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Conventional image skeletonization techniques implicitly assume the pixel level connectivity. However, noise inside the object regions destroys the
connectivity and exhibits sparseness in the image. We present a skeletonization algorithm designed for these kinds of sparse shapes. The skeletons are
produced quickly by using three operations. First, initial skeleton nodes are selected by farthest point sampling with circles containing the maximum effective
information. A skeleton graph of these nodes is imposed via inheriting the neighborhood of their associated pixels, followed by an edge collapse operation.
Then a skeleton tting process based on feature-preserving Laplacian smoothing is applied. Finally, a re nement step is proposed to further improve the
quality of the skeleton and deal with noise or different local shape scales. Numerous experiments demonstrate that our algorithm can effectively handle
several disconnected shapes in an image simultaneously, and generate more faithful skeletons for shapes with intersections or different local scales than
classic methods.
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1. INTRODUCTION

Shape analysis and recognition constitutes a fundamental prob-
lem of the areas such as pattern recognition, image processing
and computer vision [1-6]. A central issue in shape analysis and
recognition is how to represent the object. Skeleton capturing
both the topology and prominent geometry of an object in a con-
cise manner is widely used, because it can ease the characteristics
detection in recognition and classification [7-9].

Many proposed skeletonization techniques utilize the connec-
tivity of image pixels inside the object regions [7, 8]. However,
they may fail to extract a correct skeleton or yield many arti-
facts if the regions lack pixel level connectivity, known as sparse
shapes [10]. The sparse shapes may be generated by noise oc-
curring inside object regions, poor lighting conditions, incorrect
thresholding, texts faded due to aging or poor ink quality, etc.
Figure 1 illustrates a non-sparse image and its sparse counter-
part. The right one is an image with a sparse shape “A” caused
by an artificially introduced internal noise. Median image filter-
ing or morphological set operations can be used to reconstruct
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the lost connectivity of the pixels. However, if the sparseness
is significant, these operations might introduce new problems,
such as distortions to the topology feature of the object or error
links between different objects [10].

To obtain skeletons from images which may lack pixel level
connectivity, principal curves [11], first introduced in statistics,
present a solution. Most skeletonization algorithms in this area

Figure 1 Comparison of a non-sparse image and its sparse counterpart.

vol 33 no 2 March 2018 115



EFFECTIVE PIECEWISE LINEAR SKELETONIZATION OF SPARSE SHAPES

[10, 12-14] exploit a two-layer iteration process including locat-
ing a set of vertices based on the principle of principal curves and
connecting the vertices by the minimum spanning tree (MST) of
them to form an approximate skeleton. Because the minimum
spanning tree is unable to represent closed topological property,
it is dynamically modified by detecting closed regions. Mean-
while, the number of the vertices needs to be adaptively changed
to obtain a good approximation of the skeletal representation for
a given shape distribution. Thus, although these algorithms can
extract skeletons from shapes with self-intersections or loops,
they suffer the following three main drawbacks. First, this skele-
tonization strategy is not easy to control. Most of the skele-
tonization algorithms have parameters that interact with some
complexity during the process of inserting or deleting vertices
and the modification of the MST. Second, the topology captured
by a modified MST will generate unnecessary links between
separate objects (Figure 10-b), since MST connects all the ver-
tices together according to its definition. Thus, for identifying
a handwritten word, the word has to be segmented into letters
in advance. Finally, most of the algorithms lack a clear and in-
tuitive formulation to fit and smooth a skeleton. Besides, these
algorithms are not good at feature-preserving.

In order to overcome the above shortcomings as many as pos-
sible, an effective algorithm is presented in this paper. Three
techniques, farthest point sampling, edge collapse and feature-
preserving Laplacian smoothing, are combined with a refine-
ment mechanism to obtain the skeletons of sparse shapes. The
algorithm captures the topology of original models by farthest
sampling with adaptive radii (the radii of sampling circles) and
the followed edge contraction processes, and later, increases the
approximation of the skeletal representation by smoothing the
locations of the nodes via Laplacian. Testing on a large amount
of typical data including multi-scale models (composed of shape
parts with different scales), self-intersecting models and images
of faded texts, our algorithm can produce skeletons with high
quality.

