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ABSTRACT

Few-shot Learning algorithms can be effectively applied to fields where certain categories have only a small amount
of data or a small amount of labeled data, such as medical images, terrorist surveillance, and so on. The Metric
Learning in the Few-shot Learning algorithm is classified by measuring the similarity between the classified samples
and the unclassified samples. This paper improves the Prototypical Network in the Metric Learning, and changes
its core metric function to Manhattan distance. The Convolutional Neural Network of the embedded module is
changed, and mechanisms such as average pooling and Dropout are added. Through comparative experiments, it
is found that this model can converge in a small number of iterations (below 15,000 episodes), and its performance
exceeds algorithms such as MAML. Research shows that replacing Manhattan distance with Euclidean distance can
effectively improve the classification effect of the Prototypical Network, and mechanisms such as average pooling
and Dropout can also effectively improve the model.
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1 Introduction

Deep Learning, or Deep Neural Network, is an important branch of artificial intelligence. It
comes from the neuron computing model MP proposed by McCulloch et al. [1] in 1943. In 1958,
Rosenblatt proposed the concept of a perception and proposed an algorithm close to human brain
learning. This is the prototype of neural networks. In 1985, Geoffrey Hinton, the “originator of
Deep Learning”, proposed a multilayer perception and improved the Back Propagation algorithm
of neural networks [2]. Lecun et al. [3] adopted Convolutional Neural Network (CNN) to identify
handwritten characters of postcodes in letters, achieving high accuracy. However, this algorithm
was trained on the training set for 3 days, because the computer was not strong enough to
effectively support neural network calculation at this time, so the Deep Neural Network fell silent
for a time. In 2006, with the development of large-scale parallel computing and GPU, neural
networks ushered in the third climax, and Deep Learning has become a hot spot in Artificial
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Intelligence. It is widely used in various fields, including face recognition, autonomous driving,
search engines, health care, social network analysis, audio and voice processing, etc. Alzubaidi
et al. [4] have greatly promoted the development of Artificial Intelligence.

However, Deep Learning also has some shortcomings. It is suitable for large-scale data and
requires a large amount of data training model [5] in order to make full use of the advantages of
parallel computing and GPU. However, for medical images, terrorist monitoring and other fields,
it is impossible to obtain a large amount of data, or to obtain a large amount of data requires
huge labor and cost [6], which is almost impossible [7]. Small-scale training data is prone to severe
over-fitting.

Solving this problem can be inspired by the human learning process [8]. Humans can quickly
learn from a small amount of data. For example, a five or six-year-old child has not seen a rhino,
but after giving him a photo of a rhino, he can recognize it in many animal pictures. This is Few-
shot Learning (FSL). In recent years, many scholars have been studying Few-shot Learning. Wang
et al. [9] defined Few-shot Learning: Few-shot Learning is a machine learning problem (consisting
of E(experience), T(task), and P(performance measurement) designation), where E contains only
a limited number of examples of supervision information with target T. Or it can be said that the
purpose of Few-shot Learning is to minimize the generalization error in the task distribution with
few training examples [10]. The classification problem in Few-shot Learning usually uses the N
way K shot method to divide the data: that is, metadata is divided into tasks instead of samples,
and each task is internally divided into training set and test set, which are called support set and
query set respectively. For each task, N classes (way) are randomly selected from the metadata
set, and K (Shot) + 1 or K + M samples are randomly selected from each class. N*K samples
are given to the support set for training, and the remaining N*1 or N*M samples are given to
the query set for verification testing [11].

There are many ways to solve Few-shot Learning (here we mainly research the image field): (1)
Model fine-tuning, training the model on a source dataset containing a large number of samples,
and then fine-tuning the target dataset containing a small number of samples. If the source dataset
and the target dataset are similar, this method can be used. But in actual scenarios, the two
datasets are usually not similar, which often leads to over-fitting. (2) Data Augmentation, it refers
to the use of some additional datasets or information to expand the target and the features of the
dataset or augmentation of the samples in the target dataset. In the early time, it was achieved
through spatial transformation, that is, the image was rotated, translated, cropped, and zoomed to
expand the dataset, but this did not expand the types of samples. Later, people gradually began
to use algorithms such as Generative Adversarial Network (GAN) for Data Augmentation. (3)
Meta Learning, or, learning to learn, refers to letting the model have a certain learning ability,
learn meta-knowledge from a large number of tasks, and use the meta-knowledge to quickly adapt
to different new tasks. Meta Learning has algorithms such as Memory Neural Network, Meta
Network, and MAML. (4) Metric Learning, also called similarity learning, calculates the distance
between two samples through a distance function, measures the similarity between them, and
determines whether they belong to the same category. The Metric Learning algorithm is composed
of an embedding module and a metric module. The embedding module converts the sample
into a vector in the vector space. The metric module gives the similarity between the samples.
Metric Learning is divided into Metric Learning based on fixed distance and Metric Learning
based on learnable metrics. We willalso introduce the specific development history of the above
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methods in Section 2. Our research can be applied in medicine, Synthetic Aperture Radar (SAR)
image recognition and other fields, so we will also list some research on SAR image recognition,
especially in Few-shot Learning.

