time. For each problem, we analyze the computational complexity and present a
dynamic programming algorithm. According to the three-field representation, these two problems
can be expressed in the following form:

(1) FS2|FJS,Hybrid|Cmax,

(2) FS2|FJS,Hybrid|
∑
wiCi,

which are denoted by SHFSFC and SHFSFW.
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Firstly, we give the structural characteristics of one optimal solution and prove that these
two problems are both ordinary NP-hard. Then we propose the dynamic programming algorithms
and calculate their time complexity. Finally, we show the advantages of these algorithms over the
existing exact algorithms and heuristic algorithms in practical efficiency and effect by numerical
experiments.

The rest of this paper is arranged as follows: In Section 2, we first give the basic symbolic
assumptions and the characteristics of one optimal solution, then analyze the computational com-
plexity of the problems; In Sections 3 and 4, the dynamic programming algorithms for SHFSFC
and SHFSFW are proposed, respectively; In Section 5, we compare the dynamic programming
algorithms presented in this paper with the existing algorithms through numerical experiments to
obtain the actual efficiency and effect of these algorithms. Finally, we conclude the paper and give
the future research ideas in Section 6.

2 Symbolic Assumptions, Structure of One Optimal Schedule, and Complexity of the Problems

The basic symbols to be used in the following are given, properties of one optimal schedule of
SHFSFC (SHFSFW) are analyzed, and the computational complexity of each problem is proved
in this section.

2.1 Symbolic Hypothesis
The symbols and their meanings to be used below are as follows:

• ai: The processing time of task Ai (the first task of job Ji) on machine M1 or M2;
• bi: The processing time of task Bi (the second task of job Ji) on machine M2;
• Ci: The completion time of job Ji;
• wi: The weight of job Ji;
• V1: The job set {Ji|Ai is processed on machine M1};
• V2: The job set {Ji|Ai is processed on machine M2}.

2.2 Structure of Optimal Scheduling
The two problems studied in this paper do not consider the buffer capacity between the two

stages. That is, the buffer capacity is deemed to be infinite. So the tasks processed on machine M1
can be processed as early as possible, i.e., there is no idle on M1 until completion. If job Ji ∈V1,
task Bi cannot be processed until task Ai is completed. So, there may be an idle time on machine
M2 before task Bi starts to be processed. But if job Ji ∈ V2, task Ai and Bi can be processed
immediately after task Bi−1 on M2 without any idle time.

From the above analysis, it is easy to find that the following proposition holds whether the
objective is to minimize makespan or total weighted completion time.

Proposition 2.1 There exists one optimal schedule of SHFSFC (SHFSFW) that satisfies the
following properties at the same time:

(1) Task A1 is processed on M2, and task An is processed on M1;
(2) M1 has no idle time until processing is complete;
(3) There is no idle time on M2 between any task of the job in V2 and its previous task;
(4) There is no idle time on M2 between the second task Bi of job Ji ∈ V1 and its previous

task, or the starting processing time of Bi is exactly equal to the completion time of Ai.
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Proof:

(1) Suppose φ1 is an optimal schedule of SHFSFC (SHFSFW) where A1 is processed on M1
and An is processed on M2. We construct a new schedule ϕ1 based on φ1 as follows:
Change the processing mode of J1 and Jn, i.e., A1 and B1 are all processed on M2 and An
is processed on M1; Keep other task processing arrangements unchanged. Since B1 cannot
be processed on M2 until A1 is completed on M1 in φ1, there is an idle time of a1 time
units before task B1 starts to be processed on M2 in φ1. Therefore A1 can be processed
on the above idle time on M2 in ϕ1 without affecting the completion time of B1. And
since Jn is the last job, no task is processed on M1 after the starting processing time of
An (denoted by S(An)) in φ1. So An can be processed on M1 from S(An) to S(An)+ an in
ϕ1 without affecting the completion time of Bn on M2. Obviously, ϕ1 is feasible, and the
makespan and the total weighted completion time in ϕ1 are all equal to them in φ1. So we
have that ϕ1 is also an optimal schedule which implies property (1) holds.

(2) Suppose φ2 is an optimal schedule of SHFSFC (SHFSFW) satisfying property (1) where
there exists an idle time between two successive processed tasks Ai and Aj on machine
M1. Next, we construct a new schedule ϕ2 based on φ2 as follows: Advance the start
processing time of task Aj to the completion time of task Ai so that there is no idle
time between them; Keep other task processing arrangements unchanged. Since the buffer
capacity between two stages is not considered, the task Aj is processed in advance, and
task Bj remains intact, the starting processing time of Bj is still larger than the completion
time of Aj, i.e., ϕ2 is still feasible. Considering that the processing schedules of all second
tasks have not changed in ϕ2, the completion time of each job is the same in φ2 and ϕ2.
For φ2 is an optimal schedule of SHFSFC (SHFSFW), ϕ2 is also an optimal schedule. On
M1, by a similar method, all idle times before M1 finishing processing can be eliminated,
and the schedule is still optimal, which implies property (1) and (2) hold simultaneously.