The principal contributions are summarized as follows:

• The proposed skeletonization strategy consisted of node
sampling and edge contraction performs better compared
with the MST-based methods. It easily captures closed
topological property and avoids error links between differ-
ent objects.

• Since the refinement process adaptively samples nodes re-
flecting the local scale based on prior radii, our algorithm
can handle multi-scale models.

• Based on the Laplacian method which can be especially
designed for the feature points, the algorithm can preserve
the features well.

This paper begins with a brief overview of related work on
skeletonization for sparse shapes. Section 3 presents our skele-
tonization algorithm. Section 4 goes through the details of the
three steps of the proposed algorithm. Section 5 contains im-
plementation and some experimental results. Finally, Section 6
summarizes the paper.

2. RELATED WORK

The conventional skeletonization algorithms [8, 15-18] mainly
focus on images without sparseness in objects regions, which
require formal criteria for the boundary of the objects or for sep-
arating the foreground from the background. However, towards
images with sparse shapes, a pixel with zero valued pixels in its
neighborhood may not lie on the boundary of a region. Thus,
it is difficult to distinguish the foreground from the background
in such shapes, and neither 4-connectivity nor 8-connectivity
neighbors exist.

For the sake of brevity, we focus on the skeletonization algo-
rithms that do not depend on the connectivity of pixels. Inspired
by the hint of human visual symmetry, a modified thinning al-
gorithm for noisy digital patterns was proposed by Chen and
Yu [19]. For each pixel, they found the effective circular range,
computed the symmetry score of the pixel distribution and con-
verted the symmetry information into a gray-scale image which
was thinned to obtain the skeleton. Datta et al. [20] proposed to
use a dynamic self-organizing map (SOM) for the extraction of
skeletal shapes from a 2D dot pattern, which means lacking pixel
level connectivity compared to common image. The SOM was
initialized with a linear topology and later changed according to
the local topology of the input pattern.

Computing the skeletal description of shapes is similar to ap-
proximating the principal curve of the shape distribution [11,
21-23]. Principal curves are defined as self-consistent smooth
curves which pass through the middle of the data points. Singh
et al. [10] did an outstanding work in this area. A batch for-
mulation of the self-organizing mapping was used to obtain the
skeleton or called the principal curve of sparse shapes. They as-
signed a given number of SOM units randomly, and connected
them via a modified MST to form an initial skeleton graph. Then
the locations and connections of these units were optimized by
evolving the SOM algorithm iteratively. The method is applied
to various kinds of images with sparse shapes, such as binary
images of planar industrial parts [24], handwritten characters,
and faded text [25]. The SOM algorithm can extract skeletons
from shapes with self-intersections. However it would produce
poor results if the object contains different local shape scales and
generate unnecessary links between separate objects.

To extract a skeleton from shapes with different local scales,
Palenichka and Zaremba [12] proposed a structured SOM algo-
rithm, which iteratively updated the SOM weights while progres-
sively decreasing the span of a SOM kernel function according to
the local shape scales. Yet their algorithm was complicated and
described vaguely. To give a simple fitting objective function,
Kégl and Krzyzak [26] proposed an explicit one. The skele-
ton graph was optimized by minimizing an intuitive objective
function that captures the two competing criteria of smoothing
the skeleton and fitting it to the shape, while the objective func-
tion was non-linear. Motivated by solving the problem of highly
curved and self-intersecting curves, Liu and Jia [13] turned to
principal curve and presented a bottom-up strategy to construct
a principal graph. The principal graph was spanned by MST
and modified by detecting closed regions and intersectional re-
gions to generate loops and crossings. The method was applied
in image skeletonization and tested on images of handwritten
characters and objects.

116 computer systems science & engineering



QU ET AL

Figure 2 The flowchart of the proposed algorithm.

3. THE PROPOSED METHOD

The objective of our skeletonization algorithm is to fit a set of
smooth, piecewise-linear curves to the skeleton of the image with
sparse shapes. The curves here are represented by a Euclid-
ean graph in the plane spanned by the vertices found during
the skeletonization process. A Euclidean graph GV ,E in the d-
dimensional Euclidean space is a pair (V , E). V = {v1, . . . , vm}
is a set of vertices (sometimes called nodes for avoiding confus-
ing), and E = {(vi1 , v j1), . . . , (vik , v jk )} = {ei1 j1, . . . , eik jk },
1 ≤ i1, j1, . . . , ik, jk ≤ m is a set of edges, where each edge ei j

joins two vertices vi and v j . For the sake of simplicity, the term
graph is used as an abbreviation for Euclidean graph in the rest
of the paper.

