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ABSTRACT

Fabrication of flame retardants from renewable biomass has aroused extensive interest over the past decade. This
work reported a synthesis of isosorbide-derived polyphosphonate (PICPP) as an anti-flammable agent for poly
(lactic acid) (PLA). The presence of PICPP notably declined the storage modulus of PLA/PICPP owing to the
declined molecular weight of PLA catalyzed by the presence of PICPP. PLA and PLA/PICPP thermally degraded
in one stage under either air or nitrogen atmosphere. With increasing the amount of PICPP, the onset thermal
decomposition temperature of PLA/PICPP was decreased gradually, owing to the earlier decomposition of PICPP.
With only 10 wt% of PICPP, PLA/PICPP-10 achieved a high limiting oxygen index of 30.0% and UL-94 V-0 clas-
sification, manifesting that PICPP was an efficient anti-flammable agent for PLA. The inclusion of 15 wt% PICPP
also caused 33% and 16% decline in PHRR and THR of PLA, respectively. TG-IR results clarified that PLA/PICPP
produced the less typical pyrolysis products especially flammable carbonyls than PLA, which may account for the
suppressed PHRR and THR values of PLA/PICPP.
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1 Introduction

Poly(lactic acid) (PLA) is one kind of thermoplastic biodegradable polymeric material, which is sourced
from starch-rich plants such as cassava, corn, and so on. PLA has many advantages, including rich raw
materials, biodegradability, excellent biocompatibility, superior processing and mechanical properties
[1–3]. Given this, PLA has been extensively applied in biomedical, packaging materials and other related
fields. However, similar to the conventional polyesters, PLA is easy to ignite in the air and accompanied
by serious dripping phenomenon, which seriously restricts the application of PLA in the fields with high
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flame-retardant requirements such as electronic packaging and automobile industry [4,5]. Hence, the attempt
to enhance the anti-flammability of PLA has become the focus of both academia and industry.

At present, physical blending flame retardant modification is the most commonly used method for
flame-retardant modification of PLA, which refers to the processing of flame retardant PLA materials by
adding flame retardants to PLA matrix through melt blending. This strategy possessed the advantages of
low cost, convenient operation and easy commercialization. The commonly used additive flame retardants
is mainly divided into two categories which are organic and inorganic anti-flammable agents. The organic
anti-flammable agents for PLA include phosphorus-based chemicals [6–8], phosphorus/nitrogen-based
chemicals [9,10], intumescent flame-retardant systems [11–13], etc., among many organic flame retardants,
the phosphorus-containing compounds have become the most popular flame-retardants for PLA owing to
their merits of low smoke and environmental friendliness. So far, diverse phosphorus-based
flame-retardant additives including 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-
derived chemicals [14–19], hypophosphorous acid-based derivatives [6], poly(ethylene diglycol
phenylphosphinate) [20], poly(1, 2-propanediol 2-carboxyethyl phenyl phosphinate) [21], poly(butylene
phenyl phosphate) [22], hyperbranched polyphosphate ester [23], and poly(phenylphosphoryl
phenylenediamine) [24], have been synthesized for improving the anti-flammability of PLA. However, in
order to achieve satisfactory flame retardant effect, it is necessary to add a high content (usually beyond
15%) of phosphorus-based flame-retardant additives to PLA.

Except for the organic flame-retardants, various inorganic flame-retardants such as carbon-based materials
[25–28], metal organic frameworks [29,30], silicates [31–34], black phosphorus [35], graphitic carbon nitride
[36], molybdenum disulfide [37,38], have been utilized to enhance the anti-flammability of PLA. Compared to
organic flame-retardants, inorganic anti-flammable agents are more efficient in decreasing the heat release and
smoke emission at a relatively low dosage. However, the use of inorganic flame-retardants alone generally
makes PLA difficult to reach UL-94 V-0 classification. Thus, inorganic flame-retardants are mostly used
together with organic flame-retardants to create a flame-retardant synergism.