(3) Suppose φ3 is an optimal schedule of SHFSFC (SHFSFW) satisfying property (1) and
(2) where there is an idle time on M2 between the task Ai (or Bi) of job Ji ∈ V2 and its
previous task. Next, we construct a new schedule ϕ3 based on φ3 as follows: Advance the
start processing time of task Ai (or Bi) to the completion time of its previous task on
M2, so that there is no idle time between them; Keep other task processing arrangements
unchanged. Since the processing arrangements of the jobs in V1 have not changed, ϕ3 is
feasible. And for the completion time of the job in ϕ3 is equal to or less than that in
φ3, the makespan and the total weighted completion time in ϕ3 are all less than or equal
to them in φ3. According that φ3 is an optimal schedule, ϕ3 is also an optimal schedule.
Obviously, by a similar method, all idle times on M2 between any task of the job in V2
and its previous task can be eliminated, and the schedule is still optimal, which implies
property (1), (2), and (3) hold at the same time.

(4) Suppose φ4 is an optimal schedule of SHFSFC (SHFSFW) satisfying property (1), (2), and
(3) where there is an idle time on M2 between the second task Bi of the job Ji ∈V1 and
its previous task, and the starting processing time of Bi is larger than the completion time
of Ai. Next, we also construct a new schedule ϕ4 based on φ4 as follows: Advance the
start processing time of task Bi to the larger value of the completion time of its previous
task on M2 and the one of Ai, so that there is no idle time between Bi and its previous
task or the starting processing time of Bi is exactly equal to the completion time of Ai;
Keep other task processing arrangements unchanged. Obviously, through a simple analysis
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similar to the proof of (2) or (3), we can have that ϕ4 is also an optimal schedule and
then get property (1), (2), (3), and (4) hold at the same time.

To sum up, we can get Proposition 2.1 holds.

According to Proposition 2.1, it is easy to obtain there exists an optimal schedule of SHFSFC
(or SHFSFW), which is shown in Fig. 1 below. That is, there exists an optimal schedule of
SHFSFC (or SHFSFW) in which A1 and An are processed on M1 and M2, respectively, and
the continuous processing tasks are divided by some idle times before the second tasks of some
jobs in V1 on M2. These continuous processing tasks are called Continuous Processing Modules
(denoted by CPM) in the following study, which will help design dynamic programming algorithms
in Sections 3 and 4.

Figure 1: The structure of an optimal schedule

2.3 Computational Complexity of the Problems
Next, we prove that SHFSFC and SHFSFW are both NP-hard by Turing Reduction.

Theorem 2.2 Problem SHFSFC is NP-hard, even if the processing time of the second task of
every job is 0, i.e., bi = 0 for all i.

Proof: First, propose an Instance I of a well-known NP-hard problem Partition Prob-

lem: There is a set of n integers E = {e1, e2, · · · , en} and an integer C = 1
2

n∑
i=1

ei. Can set

E be divided into two disjoint subsets E1 and E2, such that E1 ∩ E2 = ∅, E1 ∪ E2=E, and∑
ei∈E1

ei=
∑

ei∈E2
ei=C ?

Then, based on Instance I, we construct an Instance II of SHFSFC: There is a job set of
n+ 2 jobs J = {J0,J1,J2, · · · ,Jn,Jn+1}, where

(1) J0: a0 =C− ε and b0 = ε;

(2) Ji: ai = ei and bi = ε (i= 1, 2, · · ·n);
(3) Jn+1: an+1 =C+ nε and bn+1 = 0 (ε is a number much smaller than C).

Is there a feasible schedule of Instance II that makes makespan Cmax = 2C+ nε ?

Now, let’s prove that the solutions of Instances I and II can be derived from each other.
Suppose (E1,E2) is a solution of Instance I, i.e., E1 and E2 satisfy E1 ∩ E2 = ∅, E1 ∪ E2=E,
and

∑
ei∈E1

ei =
∑

ei∈E2
ei=C. Next, we construct the solution of Instance II as follows: Let V1 =

{Ji|ei ∈ E1}∪ {Jn+1} and V2 = {J0}∪ {Ji|ei ∈E2}. It is easy to have Cmax =C+∑
Ji∈V2/{J0} ai+ nε =

C+∑
ei∈E2

ei+ nε = 2C+ nε, which implies (V1,V2) is a solution of Instance II.

Suppose (V1,V2) is a solution of Instance II. Let’s first prove that J0 must belong to set V2,
i.e., the task A0 must be processed on M2. If A0 is processed on M1, M2 has an idle time from
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time 0 to time a0 (= C − ε). So, after time C − ε, the total processing time of the rest tasks to

be processed by two machines is
∑n+1

i=0 (ai+ bi)− (C− ε) = 3C+ (2n+ 1)ε. We can easily get the
makespan is at least (C − ε) + 1/2 (3C + (2n+ 1)ε) = 5/2 C + nε − 1/2 ε > 2C + nε, which is a
contradiction with Cmax = 2C+ nε. Therefore, we have J0 ∈V2.