Although Metric Learning based on learnable metrics is the mainstream, there are still merits
to the exploration of Metric Learning algorithms based on fixed distances. What this paper is
going to research is the Prototypical Network in Metric Learning based on a fixed distance. The
Prototypical Network maps the sample data in each category to a space, and calculates their mean
value as the prototype of the category. Using Euclidean distance as the measurement function,
through training, the distance between the sample data and the prototype of its type is the
shortest, and the distance to the prototype of other types is farther. During the test, the distance
between the test data and the prototype of each category is processed by softmax function, and
the category label of the test data is judged by the output probability value. The rapid convergence
of the Prototypical Network is one of the reasons why the Prototypical Network is selected in
this paper. Compared with other models, it can converge after only more than 10,000 episodes.
This paper will use different measurement functions to improve Prototypical Network and expect
better performance, especially Manhattan distance instead of Euclidean distance, the Manhattan
Prototypical Network is proposed, and the average pooling layer and Dropout are respectively
introduced into the embedded module. The accuracy and cross entropy loss of the improved
model were compared with MAML, Matching Network, Relation Network and Meta-SGD on
miniImageNet datasets. The data type of miniImagenet dataset is shown in Fig. 1. It can be seen
that this dataset is very complex and difficult to identify.

Figure 1: Screenshot of some categories of miniImageNet dataset (one category per line)
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Section 2 of this paper will introduce in detail the historical development, advantages and
disadvantages of model fine-tuning, Data Augmentation, Meta Learning, and Metric Learning.
This section will list SAR related studies, too. Section 3 introduces and explains the principle and
formula of the Prototypical Network, as well as our improvement on the core measure function
and embedded module of the Prototypical Network. Section 4 explains the dataset, evaluation
metrics, experimental procedures and experimental results. Section 5 summarizes the full text and
puts forward prospects.

2 Related Work

2.1 Model Fine-Tuning
Model fine-tuning usually refers to training on a large-scale source dataset, and fine-tuning the

parameters of the fully connected layer or top layers of the model on a small-scale target dataset.
However, the source dataset and the target dataset need to be similar, otherwise the model cannot
be used for fine-tuning. Because model fine-tuning is difficult to achieve cross-domain learning and
easy to cause over-fitting, there is less research. Gidaris et al. [12] first trained a feature extractor
with a large training set (the category in it is called the basic category). For the new few sample
data, the attention mechanism is used to select the basic category weights for training. Nakamura
et al. [13] pointed out that: 1) Using a low learning rate can stabilize the retraining process.
2) The use of an adaptive gradient optimizer during fine-tuning can improve the test accuracy.
3) When there is a large domain offset between the basic class and the new class, the test accuracy
can be improved by updating the entire network. These methods achieve much higher accuracy
than before on the miniImageNet dataset.

2.2 Data Augmentation
As mentioned in the introduction, the Data Augmentation method has been transformed from

the early space transformation to the use of generative adversarial networks for data synthesis or
feature augmentation.

The first is the data synthesis method. Mehrotra et al. [14] proposed the Generative Adversar-
ial Residual Pairwise Networks, using Residual Neural Network to output the sample similarity
of the support set and query set data. The loss of the GAN’s generator and discriminator is
used to provide a strong regularized representation for the invisible data distribution to enhance
similarity matching. Schwartz et al. [15] proposed �-encoder, which uses the Auto Encoder (AE)
to find the deformation between different samples of the same category so that it can be applied
to other categories to generate new samples. However, the feature augmentation of this method is
too simple to effectively improve the classification boundary. There is also a combination of GAN
and AE. Xian et al. [16] proposed the f-VAEGAN-D2 model, which combines the advantages of
Variational Auto Encoder (VAE) and GAN.

Then introduce the feature augmentation methods. Dixit et al. [17] proposed Attribute Guided
Augmentation (AGA), which learns synthetic features through the expected value of a set of
object attributes (such as depth or pose). AGA can improve the recognition performance of a
single object on a new class. Shen et al. [18] focused on adversarial features (features that cause
the classifier to predict uncertainly), by adding an adversarial mask, forcing theclassifier to leave
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its comfort zone and focus on other areas for in-depth exploration, then use the overall feature
map to learn more information.