Based on the review of the anti-flammable strategies above, highly efficient anti-flammable technology
for PLA remains a challenging task. Recently, the application of bio-based flame retardants for PLA is
becoming a new-arising trend [39–42]. As a sucrose-derived diol, isosorbide has attracted extensive
attention because of its high stiffness and thermal stability [43]. Isosorbide has been reported to fabricate
the flame-retardants for epoxy [44,45] and poly(butylene succinate) [46]. Recently, Wang and
collaborators designed a isosorbide-derived poly(phosphoester) as flame-retardant for PLA [47]. PLA
containing 20 wt% of isosorbide-derived poly(phosphoester) achieved a LOI of 25.5% and passed UL-94
V-0 classification. To develop isosorbide derivatives with higher flame-retardant efficacy, an isosorbide-
derived polyphosphonate was produced via condensation between 2-carboxyethyl phenylphosphinic acid
and isosorbide in this study. The effect of the isosorbide-derived polyphosphonate dosage on the thermal
and flame-retardant behaviors was investigated. Finally, the flame-retardant mechanism of this isosorbide-
derived polyphosphonate was speculated based on the analysis of the pyrolysis products of PLA composites.

2 Experimental Section

2.1 Materials
Poly(lactic acid) (2003D) were purchased from Nature Works (USA). Isosorbide and 2-carboxyethyl

phenylphosphinic acid (CPA) were offered by Aladdin Bio-Chem Technology Co., Ltd., (China).
Tetrabutyl titanate was obtained from Sinopharm Chemical Reagent Co., Ltd., (China).

2.2 Synthesis of Poly(Isosorbide 2-Carboxyethyl Phenyl Phosphinate) (PICPP)
The PICPP was synthesized through polycondensation of CPA and isosorbide (Scheme 1). Briefly, CPA

(0.50 mol, 107.1 g), isosorbide (0.55 mol, 80.4 g) and tetrabutyl titanate (0.6 g, as the catalyst) were introduced
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into a three-necked flask fitted with a condenser, a mechanical stirrer as well as a nitrogen inlet. The reaction
was conducted at 160°C for 5 h under N2. Afterwards, the temperature was then raised to 180°C for 2 h.
Subsequently, a vacuum (<100 Pa) was applied and maintained for 5 h to complete the polycondensation
process. At last, the light-yellow product was obtained and ground into powder at room temperature.

2.3 Fabrication of PICPP/PLA Blends
All the PICPP/PLA composites were prepared using a torque rheometer (XSS300, Kechuang, China) at

170°C for 10 min. Various contents of PICPP ranging from 5 to 15 wt% were incorporated into PLA resin.
After melt compounding, the PICPP/PLA mixture was ground into pellets and then injected to a micro-
injection machine (WZS10-D, China) for preparation of specimens of LOI, UL-94 and tensile tests. The
cylinder temperature was 180°C and the molding temperature was set to 50°C.

2.4 Methods
Fourier-transform infrared (FTIR) spectroscopic analysis was carried out on a Nicolet

iS50 spectrophotometer using potassium bromide disc approach.

Proton and 31P-nuclear magnetic resonance (NMR) spectroscopic analysis was performed on an
AVANCE III 400 MHz instrument using deuterated chloroform as solvent.

Molecular weight and molecular weight distribution of the samples were determined by a Dionex
Ultimate 3000 gel permeation chromatography (GPC). The temperature of DMF eluent was 35°C and the
flow rate was 0.5 mL/min.

Dynamic mechanical analysis (DMA) was carried out with a TA Q850 analyzer at a ramp rate of 5 °C/min.
The specimen used was of 35 mm× 10 mm× 3 mm.

Thermogravimetric analysis (TGA) was performed on a TAQ500 apparatus. The ramp rate was 20 °C/min
from 30 to 800°C.

Anti-flammable behaviors were assessed by an HC-2 limiting oxygen index (LOI) apparatus
(Sample size: 100 mm × 6.5 mm × 3 mm) and a CFZ-2 vertical burning chamber (Sample size: 130 mm ×
13 mm × 3 mm).