Next, we prove that Jn+1 must belong to set V1, i.e., task An+1 must be processed on M1. If
An+1 is processed on M2, no task can be processed on machine M1 after the starting processing
time of task An+1. So, before the starting processing time of task An+1, the total processing time
of the tasks to be processed by two machines is (4C+2nε)− (C+nε)= 3C+nε. We can easily get
the makespan is at least 1/2 (3C+ nε)+ an+1 + bn+1 = 1/2 (3C + nε)+C + nε ≥ 5/2C + 3/2 nε >

2C+ nε which is a contradiction with Cmax = 2C+ nε. Therefore, we have Jn+1 ∈V1.

Considering that Cmax = 2C + nε and the total processing time of all jobs is 4C + 2nε, it
is easy to have that each machine’s load is 2C + nε. And since Jn+1 ∈ V1, the total process-
ing time of the tasks processed on M1 except An+1 is 2C + nε − (C + nε) = C, i.e., we have∑

Ji∈V1/{Jn+1} ai=
∑

Ji∈V1/{Jn+1} ei = C. Similarly, we can have that the total processing time of the

tasks processed on M2 except A0 and the second tasks of all jobs is 2C + nε − C − nε = C,
i.e., we have

∑
Ji∈V2/{J0} ai=

∑
Ji∈V2/{J0} ei = C. Now we let E1 = {ei|Ji ∈V1/{Jn+1}} and E2 =

{ei|Ji ∈V2/{J0}} . Obviously, we have
∑

ei∈E1
ei = C and

∑
ei∈E2

ei = C, which implies (E1,E2) is a
solution of Instance I.

It is known that Partition Problem is NP-hard, so it is easy to have that SHFSFC is also
NP-hard.

Obviously, the above proof process still holds when ε = 0, so it can be obtained that Theorem
2.2 holds even if the processing time of the second task for every job is 0.

Theorem 2.3 SHFSFW is NP-hard.

Proof: Considering that the jobs are processed in subscript order, we have Cmax =Cn. So when
w1 = w2 = · · · = wn−1 = 0, wn = 1, problem SHFSFC is a special case of problem SHFSFW. We
have proved that SHFSFC is NP-hard, so SHFSFW is also NP-hard.

3 A Dynamic Programming Algorithm of Problem SHFSFC

According to Proposition 2.1, there is an optimal schedule of Problem SHFSFC, which
is composed of several continuous processing modules and the idle times between continuous
processing modules. Therefore, the following dynamic programming algorithm includes two stages:
Construct the optimal continuous processing modules and connect the optimal continuous pro-
cessing modules through idle times to form an optimal schedule. Firstly, the strict definition of
continuous processing module for SHFSFC is given:

Definition 3.1 A sub-schedule consisting of a job subset {Ji, Ji+1, · · · , Jj} is called a contin-
uous processing module of Problem SHFSFC if it satisfies the following conditions (see Fig. 2),
denoted by four elements CPM(m, i, j, l).

(1) The first task of job JiAi is processed on Mm (m= 1 or 2);
(2) No matter on M1 or M2, there is no idle time between any two continuously processed

tasks;
(3) The difference between the complete time of subset {Ji, Ji+1, · · · , Jj} on M1 and M2 is

equal to l.
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Figure 2: The continuous processing module(1, i, j, l)

It is easy to see that CPM(m, i, j, l) can be constructed by CPM(m, i, j − 1, l′) using two
different methods (as shown in Fig. 3). The first method to get CPM(m, i, j, l) is to add job
Jj ∈ V1 to CPM(m, i, j− 1, l′) (see Fig. 3a). And the second method to get CPM(m, i, j, l) is to
add job Jj ∈ V2 to CPM(m, i, j− 1, l′) (see Fig. 3b). We assume that f (m, i, j, l) is the minimum
load generated by the continuous processing module on machine M1 composed of job subset
{Ji, Ji+1, · · · , Jj}.

Figure 3: The two ways from CPM(1, i, j− 1, l′) to CPM(1, i, j, l) as shown in (a) and (b)

For the convenience of narration, a symbolic function is defined below:

Definition 3.2 Symbolic function σ(m) is defined as follows:

σ(m)=
{
0, when m= 1;
1, when m= 2;

m ∈ {1, 2}.

When i < j, according to the definition of CPM(m, i, j, l), it is easy to get the following
formulas hold:

aiσ(m)+
j∑
t=i

bt−
j∑

t=i+1

at ≤ l; (1)
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l ≤ aiσ(m)+
j∑
t=i

bt+
j∑

t=i+1

at; (2)

l ≥ bj. (3)

In the following discussion, we let

l=max

⎧⎨
⎩bj, aiσ(m)+

j∑
t=i

bt−
j∑

t=i+1

at

⎫⎬
⎭ ,

l= aiσ(m)+
j∑
t=i

bt+
j∑

t=i+1

at.