However, augmentation is usually customized for each dataset and not easily transferable to
other datasets, which is the problem to be solved in this direction.

2.3 Meta Learning
Meta Learning is to let the model learn, and let the model learn initially through a large

number of tasks. When facing a new task, the model can complete the prediction task only by
training a few times.

Santoro et al. [19,20] used the Neural Turing Machine (NTM) as the basic model and
proposed a memory augmentation network for One-shot Learning. NTM can either update the
weights through a slow gradient descent to achieve the purpose of long-term memory, or through
external storage. The module quickly binds information that has never been seen before to achieve
short-term memory. In 2017, Munkhdalai et al. [21] proposed Meta Network, which divided the
entire model into meta learner and base learner, and also included an external memory module to
help fast learning. The base learner learns a specific task, and the meta-information loss gradient
is given to the meta learner. Then the meta learner quickly learns and generalizes the new task.

The above methods are suitable for One-shot Learning. For Few-shot Learning, Finn
et al. [22] proposed the MAML algorithm, which is independent of the model and is suitable for
various learning tasks. Through a large number of task training, the model finds the best point.
When facing a new task, it finds the optimal solution after a few steps of gradient descent update
at this optimal point. MAML has been recognized by many scholars, and some scholars apply it
to video scene anomaly detection, satellite data prediction, etc. [23,24]. MAML requires second-
order derivative calculations. In order to do only first-order operations, Nichol et al. [25] proposed
Reptile, which uses the difference between the previous parameters and the parameters after K
training to update. Reptile simplifies the calculation steps compared to MAML. But the perfor-
mance is slightly degraded. MAML is very sensitive to the neural network architecture, it often
leads to instability during training. It requires time-consuming and laborious hyper-parameter
search to stabilize training and achieve high generalization, and the amount of calculation in
training and inference time is very large, Antoniou et al. [26] proposed MAML++, which reduces
the sensitivity of inner loop hyper-parameters, improves generalization errors, stabilizes and accel-
erates the MAML process. In addition to MAML, Li et al. [27] proposed Meta-SGD, which uses
learning rate as an optimized parameter to perform gradient descent update, learn initialization
parameters, update direction and learning rate. Or by combining Meta Learning with Transfer
Learning, Jang et al. [28] proposed an effective training scheme for learning Meta Networks, which
determines which layers between the source network and the target network should be matched
for knowledge transfer and the amount of knowledge transfer in each feature.

Some build models through learning and optimization processes. Andrychowicz et al. [29] used
LSTM to learn the parameter update process, dividing the parameters into different equal parts,
each LSTM shared parameters, but did not share the hidden state; Ravi et al. [30] proposed a
meta-learner model based on LSTM to learn an accurate optimization algorithm, which is used
to learn another neural network classifier. The learning rate corresponds to the input gate in
LSTM, the initialization parameter corresponds to the initializationvalue of the memory unit, an
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additional forget gate to supplement the coefficient of the last parameter in the gradient descent,
and the use of parameter sharing to avoid parameter explosion.

Meta Learning algorithms need a lot of training tasks to acquire meta-knowledge, which is
difficult to converge in a short time, so it is time-consuming.

2.4 Metric Learning
Metric Learning requires a similarity measurement function D(), similar samples get higher

scores, and dissimilar samples get lower scores. This similarity measurement function can be a
fixed distance or a learning network. The fixed distance metric is relatively simple, but limited by
the situation, it is not easy to transfer to a new dataset. The learnable network metric can be
applied to the new situation, but it is time-consuming to train. Metric Learning usually includes
an embedding module and a metric module. The embedding module embeds the samples into
the vector space. f() and g() respectively represent the embedding model that maps the support
set and query set samples to the vector space, and its parameters are represented by θf and θg,
respectively.