Scheme 1: Polycondensation of between isosorbide and 2-carboxyethyl phenylphosphinic acid to yield bio-
based polyphosphinate
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Heat-related parameters were obtained using an FTT microscale combustion calorimeter (MCC). The
sample was thermally decomposed from 100 to 650°C at a ramp rate of 1°C/s under N2 (flow rate:
80 mL/min). The pyrolysis volatiles were then blended with a 20 mL/min stream of O2. The mixture was
finally sent to a 900°C combustor. On the basis of the oxygen consumption principle, the heat release rate
was computed.

Pyrolysis products during TGAmeasurements were detected by a Nicolet 6700 FTIR spectrophotometer
whose gas chamber was linked to a TA Q50 thermal analyzer through a stainless tube (TGA-FTIR).

3 Results and Discussion

The chemical structure of PICPP was characterized using the FTIR instrument. As shown in Fig. 1, CPA
exhibits an intense band centered at the 3419 cm−1 that is ascribed to the -OH groups of carboxylic and
phosphorus acid, and the absorption peaks at 2925 and 2872 cm−1 are assigned to the asymmetric and
symmetric stretching vibration of -CH2- groups, respectively. The absorption peaks of isosorbide at
2937 and 2875 cm−1 are related to the symmetric and asymmetric stretching vibration of -CH2- groups,
respectively. The broad absorption peak at 3397 cm−1 is assigned to the -OH group, and the absorption
peak at 1077 cm−1 originated from the C-O-C group in the pentacyclic structure. Compared to the
monomers, the stretching vibration of the hydroxyl groups almost disappears in PICPP attributed to the
occurrence of esterification between CPA and isosorbide. Additionally, the absorption band appearing at
1221 cm−1 belongs to the formation of C-O-Cisosorbide.

Fig. 2 depicts the proton and 31P-NMR spectra of PICPP. As shown in Fig. 2a, the multiple signals at the
chemical shift range from 3.5 to 5.2 ppm (marked 1–6) are ascribed to the protons belonging to the isosorbide
cycle. The multiple signals ranging from 7.4 to 7.8 ppm are allocated to the aromatic protons. Additionally,
the signals at 2.6 and 2.2 ppm are assigned to the protons in the -CH2-P(O)- (marked 7) and -CH2-C(O)-
(marked 8) groups, respectively. An intense signal at 43.1 ppm is observed in the 31P-NMR spectrum of
PICPP (Fig. 2b), implying only one chemical environment for phosphorus atoms. These data correspond
well with the anticipated molecular structure, manifesting the successful synthesis of PICPP.

Figure 1: FTIR spectral analysis of CPA, isosorbide and PICPP
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Polymers’ molecular weight is a key factor to affect their performances. The influence of PICPP on the
molecular weight of PLA composites was characterized using GPC. Table 1 lists the GPC data of PLA and
PLA/PICPP. With the increase of the addition content of PICPP, both the number-average molecular weight
(Mn) and weight-average molecular weight (Mw) were declined gradually. Polydispersity index is calculated
by the ratio of Mw/Mn, which is generally to assess the molecular weight distribution. It can be seen that the
polydispersity index was also declined as the addition content of PICPP increased. PLA was apt to
decompose during the processing procedure because of the catalysis of hydroxyl terminated PICPP. That
is why the decreased molecular weight and the increased polydispersity index after incorporating
PICPP into PLA.