Obviously, in the sub-schedule composed of job subset {Ji, Ji+1, · · · , Jj}, the difference

in completion time between two machines l must be obtained in the interval
[
l l

]
. The maximum

completion time of CPM(m, i, j, l) is f (m, i, j, l)+l. So, when l is fixed, minimizing the maximum
completion time is equal to minimizing f (m, i, j, l). Therefore the optimal continuous process-
ing module is obtained when f (m, i, j, l) is minimum. The dynamic programming algorithm for
calculating the load f (m, i, j, l) of the optimal CPM(m, i, j, l) on machine M1 is given below:

Dynamic Programming Algorithm CPM(C):

Initial Conditions:

f (m, i, j, l)=
⎧⎨
⎩
ai, whenm= 1, i= j, l = bi;
0, whenm= 2, i= j, l = ai+ bi;
+∞ otherwise.

(4)

Recurrence Relation:

The parameters m, i, j, l respectively satisfy m ∈ {1, 2}, 1≤ i< j≤ n, l ≤ l ≤ l.

(1) When Aj is processed on M1 (see Fig. 3a),

f1 = f (m, i, j− 1, l+ aj − bj)+ aj;

(2) When Aj is processed on M2 (see Fig. 3b),

f2 =
{
f (m, i, j− 1, l− aj− bj) when l ≥ aj+ bj;
+∞ otherwise.

Recurrence Formula: f (m, i, j, l)=min
{
f1, f2

}
.

The initial conditions and recurrence formula in dynamic programming algorithm CPM(C)
are clearly valid. So we mainly analyze the recurrence relation below. Given a set of required
parameters m, i, j, l, the load generated by the optimal CPM(m, i, j, l) on M1 f (m, i, j, l) can be
obtained by two different methods. The first method is to put task Aj on M1 and task Bj on M2
(as shown in Fig. 3a). So we have l′ + bj = l + aj which implies l′ = l + aj − bj, subject to l′ ≥ aj,
i.e., l ≥ bj. According to the value range of l, we have l ≥ bj always holds. Therefore the relation
(1) in Recurrence Relation holds. The other method is to put Aj and Bj both on M2 (as shown
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in Fig. 3b). So we have l = l′ +aj+bj which implies l′ = l−aj−bj, subject to l′ ≥ 0, i.e., l ≥ aj+bj.
Therefore the relation (2) in Recurrence Relation holds.

After the optimal continuous processing modules are constructed, the whole schedule can
be constructed by recursively connecting these optimal continuous processing modules. It should
be noted that every two continuous optimal continuous processing modules are separated by
an idle time on M2. First, we let the Partial Schedule (m, i) be a sub-schedule of the job set
{Ji, Ji+1, · · · , Jn}, denoted by PS(m, i), where the first job Ji ∈Vm, m ∈ {1, 2}. Then let g(m, i) be
the minimum makespan of PS(m, i). Next, we give a dynamic programming algorithm to calculate
the makespan g(m, i) of the optimal PS(m, i). For the convenience of narration, we set up a virtual
job Jn+1 with processing time an+1 = bn+1 =+∞.

Dynamic Programming Algorithm DP(C):

Initial Conditions:

g(m,n+ 1)= 0, m= 1, 2;

Recurrence Relation:

The parameters m, i, respectively, satisfy m ∈ {1, 2}, 1≤ i≤ n.

g=
⎧⎨
⎩
f (m, i, j, l)+ l

⌊
j
n

⌋
+ g(1, j+ 1) when l< aj+1;

+∞ otherwise.
(5)

Recurrence Formula: g(m, i)=min i≤j≤n
l≤l≤l

{g}.

Target Value: minCmax =minm∈{1,2}{g(m, 1)}.
The initial conditions, recurrence formula, and target value in dynamic programming algo-

rithm DP(C) are clearly valid. So we also mainly analyze the recurrence relation below. When the
optimal CPM(m, i, j, l) is given, PS(m, i) can be structured by the optimal PS(m, j+1). Since there
is an idle time between CPM(m, i, j, l) and PS(m, j+ 1), according to Proposition 2.1, we can get
m is equal to 1 in PS(m, j+1), i.e., task Aj+1 is processed on M1 as shown in Fig. 4. It is easy to
get g(m, i)=min f (m, i, j, l)+g(1, j+1) when i< n, and g(m, i)=min f (m, i, j, l)+g(1, j+1)+ l when
i= n. According that there is an idle time between job Jj and Jj+1, l< aj+1 must be satisfied. So
Eq. (5) holds.

Figure 4: From CPM(m, i, j, l) and PS(m, j+ 1) to PS (m, i)

Theorem 3.3 Dynamic programming algorithm DP(C) is a pseudo-polynomial time algorithm,
and its time complexity is O(n2

∑n
i=1 ai).
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Proof: Firstly, we consider the time complexity of solving the optimal continuous processing
module. It takes O(

∑n
i=1 ai) time to search l in the interval

[
l l

]
and separately takes n time to

search i, j in the interval
[
1 n

]
. But m only has two cases. So solving the optimal continuous pro-

cessing module need O(n2
∑n

i=1
ai) time by algorithm CB(C). In algorithm DP(C), the recursive

formula needs O(n
∑n

i=1
ai) times of cyclic search, and each calculation of Eq. (5) requires O(n)

steps. Since algorithm DP(C) only uses the calculation results of algorithm CB(C) every time, but

there is no nested loop, the time complexity of algorithm DP(C) is O(n2
∑n

i=1
ai). So Theorem

3.3 holds.