Koch et al. [31] proposed Siamese Neural Network, inputting pairs of samples (the same
class of samples are labeled 1, and different classes are 0), and the same CNN is used to extract
feature vectors for these pairs of samples, and then the distance measurement function is used
to measure the distance between these pairs of feature vectors and input them into the sigmoid
function to obtain the corresponding probability or similarity. In 2016, Vinyals et al. [32] proposed
Matching Network. This network maps a small labeled support set and an unlabeled sample to
the corresponding label, and uses LSTM to map the sample pair to a low-dimensional vector.
Then use the kernel density estimation function to predict the unlabeled samples. As the size of
the support set increases, each gradient update of the Matching Network becomes more expensive.
When the label distribution has a significant deviation, the model will be affected. The above
is mainly aimed at the single-sample problem. In order to better solve the Few-shot problem,
Snell et al. [33] proposed Prototypical Network. Gao et al. [34] combined the attention mecha-
nism and proposed Hybrid Attention Mechanism Network based on the Prototypical Network.
The model has sample-level and feature-level attention mechanisms, respectively highlighting key
sample instances and key features in the model. There is also a combination of Prototypical
Network and Meta Learning. Wu et al. [35] proposed Meta-RCNN. First, a class prototype is
constructed for each annotated object category in the support set, and the class-specific feature
map of the entire image is constructed. The Region-Proposal Network (RPN), Few-shot Learning
classifier and bounding box regressor are jointly trained in the Meta Learning framework. Das
et al. [36] used Mahalanobis distance to propose a two-stage Few-shot Learning framework for
image recognition.

In 2018, Sung et al. [37] proposed Relation Network and began to use learnable networks
to replace fixed-distance modules. First construct an embedding unit to extract the feature infor-
mation of each picture, connect the picture features to be tested and the picture features of the
training samples and input them into the relation unit for comparison, then determine which
category the test picture belongs to according to the comparison results. The Relation Network
works well. Xiao et al. [38] used the Relation Network to segment and classify the Few-shot skin
disease image. Zhang et al. [39] proposed a Deep Comparison Network (DCN) basedon a Relation
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Network. The network is composed of embedding and relation modules, which can simultaneously
learn multiple nonlinear distance metrics based on features of different levels.

2.5 SAR
Wang et al. [40] proposed a new Few-shot Learning framework called Hybrid Inference

Network (HIN) to solve the SAR target recognition problem with only a small number of
training samples. The HIN identication process consists of two main stages. In the first stage,
the embedding network is used to map the SAR image to the embedding space. In the second
stage, a hybrid reasoning strategy combining inductive reasoning and transductive reasoning is
used to classify the samples in the embedded space. In the inductive reasoning part, each sample
is independently identified according to the metric based on Euclidean distance. Xue et al. [41]
proposed a sequential SAR target classification method based on Spatial-Temporal Ensemble
Convolutional Network (STEC-Net). In STEC-Net, the expanded 3D convolution is first applied
to extract spatio-temporal features. Then, the features are gradually integrated hierarchically from
local to global, and expressed as a joint tensor. Finally, a compact connection is applied to
obtain a lightweight classification network. Wang et al. [42] proposed a new Few-shot Learning
SAR ATR framework called Conv-BiLSTM Prototype Network (CBLPN) based on the embedded
network.

3 Model Introduction

First, we present a representation of the dataset for a better description below. The N way K
shot method is used to divide the data. The support set in a task includes N*K samples. If we use
M instead of N*K, the support set can be expressed as follows: S = {(x1, y1), (x2, y2), . . . , (xM, yM)},
where xi is the D-dimensional feature vector, yi ∈ {1, 2, . . . , N} means corresponding category,
here we use Sk to represent the support subset of category k. The corresponding query set is
represented by Q.

Next, we will separately introduce the embedded module and the measurement module of the
improved Prototypical Network.

Firstly, the embedding module of the Prototypical Network converts all D-dimensional feature
vectors in each support subset into Z-dimensional feature vectors in the new vector space through
the embedding model f():

f:RD → RZ (1)

Here, a four-layer CNN is used as the embedding model f(), and Flatten layer is adopted for
straightening. Its structure is shown in Fig. 2:

Figure 2: Embedded model CNN structure diagram
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CNN are particularly suitable for extracting image features. Before CNN, Fully Connected
Networks are generally used to extract image features. This causes the neural network to have a
large number of connections and explode parameters, making it difficult to train. In fact, it is not
necessary for each neuron to perceive the entire image. Image has a strong 2D local structure:
spatially adjacent variables (or pixels) are highly correlated, so people put forward the concept
of CNN, which combines three architectural ideas: local receptive fields, shared weights, and
down sampling. The size of the convolution kernel is called the receptive field. The convolution
kernel slides on the image to extract the features of its coverage area to achieve the purpose of
forcibly extracting local features. At the same time, it can extract visual features such as edges
and corners [43]. Since each area of the image is scanned by a convolution kernel with the same
weight, weight sharing is realized and the number of parameters is saved. The convolutional layer
of the CNN extracts local features well and avoids parameter explosion.