The effect of PICPP on the thermo-mechanical performances of PLA was determined using DMA
measurement. Fig. 3a illustrates that the storage modulus (E’) decreased with the increment of temperature
in the whole studied scale. The E’ at 30°C of the pristine PLA was 2,179 MPa, whereas the addition of
PICPP decreased the E’ at 30°C to 1,956, 1,716 and 1,551 MPa for PLA/PICPP-5, PLA/PICPP-10 and
PLA/PICPP-15, respectively. The reduced storage modulus of the PLA/PICPP composites can be ascribed
to the declined molecular weight of PLA catalyzed by the presence of PICPP. Additionally, all the samples
exhibited a sharply decreased E’ stage corresponding to the transition stage from the glassy state to the
rubbery state of PLA. The glass transition temperature (Tg) is identified by the temperature at the maximum
tanδ value (Fig. 3b). The Tg of the pristine PLA was 73°C. When the addition content of PICPP was low,
the Tg of PLA/PICPP-5 remained unchanged. With the increase of the addition content of PICPP, the Tg of
PLA/PICPP-10 and PLA/PICPP-15 was slightly decreased to approximately 69°C. Moreover, the broaden
long tail of tanδ peak could due to the fact that G" decreases slowly as temp increases, which implies the
chain entanglements are enhanced, supporting the better compatibility.

Figure 2: (a) Proton and (b) 31P-NMR spectra of PICPP

Table 1: GPC results of PLA and PLA/PICPP

Mn (Da) Mw (Da) Polydispersity

PLA 686130 741408 1.08

PLA/PICPP-5 611919 697076 1.14

PLA/PICPP-10 537906 638488 1.19

PLA/PICPP-15 483370 591192 1.22
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Typical stress-strain curves of PLA and its composites are shown in Fig. 4, corresponding data were
summarized in Table 2. It can be observed that the incorporation of PICPP into PLA matrix showed a
negative effect on the mechanical properties of PLA composites. The tensile modulus, tensile strength
and elongation at break of pure PLA were 1.31 GPa, 66.45 MPa and 7.03%. Adding 5 wt% PICPP into
PLA matrix, the tensile strength of PLA/PICPP-5 slightly declined to 59.79 MPa while the elongation at
break of PLA/PICPP-5 increased to 7.81%, and PLA/PICPP-5 presented comparative tensile modulus as
that of neat PLA. However, further increasing the addition of PICPP, the tensile strength and elongation
at break of PLA/PICPP-10 and PLA/PICPP-15 were obviously decreased, which was attributed to that
the presence of PICPP declined the molecular weight of PLA, hence worsening the mechanical properties
of PLA composites.

Figure 3: DMA plots of PLA and PLA/PICPP: (a) storage modulus (E’) and (b) tan δ

Figure 4: Typical stress-strain curves of PLA and its composites

Table 2: Tensile test data of PLA and its composites

Sample Tensile
modulus (GPa)

Tensile
strength (MPa)

Elongation at
break (%)

PLA 1.31 66.45 7.0

PLA/PICPP-5 1.30 59.79 7.8

PLA/PICPP-10 1.93 53.25 3.4

PLA/PICPP-15 2.00 41.31 2.4
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The effect of PICPP on thermal decomposition of PLAwas analyzed using TGA. Fig. 5 shows the TGA
and differential TGA (DTG) thermograms of PLA and PLA/PICPP under air and nitrogen atmospheres, and
Table 3 summarizes the relating data. In Figs. 5a and 5b, PLA thermally degraded in a single stage between
324°C (T5%, the temperature at 5% weight loss,) and 380°C, and the weight loss was 97.5%. The temperature
at the maximum decomposition rate (Tm) of PLAwas 363°C as observed in the DTG curve. At 800°C, only
0.4% residue was left. After adding PICPP, PLA/PICPP thermally degraded in one stage. With the increase of
the addition content of PICPP, the T5% of PLA/PICPP was decreased gradually, owing to the earlier
decomposition of phosphorus-containing additives [48,49]. The presence of PICPP almost had no change
in the residue yield of PLA. Although PICPP had certain charring ability, the formed char was unstable
and decomposed at high temperature. Owing to the generation of the intermediate char, the weight loss
rate was slowed down during the thermal decomposition process, as demonstrated by the DTG curves.
Under nitrogen atmosphere, PLA also behaved a thermal decomposition stage between 333°C (T5%) and
390°C and yield 1.0% residue (Figs. 5c and 5d). The T5% and Tm of PLA were slightly higher than those
under air, because of the absence of oxidation by oxygen. Similarly, the T5% of PLA/PICPP was
decreased gradually as the addition content of PICPP grew up. From DTG curves, it can be found that
the incorporation of PICPP reduced the weight loss rate of PLA during the thermal decomposition
process, which was ascribed to the generation of a carbonaceous layer. However, the char was thermally
unstable so that cannot resist the high temperature. Thus, the residue yield of PLA/PICPP was very
slightly improved by the presence of PICPP.