Since SHFSFC has a pseudo-polynomial time algorithm, SHFSFC is ordinary NP-hard. That
is, the following theorem holds.

Theorem 3.4 Problem SHFSFC can be solved in O(n2
∑n

i=1 ai) time, which implies it is NP-
hard in the ordinary sense.

4 A Dynamic Programming Algorithm of Problem SHFSFW

This section will construct a dynamic programming algorithm for problem SHFSFW using
a method similar to Section 3. First, we construct the optimal continuous processing modules
and calculate the objective value of every optimal continuous processing module by a dynamic
programming algorithm. Then, we use optimal continuous processing modules to construct an
optimal partial schedule. Finally, the objective of the optimal schedule is calculated by backward
recursion. However, the goal of SHFSFW is to minimize the total weighted completion time,
which is different from makespan. It has no direct relationship with the load of the jobs on
machine M1. So, we need to add a parameter h that represents the load of the jobs on M1 for
constructing the continuous processing module. So we use five elements m, i, j,h, l instead of four
elements in Section 3 to structure the continuous processing module. The strict definition of the
continuous processing module for SHFSFW is given below.

Definition 4.1 A sub-schedule consisting of a job subset {Ji, Ji+1, · · · , Jj} is called a contin-
uous processing module of Problem SHFSFW if it satisfies the following conditions, denoted by
five elements CPM(m, i, j, h, l).

(1) The first task of job JiAi is processed on Mm (m= 1 or 2);
(2) No matter on M1 or M2, there is no idle time between any two continuously processed

jobs;
(3) The load generated by the subset {Ji, Ji+1, · · · , Jj} on M1 is equal to h;
(4) The difference between the complete time of subset {Ji, Ji+1, · · · , Jj} on M1 and M2 is

equal to l.

It is easy to see that CPM(m, i, j, h, l) can be structured by CPM(m, i, j− 1,h′, l′) using two
different methods (as shown in Fig. 5). The first method to get CPM(m, i, j, h, l) is to add job
Jj ∈V1to CPM(m, i, j−1, h′, l′) (see Fig. 5a); The second method to get CPM(m, i, j, h, l) is to add
job Jj ∈ V2 to CPM(m, i, j− 1, h′, l′) (see Fig. 5b). We assume that f (m, i, j,h, l) is the minimum
total weighted completion time of CPM(m, i, j, h, l) on machine M1 composed of job subset
{Ji, Ji+1, · · · , Jj}. Using the discussion similar to Section 3, we can get the dynamic programming
algorithm about f (m, i, j,h, l) as follows.
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Figure 5: The two ways from CPM(1, i, j− 1, h′, l′) to CPM(1, i, j,h, l) as shown in (a) and (b)

Dynamic Programming Algorithm CPM(WC):

Initial Conditions:

f (m, i, j,h, l)=
⎧⎨
⎩
wi(ai+ bi), whenm= 1, i= j, h= ai, l= bi;
wi(ai+ bi), whenm= 2, i= j, h= 0, l = ai+ bi;
+∞, otherwise.

Recurrence Relation:

The parameters m, i, j,h, l respectively satisfy m ∈ {1, 2}, 1 ≤ i < j ≤ n, 0 ≤ h ≤ ∑j
t=i at,

l ≤ l ≤ l.

(1) When Aj is processed on M1 (see Fig. 5a),

f1 = f (m, i, j− 1,h− aj, l+ aj− bj)+wj(h+ l);

(2) When Aj is processed on M2 (see Fig. 5b),

f2 =
{
f (m, i, j− 1,h, l− aj− bj)+wj(h+ l) when l ≥ aj+ bj;
+∞ otherwise.

Recurrence Formula: f (m, i, j,h, l)=min
{
f1, f2

}
.

Next, we define the Partial Schedule (m, i) of SHFSFW. Let Partial Schedule (m, i) be a sub-
schedule of the job set {Ji, Ji+1, · · · , Jn}, denoted by PS(m, i), where the first job Ji ∈ Vm, m ∈
{1, 2}. Then let g(m, i) be the minimum total weighted completion time of PS(m, i). Next, we
give a dynamic programming algorithm to calculate g(m, i). For the convenience of narration, we
construct a virtual job Jn+1 with processing time an+1 =+∞, bn+1 =+∞.
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Dynamic Programming Algorithm DP(WC):

Initial Conditions:

g(m,n+ 1)= 0, m= 1, 2;

Recurrence Relation:

The parameters m, i respectively satisfy m ∈ {1, 2}, 1≤ i≤ n.

g=
⎧⎨
⎩
f (m, i, j,h, l)+ g(1, j+ 1)+ (

n∑
t=j+1

wt)h when l < aj+1;

+∞ otherwise.
(6)

Recurrence Formula: g(m, i)=min i≤j≤n
l≤l≤l
0≤h≤∑j

t=i at

{g}.