CNN also includes Batch Normalization layer, activation layer, and pooling layer. The Batch
Normalization layer standardizes every batch of data to make it conform to the standard normal
distribution, and performs scaling and offset, which effectively avoids the disappearance of the
gradient, and can accelerate the speed of the gradient descent and accelerate the convergence. The
activation layer performs nonlinear processing on the input through the activation function. It can
be said that the activation function is one of the cores of the neural network, which can make
the whole network fit any function. It can be said that the activation function is one of the cores
of the neural network, it can make the entire network fit any function, the formula is as follows:

y = a(wx+ b), (2)

where a() is the activation function, x is the input, and w and b are learnable weight parameters.

For hidden layers, ReLU activation function is generally used, because it has the advantages of
avoiding gradient disappearance (in positive interval), fast calculation speed and fast convergence
speed. The formula is as follows:

f (x)=
{

0, if x ≤ 0
x, if x > 0 (3)

The pooling layer [44] is a down-sampling layer that can extract invariant features, that is,
features that remain unchanged under operations such as translation, rotation, and scaling. While
preserving important features, it can reduce the number of data and parameters, avoid over-fitting,
and improve the generalization performance of the model. Using the maximum pool layer, that
is, taking the maximum value of the coverage area, can the extracted image texture and retain
important details.

Then there is the measurement module. First, find the mean value of the Z-dimensional
feature vector of each class in the new feature space, and get the prototype of each class. The
formula is as follows:

Ck=
1

|Sk|
∑

(xi,yi)∈Sk

f(xi) (4)
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Here |Sk| represents the number of samples in Sk.

After finding the prototype, give the distance function D:RZ × RZ → [0,+∞), and find the
distance from the sample of the support set to each prototype. We will compare the effects of
different distance functions in the experimental part. Here, we will list the distance functions to
be compared. In the distance formula, || represents the absolute value. Euclidean distance,

D(X, Y)=
√√√√ n∑

i=1

(xi − yi)
2 (5)

Here X = (x1, x2, . . . , xn) Y = (y1, y2, . . . , yn)

Manhattan distance, also known as city block distance, is the distance function that the model
in this paper will ultimately adopt.

D(X, Y)=
n∑

i=1

|xi − yi| (6)

Fig. 3 shows the graphical representation of Manhattan distance and Euclidean distance:

Figure 3: Manhattan distance, Euclidean distance diagram

In addition, Chebyshev distance,

D(X, Y)= max
i

|xi − yi| (7)
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Cosine distance,

D(X, Y)=

n∑
i=1

(xi × yi)√
n∑

i=1
(xi)

2

√
n∑

i=1
(yi)

2

(8)

After calculating the distance between sample x of query set Q and each prototype by
distance function, the probability distribution is calculated by softmax function, which indicates
the probability that x belongs to a prototype.

Pϕ(y = k|x)= exp(−D(f(x), Ck))

N∑
i=1

exp(−D(f(x), Ci))

(9)

Here exp() represents an exponential function, and other parameters have been explained
above. The category with the highest probability is output as the category to which the test data
belongs.

Fig. 4 is a schematic diagram of the Prototypical Network under Few-shot Learning:

Figure 4: Schematic diagram of Prototypical Network under Few-shot Learning. The black circle
(C1, C2, C3) represents the prototype of each class, and the white circle (x) represents the sample
to be classified

The negative log probability of the true category k′ corresponding to the minimized sample
is used for learning. The formula for this negative log probability is as follows:
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J(ϕ)=− log Pϕ(y = |x)= D(f(x), Ck)+ log
N∑

i=1

exp(−D(f(x), Ci)) (10)

This operation is equivalent to maximizing the probability distribution of the true category
k′ corresponding to the sample.

The entire flow chart of the Manhattan Prototypical Network is given below in Fig. 5:

Figure 5: Overall flow chart of Manhattan Prototypical Network 1 (this picture explains the above
process)
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Or as shown in Fig. 6:

Figure 6: Overall flow chart of Manhattan Prototypical Network 2 (this picture explains the above
process)

The Manhattan Prototypical Network is improved from the Prototypical Network, which
also belongs to regular Bregman Divergences, which uses exponential family functions for density
estimation.

The distance measurement part of Manhattan distance can be used to do the same derivation
as the original text. The absolute value sign of the Manhattan distance can be cancelled by square.

d(f(x), Ck)= |f(x)−Ck| (11)

|f(x)−Ck|2 = f(x)−Ck = wT
k f(x)− bk, where wk = I, bk = Ck (12)

where wk and bk are weighted parameters, and I is the identity matrix.