Figure 5: TGA and DTG thermograms of PLA and PLA/PICPP under (a, b) air and (c, d) nitrogen atmosphere
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The LOI and UL-94 tests are employed to assess the anti-flammable behaviors of PLA and PLA/PICPP,
and corresponding results are summarized in Table 4. The LOI value of pure PLA was 20.0% which was
relatively low, and it completely burned out in the UL-94 test corresponding to no classification. With
increasing the addition amount of PICPP, the LOI of PLA/PICPP composites was increased gradually.
Specifically, the LOI value of PLA/PICPP-5, PLA/PICPP-10 and PLA/PICPP-15 was 26.0%, 30.0% and
31.0%, respectively. Additionally, PLA/PICPP-5 behaved UL-94 V-1 classification, and PLA/PICPP-
10 and PLA/PICPP-15 achieved UL-94 V-0 classification, manifesting that PICPP was an efficient flame
retardant additive for PLA. Since the dispersion behavior of flame retardants or the phase separation
morphology has an impact on the flame retardant efficiency [50,51], such the high flame retardant effect
could be ascribed to the good dispersion state of the PICPP in PLA matrix.

MCC is a widespread apparatus to obtain the heat release rate (HRR) information of polymers just
using milligram samples [52,53]. Fig. 6 depicts the HRR vs. temperature curves of PLA and PLA/PICPP,
and Table 4 summarizes the relating data. The HRR curve of the pristine PLA showed an intense peak,
and its peak HRR (PHRR) value was 690 W/g, implying that PLA was a highly flammable material. With
the content of PICPP was increased, the PHRR of PLA/PICPP was decreased gradually. Specifically, the
PHRR values of PLA/PICPP-5, PLA/PICPP-10 and PLA/PICPP-15 were reduced to 564, 537 and
463 W/g, respectively. The PLA/PICPP-15 exhibited the lowest PHRR value, 33% lower than the pristine
PLA. Additionally, the width of the HRR curves of PLA/PICPP composites became broaden with
increasing the content of PICPP. This was consistent with the widen molecular weight distribution of
PLA caused by the catalysis of PICPP. The THR value showed a similar changing trend as the PHRR. As
increasing the content of PICPP, the THR values of PLA/PICPP-5, PLA/PICPP-10 and PLA/PICPP-
15 were declined to 22.1, 21.9 and 20.6 kJ/g, respectively. By contrast to the pristine PLA, the
temperature to PHRR (TP) of PLA/PICPP exhibited a quite slight change, whose changing trend was in
good agreement with the Tmax observed in DTG curves.

Table 4: LOI, UL-94 and MCC data of PLA and PLA/PICPP

LOI (%) UL-94 PHRR (W/g) THR (kJ/g) TP (
oC)

PLA 20.0 Failed 690 24.6 371

PLA/PICPP-5 26.0 V-1 564 22.1 371

PLA/PICPP-10 30.0 V-0 537 21.9 369

PLA/PICPP-15 31.0 V-0 463 20.6 368

Table 3: Effect of PICPP content on the thermal decomposition of PLA under air and nitrogen atmosphere