Target Value: min
∑
wiCi =minm∈{1,2}{g(m, 1)}.

The initial conditions, recurrence formula, and target value in dynamic programming algo-
rithm DP(WC) are clearly valid. So we also mainly analyze the recurrence relation below. Once
the optimal CPM(m, i, j,h, l) is given, PS(m, i) can be obtained through the optimal PS(m, j+ 1).
For there is an idle time between CPM(m, i, j,h, l) and PS(m, j+ 1), according to Proposition 2.1,
we have m is equal to 1 in PS(m, j + 1). We can easily have g(m, i) = f (m, i, j,h, l)+ g(1, j+ 1) +
(

n∑
t=j+1

wt)h. According that there is an idle time between Jj and Jj+1, l < aj+1 must be satisfied.

So Eq. (6) holds.

Through the analysis similar to Theorem 3.3 in Section 3, we can obtain the following
theorem on the time complexity of dynamic programming algorithm DP(WC).

Theorem 4.2 Dynamic programming algorithm DP(WC) is a pseudo-polynomial time algo-
rithm, and its time complexity is O(n2(

∑n
i=1 ai)

2).

Similar to Theorem 3.4, we can have the following theorem.

Theorem 4.3 Problem SHFSFC can be solved in O(n2(
∑n

i=1 ai)
2) time, which implies it is NP-

hard in the ordinary sense.

5 Analysis of Algorithm Effect Based on Numerical Experiments

5.1 Time Complexity Analysis
We analyze the computational complexity of two problems, design dynamic programming

algorithms for them, and calculate the time complexity of the algorithms in Sections 2–4. These
results are summarized in Table 1.

Table 1: The detailed results of the two models

Objective Complexity Time complexity Remark

Cmax Ordinary NP-hard O(n2(
∑n

i=1 ai)) Theorem 2.3∑
wiCi Ordinary NP-hard O(n2(

∑n
i=1 ai)

2) Theorem 3.2
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We took SHFSFC as an example to test the operation efficiency of the dynamic programming
algorithms designed in this paper through numerical experiments. The numerical experiments were
carried out in Matlab R2017 on a laptop with built-in an Intel Core i5 8250u CPU, 8 GB
LPDDR3 RAM, and Windows 10. The processing time of each flexible task ai was obtained by a
random partition of a given number

∑n
i=1 ai into n values. The processing time of bi was produced

as a uniformly distributed random number within [0,10]. The experiments were performed for
10 ≤ n ≤ 230 with an interval of 20 and 100 ≤ ∑n

i=1 ai ≤ 1000 with an interval of 100. We
conducted a total of 12 × 10 = 120 experiments with different combinations of n and

∑n
i=1 ai.

And we generated 30 random test instances for each experiment. The average running results of
all experiments are listed in Table 2, where the top row represents

∑n
i=1 ai, the leftmost column

represents n, and the unit of the data in the table is in seconds.

It can be seen from Table 2 that even if n reaches 230 and the total processing time of all
flexible tasks reaches 1000, the time used by algorithm DP(C) only needs less than 85 s. Therefore,
we can conclude that the actual effect of the algorithm is entirely acceptable.

Table 2: The average running times (in seconds) for 10≤ n≤ 230 and 100≤∑n
i=1 ai ≤ 1000

n
∑n

i=1 ai

100 200 300 400 500 600 700 800 900 1000

10 0.03 0.06 0.09 0.13 0.15 0.18 0.30 0.34 0.47 0.70
30 0.16 0.37 0.58 0.81 1.03 1.26 1.56 1.77 2.11 2.52
50 0.36 0.86 1.37 1.90 2.43 2.97 3.57 4.05 4.72 5.43
70 0.64 1.53 2.44 3.39 4.35 5.33 6.34 7.19 8.32 9.44
90 0.99 2.37 3.81 5.28 6.79 8.34 9.87 11.18 12.89 14.53
110 1.41 3.40 5.46 7.58 9.75 11.99 14.16 16.02 18.44 20.72
130 1.91 4.61 7.40 10.28 13.24 16.28 19.20 21.71 24.98 28.00
150 2.48 6.00 9.64 13.39 17.25 21.22 24.99 28.25 32.49 36.38
170 3.13 7.57 12.16 16.90 21.78 26.80 31.54 35.64 40.99 45.84
190 3.85 9.32 14.98 20.82 26.83 33.02 38.85 43.89 50.46 56.40
210 4.64 11.25 18.08 25.14 32.40 39.89 46.92 52.99 60.91 68.05
230 5.51 13.36 21.47 29.86 38.50 47.41 55.74 62.94 72.35 80.79

Using the data in Table 2, we can discuss the relationship between the running time of the
algorithm and the total processing time of all flexible tasks when there are fewer jobs (n = 10),
a lot of jobs (n = 110), and a large number of jobs (n = 210) (as shown in Fig. 6). It can be
got from Fig. 6 that: (1) The running time of algorithm DP(C) increases with the increase of
the total processing time of all flexible tasks