This shows that the distance measurement part of the Manhattan Prototypical Network
belongs to the linear model, and all the required nonlinearities are learned in the embedding
function. This is the method currently used in modern neural network classification systems.

4 Experiments and Result

4.1 Dataset
The dataset used in this study is miniImageNet proposed by Vinyals et al. [32], which is

the subset of the famous ILSVRC (ImageNet Large Scale Visual Recognition Challenge)-12
(ImageNet2012 dataset) [45]. ILSVRC-12 includes 1000 classes. There are more than 1000 samples
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in each category, which is very large. MiniImageNet selected 100 categories [46], including birds,
animals, people, daily necessities, etc. Each category includes 600 84 * 84 RGB color pictures [47].
miniImageNet training is difficult, for Few-shot Learning, it still has very large development space.
In this study, the dataset is simplified, and each class includes 350 samples. Among these 100
classes, we will randomly select 64 classes of data as the training set, 16 classes as the validation
set, and the remaining 20 classes as the test set. We will mainly use the data division method of
5 way 5 shot and 5 way 1 shot for experiments.

4.2 Evaluation Metrics
Here we use the accuracy rate as the main evaluation metric, and the cross entropy loss as

the auxiliary evaluation metric. We will apply evaluation metrics to the query set in the test set.

The concept of accuracy is relatively simple, that is, the ratio of the number of correctly
classified samples m to the total number of samples n. The formula is as follows:

acc = m
n

(13)

The formula of cross entropy loss function is as follows:

L = 1
n

n∑
i=1

Li =−1
n

n∑
i=1

m∑
j=1

yij log pij (14)

Here, n represents the number of samples, m is the number of categories. yij represents 1
when the i-th sample belongs to category j, otherwise it is 0. pij represents the probability that the
i-th sample is classified as category j [48], where pij is Eq. (10). Li represents the loss of the i-th
sample. Eq. (14) is a convex function, and the global minimum can be obtained when deriving,
and it is suitable as the loss function of the model.

4.3 Experimental Results
In this part, we will compare and tune models on the miniImageNet dataset. For the Pro-

totypical Network and the improved Prototypical Network model used in this paper, namely
Manhattan Prototypical Network, the same encoder–4-layer CNN is used to embed support and
query points in the embedded part, and the initial learning rate is 0.001. The learning rate of
episodes was halved per 2000, and Adam was used as the optimizer [49]. In order to show
the rapid convergence of the model, 15,000 episodes (Each episode randomly selects samples to
construct different support sets and query sets.) are basically used for iterative training for all
experiments, and the accuracy and cross entropy loss are calculated by means of multiple test
averages to reduce errors.

First, we use 10 way 5 shot for training and 5 way 5 shot for testing. Compare the accuracy
and cross entropy loss of the Prototypical Network using Manhattan distance, Euclidean distance,
Chebyshev Distance, Cosine Distance, Manhattan distance and Euclidean distance without learn-
ing rate decay strategy. During the experiment, we found that for changing the structure of the
embedded module neural network-changing the maximum pooling layer to the average pooling
layer or adding Dropout (This paper only adds the average pooling layer and Dropout layer to
the first layer of the embedded module to avoid the degradation of model performance) will have
good results. Add them to the Manhattan Prototypical Network for comparison (here in after
referred to as the Average Pooling Manhattan Prototypical Network, the Dropout Manhattan
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Prototypical Network, or our model (Average Pooling), our model (Dropout)). This comparison
is to obtain the optimal distance function and the improvement effect of the corresponding
embedded module, test whether the improvement is effective, and verify the effect of the learning
rate decay strategy. The results are shown in Table 1. The Manhattan distance and Euclidean
distance have the best effect, and the accuracy can reach above 0.6. Manhattan distance has
the highest accuracy rate, which is 0.0194 higher than Euclidean distance, and is close to 2%.
Its cross entropy loss is the only one that is smaller than 1. It can prove that Manhattan
distance is better than Euclidean distance, cosine distance, Chebyshev distance, and can exert
greater performance. It can be found from the table that the accuracy of using the learning rate
decay strategy is 0.02–0.03 higher than that of not using this strategy. The principle of learning
rate decay strategy is that, in the early stage of learning, a larger pace is adopted to accelerate
convergence, which requires a larger learning rate. In the later stage, the model begins to converge,
which requires a smaller pace to avoid oscillation at the minimum value, and finally achieves
convergence. Moreover, the accuracy of Average Pooling Manhattan Prototypical Network and
Dropout Manhattan Prototypical Network is often higher.