T5% (oC) Tm (oC) Residual yield (%) at 800 oC

Air N2 Air N2 Air N2

PLA 324 333 363 369 0.4 1.0

PLA/PICPP-5 318 319 363 368 0.5 1.3

PLA/PICPP-10 298 312 361 367 0.5 1.8

PLA/PICPP-15 291 307 363 365 1.4 2.2
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The evolved products of PLA and PLA/PICPP-15 in the vapor phase were detected by TG-FTIR
technique. As shown in Figs. 7a and 7b, it was apparent that PLA/PICPP-15 exhibited a similar 3D FTIR
spectra as PLA. The typical evolved products appeared at 2,930–2,600, 1,870–1,650, 1,530–1,290, and
1,190–1,000 cm−1 for both PLA and PLA/PICPP-15. Fig. 7c further provides the FTIR spectra of PLA
and PLA/PICPP-15 at the maximum weight loss rate. The typical evolved products were identified by
the characteristic signals: aliphatic hydrocarbons (stretching vibrations at 2,930–2,800 cm−1;
bending vibrations at 1,480–1,300 cm−1), aldehydes (2,800–2,600 cm−1), ketones and carboxylic acids
(1,870–1,650 cm−1) and esters (1,190–1,000 cm−1) [11,23,54]. During the thermal decomposition process,
the macromolecular chains of PLA broken into several typical small molecules including aliphatic
hydrocarbons, aldehydes, ketones and carboxylic acids and esters, which accorded well with the previous
reports [11,23]. Among these typical pyrolysis products, carbonyls (aldehydes, ketones and carboxylic
acids, etc.) displayed the highest absorbance intensity, implying that they are the majority in the pyrolysis
products. Additionally, the absorbance intensity of the peaks at 1,870–1,650 cm−1 of PLA/PICPP-15 was
lower than that of PLA, meaning the declined production of carbonyls in the decomposition process.
Since carbonyls are flammable pyrolysis products, the declined carbonyl-moieties production may
account for the declined heat release parameters in MCC measurement.

Based on the discussion above, the flame retardant mechanism of PICPP can be attributed to the
combined gas and condensed phase flame retardant actions. The former plays a flame retardant effect by
generating phosphorus-containing free radicals while the latter by forming pyrophosphoric acid or
metaphosphoric acid compounds. According to the previous reports [55], the char yield decreased and the
emission of phosphorus-containing volatiles increased as the oxidation state of phosphorus decreased.
Because the PICPP has a low oxidation state of phosphorus, the flame retardant mode of action of PICPP
mainly manifested in the gas phase. The gaseous phase flame retardant action is mainly depicted as
follows: Once the PLA composites are exposed to fire sources, PICPP could decompose to generate
phosphorus-containing free radicals, which can quench the hydrocarbon free radicals from the
decomposed matrix and thus terminate the combustion chain reaction in gas phase. Additionally, some
phosphorus-containing compounds derived from the thermal decomposition of PICPP remain in the
condensed phase, resulting in the slight promotion of char yield as observed in TGA. Predominant gas
phase mode of action in combination with minor carbonization has been reported to be an efficient
strategy for flame retardancy enhancement [56].

Figure 6: HRR vs. temperature plots of PLA and PLA/PICPP composites
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4 Conclusions

In this study, an isosorbide-derived polyphosphonate (PICPP) was synthesized and utilized as an anti-
flammable agent for PLA. FTIR and NMR spectral data demonstrated the successful synthesis of PICPP.
Owing to the catalysis effect of hydroxyl-terminated PICPP on the decomposition of PLA during the
processing, the molecular weight of PLA was declined after adding PICPP. The incorporation of PICPP
leaded to a reduction in the storage modulus of PLA as the molecular weight was declined. TGA results
manifested that PICPP reduced the onset thermal degradation temperature and the weight loss rate of
PLA composites during the thermal decomposition process. PLA containing 10 wt% of PICPP achieved a
high LOI value of 30.0% and passed the UL-94 V-0 classification. Additionally, the PHRR and THR of
PLA containing 15 wt% of PICPP were declined by 33% and 16%, respectively, compared with those of
PLA. TGA-FTIR results clarified that PLA/PICPP produced the less typical pyrolysis products especially
flammable carbonyls than PLA, which was responsible for the declined PHRR and THR values of PLA/
PICPP. This isosorbide-derived polyphosphonate provides a renewable and efficient solution for flame-
retardant PLA.
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