∑n
i=1 ai; (2) The more the number of jobs, the faster

the running time of the algorithm increases with the increase of
∑n

i=1 ai; (3) When n is given, the
growth rate of the algorithm processing time is similar, i.e., the running time of the algorithm is
nearly linear with

∑n
i=1 ai.
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Figure 6: When n= 10, 110, 210, the running time changes with
∑n

i=1 ai

Similarly, the data in Table 2 is used to analyze the relationship between the running time of
the algorithm and the number of jobs when the total processing time of all flexible tasks is small
(
∑n

i=1 ai = 100), large (
∑n

i=1 ai = 500), and huge (
∑n

i=1 ai = 1000) (as shown in Fig. 7). It can be
got from Fig. 7 that: (1) The running time of the algorithm increases with the increase of the
number of all jobs; (2) The growth rate of the algorithm running time becomes faster with the
increase of the number of all jobs; (3) The larger the total processing time of all flexible tasks,
the faster the algorithm processing time increases with the increase of the number of all jobs.

Figure 7: When
∑n

i=1 ai=100, 500, 1000, the running time changes with n

5.2 Comparison with Other Commonly Used Algorithms
Since there is no other algorithm for the two-stage hybrid flow-shop problem studied in

this paper, we compare the high-quality algorithms for a similar problem with the dynamic
programming algorithms given in this paper to analyze the effect of our algorithms.

We usually design polynomial-time optimal algorithms to solve P problems [30]. But there
exist two kinds of algorithms for solving NP-hard problems. The first one is the exact algorithm,



1140 CMES, 2022, vol.131, no.2

which gives the optimal solution, but the time complexity is exponential, including the enumera-
tion algorithm, branch and bound algorithm [31]. The second one is the heuristic algorithm, which
usually gives the approximate solution of the problem, but the time complexity is polynomial,
including the genetic algorithm [20,32], (Iterated) green algorithm [33], fireworks algorithm [34],
artistic neural network algorithm [35], (discrete) harmony search algorithm [36], etc. These algo-
rithms are widely used in solving various scientific and engineering problems. From the analysis of
the existing literature, it is found that the branch and bound algorithm is the most commonly used
and relatively practical algorithm in the accurate solution of hybrid flow-shop problems [31,37].
Regarding the heuristic algorithm, the research in literature [36] shows that a discrete harmony
search algorithm has advantages compared with a genetic algorithm, greedy algorithm, and har-
mony search algorithm, both in running time and the average relative percentage deviation, in
solving hybrid flow-shop problems. The average Relative Percentage Deviation (denoted by RPD)
is usually used to measure the approximation of heuristic algorithms [38], and its specific definition

is as follows: RPD= CA−C∗
C∗ × 100%, in which CA is the objective value calculated by Algorithm

A and C∗ is the optimal objective value which can be got by the exact algorithm.

We still took problem SHFSFC as an example to compare dynamic programming algorithm
DP(C) (the algorithm given by us), the branch and bound algorithm (given by Moursli et al. [31],
denoted by B&B), and the discrete harmony search algorithm (given by Zini et al. [36], denoted
by DHS) regarding the running time and the average relative percentage deviation.

The numerical experiments were carried out in the same software and hardware environment
as in Section 5.1. The time complexity of B&B and DHS is independent of

∑n
i=1 ai but only

related to the number of jobs. So, we only conducted grouping experiments according to n to unify
the comparison standards. We considered the efficiency (running time) and performance (RPD) of
the three algorithms in the small-scale-jobs case (5≤ n≤ 50) and the large-scale-jobs case (100≤
n≤ 300). The numerical experiments were carried out for 5≤ n≤ 50 with an interval of 5 in the
small-scale-jobs case and 100 ≤ n ≤ 300 with an interval of 50 in the large-scale-jobs case. The
processing time of each task ai (or bi) was produced as a uniformly distributed random number
within [0,10]. Twenty random instances for every experiment were produced. The average values
of running time and RPDs were selected as the experimental results. The average running time of
each algorithm under the two experimental conditions is shown in Table 3.

Table 3: The average running time (in seconds) of DP(C), B&B, and DHS for two kinds of
experiments

Small-scale-jobs experiments Large-scale-jobs experiments

n 5 10 15 20 25 30 35 40 45 50 100 150 200 250 300

DP(C) 0.09 0.24 0.43 0.66 0.92 1.22 1.55 1.92 2.32 2.77 9.18 19.21 32.86 54.14 88.03
B&B 0.04 1.19 2.73 5.16 9.31 18 43 129 466a(6)b 980a(14)b (20)b (20)b (20)b (20)b (20)b

DHS 0.01 0.14 0.25 0.36 0.47 0.67 0.79 0.93 1.26 1.49 4.86 7.69 10.64 13.68 17.55

Notes: a: The average running time of the instances completed in 1200 s; b: The number of instances that cannot be
completed in 1200 s.
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As shown in Table 3, DP(C) and DHS can complete the operation in 100 s in both two cases.
In particular, DHS can be completed in 20 s, showing its advantage in time complexity. However,
for B&B, when the number of jobs reaches 45, some instances cannot be completed in 1200 s;
when the number of jobs reaches 50%, 70% of the instances cannot be completed in 1200 s; and
all large-scale-jobs experiments cannot be completed in 1200 s.