Table 1: Comparison of accuracy and cross entropy loss under 10 way 5-shot training and
5-way 5-shot test conditions using Prototypical Network based on Manhattan distance, Euclidean
distance, Chebyshev distance, Cosine distance, Manhattan distance without learning rate decay
strategy and Euclidean distance without learning rate decay strategy, as well as Average Pooling
Manhattan Prototypical Network and dropout Manhattan Prototypical Network

Distance measurement Accuracy Loss

Euclidean distance 0.60598 1.00015
Cosine distance 0.18387 1.60974
Chebyshev distance 0.4444 1.33412
Euclidean distance (no decay) 0.57004 1.17291
Manhattan distance (no decay) 0.60300 1.03641
Manhattan distance 0.62538 0.93738
Manhattan distance (average pooling) 0.62807 0.92984
Manhattan distance (dropout) 0.63107 0.92586

Then we compare the accuracy and cross entropy loss of the Matching Network, the Relation
Network, the original Prototypical Network, the Meta-SGD model with our model (Manhattan
Prototypical Network), our model (Average Pooling), our model (Dropout) with 5 way 5 shot and
5 way 1 shot, respectively. These models have been introduced in the Section 2. As shown in
Table 2, under the condition of 5 ways 5 shot, it is found that the accuracy of Prototypical
Network, Relation Network and our model under various improvements is over 0.59, and the
accuracy of our models are over 0.6. Dropout improves the accuracy of Manhattan Prototypical
Network by 1%, and the loss function is almost reduced below 1 except for the improvement of
average pooling layer. Under the condition of 5 ways 1 shot, the performance of this model is
second only to the Relation Network.
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Table 2: Comparison of accuracy and cross entropy loss of Matching Network, Relation Net-
work, Prototypical Network, Meta-SGD and our model, our model (average pooling), our model
(dropout) under 5 way 1 shot and 5 way 5 shot

Method Accuracy Loss Accuracy Loss

5 way 1 shot 5 way 5 shot

Matching Network 0.32228 1.55199 0.48605 1.46100
Prototypical Network 0.38927 1.43468 0.59651 1.00481
Relation Network 0.42833 – 0.59487 –
Meta-SGD 0.25952 1.59375 0.39722 1.41602
Ours 0.40133 1.40558 0.60204 0.98370
Ours (average pooling) 0.40320 1.40297 0.59618 1.00427
Ours (dropout) 0.39267 1.41986 0.61380 0.96614

Under the setting of 15,000 episodes in this experiment, through training MAML and com-
paring with its original papers, it is found that it is far from reaching the convergence level,
while Prototypical Network and improved Prototypical Network model can indeed guarantee
convergence within 15,000 episodes, which is faster than other models. Here, under the training
condition of 10 way 5 shot, the accuracy and cross entropy loss of MAML, Prototypical Network,
Manhattan Prototypical Network, Average Pooling Manhattan Prototypical Network and Dropout
Manhattan Prototypical Network are compared. We can see that the performance of these five is
almost gradually improving, and the best one is Dropout Manhattan Prototypical Network.

Figure 7: Performance comparison of MAML, Prototypical Network, Manhattan Prototypical
Network, Average Pooling Manhattan Prototypical Network and dropout Manhattan Prototypical
Network. (a) Accuracy; (b) Cross entropy loss

It can be seen from Fig. 7 that the accuracy of Manhattan Prototypical Network and its
improvement exceeds that of the original Prototypical Network and other models. Average Pool-
ing Manhattan Prototypical Network and Dropout Manhattan Prototypical Network can play
better classification effects than Manhattan Prototypical Network, especially Dropout Manhattan
Prototypical Network can improve the accuracy by about 1%.



670 CMES, 2022, vol.131, no.2

Adjust parameters and compare them by learning curves below:

Initial learning rate:

Generally, for Few-shot Learning algorithms, the initial learning rate is set to 0.001, but if
it is set to other values, the effect will be reduced. For the initial learning rate, the Prototypical
Network, our model, our model (Average Pooling) and our model (Dropout) are tested with the
interval of 0.0001–0.011. As shown Fig. 8, it is found that when the initial learning rate is set
to 0.001, the effect is the best. Too small and too large a learning rate will lead to poor model
effect, especially when it is too large, sometimes the accuracy of Manhattan Prototypical Network
and Prototypical Network model will fall below 0.2. However, the accuracy of Average Pooling
Manhattan Prototypical Network and Dropout Manhattan Prototypical Network can be kept
above 0.54.