The relationship between running time and n of each algorithm in the small-scale-jobs case
is shown in Fig. 8. For this case, we can get that: (1) DHS has the most advantage in time
complexity, followed by DP(C), while B&B has obvious disadvantages; (2) The running time of
each algorithm increases with the increase of the number of jobs and one of B&B increases much
faster than the other two algorithms.

Figure 8: The average running time of DP(C), B&B, and DHS for small-scale-jobs experiments

Similarly, using the data in Table 3, the relationship between running time and n of each
algorithm in the large-scale-jobs case is shown in Fig. 9. Since B&B cannot complete the operation
within 1,200 s, only DHS and DP(C) are compared here. For this case, we can get that: (1) DHS
has obvious advantages in time complexity, and the running time of each algorithm is within the
acceptable range; (2) With the increase of n, the running time of each algorithm increases. The
growth rate of the running time of DP(C) increases with the increase of n, while the growth rate
of DHS is relatively flat.

Table 4 shows the results of the three algorithms on the relative percentage deviation under
small-scale-jobs experiments and large-scale-jobs experiments.

Using the data in Table 4, we plot the relationship between the average RPD of algorithm
DHS and the number of jobs in Fig. 10.

From Fig. 10, we can get that: (1) Since DP(C) and B&B are both exact algorithms, their
average RPDs are 0. The average RPD of DHS is large in the small-scale-jobs case and decreases
rapidly with the increase of the number of jobs, which means that the accuracy of DHS increases
quickly with the rise of the number of jobs. However, in the small-scale-jobs case, the difference
between the solution of DHS and the optimal solution is more than 25%, especially when the
number of jobs is less than 15, the error is more than 50%; (2) In the large-scale-jobs case, with
the increase of n, the reduction speed of the average RPD slows down. In all large-scale-jobs
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experiments, the average RPD is above 0.1. Even if n reaches 300, the gap between it and the
optimal solution is still 12%.

Figure 9: The average running time of DP(C) and DHS for large-scale-jobs experiments

Table 4: The average RPDs of DP(C), B&B, and DHS for two kinds of instances

Small-scale-jobs experiments Large-scale-jobs experiments

n 5 10 15 20 25 30 35 40 45 50 100 150 200 250 300

DP(C) 0a 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B&B 0a 0 0 0 0 0 0 0 0 0 /b / / / /
DHS 0.83 0.61 0.53 0.39 0.36 0.33 0.30 0.28 0.26 0.25 0.16 0.14 0.13 0.13 0.12

Notes: a: Since DP(C) and B&B are both exact algorithms, their RPDs are all 0; b: All instances cannot be completed in 1200
s by B&B.

Figure 10: The average RPD of DHS changes with the number of jobs for two kinds of
experiments
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5.3 Summary of Comparison
According to the comparative analysis of numerical experimental results in Sections 5.1 and

5.2, we can get the following results:

(1) From the perspective of algorithm time complexity, DHS has advantages, followed by
DP(C). The gap between the two can be ignored in the small-scale-jobs case. Although
there is a certain gap in the large-scale-jobs case, DP(C) is still within the acceptable range.
B&B has significant disadvantages in running time, and when the number of jobs is greater
than 45, its running time becomes unacceptable;

(2) From the perspective of algorithm accuracy, DP(C) and B&B are both exact algorithms
so that they can give the optimal solution. But B&B cannot provide the optimal solution
within the time limit when the number of jobs is immense. DHS is a heuristic algorithm.
In the small-scale-jobs case, the accuracy is low, and the gap with the optimal solution is
more than 25%. In the large-scale-jobs case, the accuracy is improved, but the gap with
the optimal solution is still more than 12%;

(3) The running time of DP(C) is small, and the accuracy is better than DHS 50% in the
small-scale-jobs case. Although there is a certain gap between DP(C) and DHS, the running
time of DP(C) is still in the acceptable range. And the algorithm accuracy is better than
DHS 12% in the large-scale-jobs case.

6 Conclusions

This paper studies two two-stage hybrid flow-shop problems with two machines and fixed
processing sequences, widely used in shared manufacturing, stock control systems, and other
manufacturing areas. Two objectives of minimizing makespan and total weighted completion time
are considered. For these two models, we first show they are both ordinary NP-hard, present
a dynamic programming algorithm for each model, and analyze the time complexity of each
algorithm. Then, the relationship between the running time and the combination of the total
processing time of the flexible tasks and the number of jobs is obtained by numerical experiments.
Finally, the advantages and disadvantages of the dynamic programming algorithms presented in
this paper are compared with the exact algorithm B&B and the heuristic algorithm DHS, which
have advantages in solving hybrid flow-shop problems.

In future research, we will study the polynomial-time approximation algorithm with a smaller
worst-case ratio for this problem and extend the dynamic programming algorithm’s design method
given in this paper to other scheduling problems with fixed processing sequences.
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