Figure 8: Use the 0.0001–0.011 interval for the learning rate (0.001 is the step size) to test the
Prototypical Network and our model, our model (Average Pooling) and our model (Dropout). (a)
Accuracy; (b) Cross entropy loss

Number of neural network layers:

The CNN of the Prototypical Network and our model are both set to 4, but if the number
of layers is simply deepened or reduced, the performance of the model will be degraded, resulting
in some degree of over-fitting and under-fitting. We set the CNN to 3, 4 and 5 layers respectively
for testing. The result is shown in Fig. 9. When the number of layers of CNN is less than 4 and
higher than 4, the network performance will be degraded, especially when the number of layers is
higher than 5, the network performance will be degraded rapidly. This shows that only changing
the number of layers will not improve the performance of the models.

Number of training categories:

According to the previous data, it can be found that the accuracy of the Prototypical Network
with 10 training categories and Manhattan Prototypical Network is 0.01–0.02 higher than that
of the Prototypical Network with 5 training categories. Is it possible to draw a conclusion that
within a certain range, the more categories during training, the higher the model performance? It
can be seen from Fig. 10 that it is not that the more training categories, the higher the model
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performance. For these two types of networks, when the number of training classes is 10 (for
Euclidean distance) or 20 (for Manhattan distance), the model has the best accuracy and cross
entropy loss. When the value is 20, the Manhattan distance Prototypical Network can even reach
0.63700, and the Average Pooling Manhattan Prototypical Network can reach more than 0.639,
which is close to 0.64. When the number of training categories is higher than 20, the accuracy
will decrease and the loss of cross entropy will increase.

Figure 9: Comparison of the effects between Prototypical Network and our model, our model
(Average Pooling) and our model (Dropout) when the number of neural networks is set to 3, 4
and 5. (a) Accuracy; (b) Cross entropy loss

Figure 10: Accuracy and cross entropy loss curves of Prototypical Network and Manhattan Pro-
totypical Network, Average Pooling Manhattan Prototypical Network and dropout Manhattan
Prototypical Network when the number of training categories is 10–60 (step size is 10). (a)
Accuracy curve; (b) Cross entropy loss graph
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Number of convolution kernels in each layer of Neural Network:

By adjusting the number of convolution kernels in each layer of CNN, it is found that the
number of convolution kernels is almost positively correlated with the performance of Prototypical
Network and Manhattan Prototypical Network and their improvements. When the number of
convolution kernels reaches 80, the accuracy of Manhattan Prototypical Network reaches 0.64733.
When the number of convolution kernels is 128, the accuracy of Manhattan Prototypical Network
remains above 0.642, and the accuracy of Prototypical Network is close to 0.62. It can be
seen from Fig. 11 that Average Pooling Manhattan Prototypical Network, Dropout Manhattan
Prototypical Network and Manhattan Prototypical Network have similar performance.

Figure 11: Accuracy and cross entropy loss curves of Prototypical Network, Manhattan Pro-
totypical Network, Average Pooling Manhattan Prototypical Network and dropout Manhattan
Prototypical Network when the number of convolution cores in each layer of neural network is
16–128 (step size is 16). (a) Accuracy curve; (b) Cross entropy loss curve

5 Conclusion

In this paper, an improved Prototypical Network is proposed, in which the core distance
measurement function of the original Prototypical Network is changed from Euclidean distance
to Manhattan distance, and the average pooling layer and Dropout layer are added respectively.
The improved Prototypical Network has higher performance and convergence, exceeding the
original Prototypical Network, MAML, Matching Network, Relation Network, Meta-SGD and
Prototypical Network improved based on other distances within 15,000 episodes. The Manhattan
Prototypical Network with the average pooling layer and Dropout was better at times, especially
with the addition of Dropout. After parameter adjustment, the performance of the model can
reach 0.64733. This means that the Manhattan distance is more suitable for Prototypical Network,
and exceeds the Euclidean distance and Cosine distance explored in the original paper and other
metric measurements. It has higher stability than other measures in some cases. Combining the
coding layer and classification layer of the model, the parameters are less and the training is more
convenient. In specific experiments, the concept of “Prototype” is only used in the function part
of calculating the loss of the model, while the backbone network of the model is not disturbed,
which means that the portability and extensibility of the Prototypical Network are also excellent.
This research determined the better metric function–Manhattan distance in the fixed distance
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metric in the Metric Learning of Few-shot Learning and adds the average pooling layer and
Dropout layer to improve the performance. There are often fewer samples in the field of medicine
and SAR. Applying our research to medicine and SAR can play a better effect than other models
listed in this paper. In the future, we will try to apply other complex CNN to it, and we can
also explore Metric Learning based on learnable metrics to improve the performance of Few-shot
Learning algorithms.
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