Since the 2D binary image with sparse shapes lacks pixel level
connectivity, the pixel coordinates are interpreted as points in R2,
i.e., a point set P . Our skeletonization process begins with P ,
and produces a 1D graph G as the piecewise-linear approxima-
tion for the shape skeleton of P . The whole algorithm consists
of three steps: skeleton generation, skeleton fitness and skele-
ton refinement. Figure 2 shows the flowchart of the proposed
algorithm.

The skeleton generation step consists of node sampling and
edge contraction. Specifically speaking, the step firstly selects a
subset nodes of P based on farthest point sampling with circles
of adaptive radii, and builds the graph G spanned by these nodes
via inheriting the neighborhood of their associated points, then
iteratively collapses unnecessary edges of G by their midpoints
until no triangles exist to obtain a thin version of the shape.
The sampling radius r of a node is determined by finding the
effective circular range which contains the maximum effective
information. The detailed description of the generation step is
given in Section 4.1.

The graph G obtained from the generation step captures the
approximate topology of the shape, and roughly follows the real
skeleton. However, it is not smooth and might contain some

(a) (b) (c)

(d) (e) (f)

Figure 3 The overview of our skeletonization algorithm. (a) The skeleton graph
after farthest sampling in generation step. (b) The skeleton graph after edge
contraction in generation step. (c) The skeleton graph after fitness step. (d) The
skeleton graph after farthest sampling in refinement step. (e) The skeleton graph
after edge contraction in refinement step. (f) The final skeleton graph.

imperfections, such as spurious branches, short loops and two
junction vertices in intersectional regions connected by a short
path. We propose to fit the skeleton via minimizing Laplacian-
based quadratic energy, for its simplicity and easy to implement.
We discuss the fitness process in Section 4.2.

Kégl and Krzyzak [26] proposed a collection of restructuring
operations to deal with the imperfections mentioned above and
improve the structural quality of the skeleton. However, the
restructured result is sensitive to parameters when the point set P
contains noise or different local shape scales. In order to alleviate
these influence, we exploit a skeleton refinement mechanism
(See Section 4.3) and redo generation step with the more intuitive
samples and sampling radii. Then, we remove all mentioned
imperfections and fit the skeleton to further improve the quality
of the final skeleton.

Figure 3 shows an overview of our skeletonization algorithm.

4. METHODOLOGY

4.1 Skeleton Generation

The task of this step is to generate an initial skeleton graph
G = (V , E), approximately capturing the topology of P . In
order to locate the sampling node set V more uniformly in P ,
Cao et al. [27] utilized the farthest point sampling technique by
a fixed-radius circle. Inspired by [19], we sample P using the
farthest point sampling with optimal circles containing the max-
imal effective information. In the rest of this subsection, we first
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discuss how the sampling radius r is defined at a sampling node,
and then give the detailed descriptions of the node sampling and
edge contraction processes.

The sampling radius. The sampling radius r is an important
parameter of the node sampling process. But given a point
p(xi , yi ), it is difficult to determine its radius ri for the character-
istic of sparse shapes mentioned above. We apply the principle of
the maximum entropy to explore the "point information", which
is contained in a circular neighborhood of the point p(xi , yi ).
That is, the sampling radius ri is selected when the points in the
current sampling circle contains the maximal entropy.

In information theory, entropy is a measure of the uncer-
tainty associated with a random variable. For a discrete random
variable X with possible values x1, ..., xn and the probabilities
P(xi ) = Pi , its entropy is defined as follows:

H (X) = EX [I (x)] =
n∑

i=1

Pi log
1

Pi
. (1)

According to the definition of entropy, given a point p(x, y)

and a radius r , the point information Ir (x, y) within the circu-
lar range with the radius r can be computed by the following
Equation 2.

Ir (x, y) =
∑

i

Pi (log
1

Pi
)δ[i ], (2)

δ[i ] =
{

1 a point here
0 otherwi se

.

In order to compute Ir (x, y), we follow the two assump-
tions proposed by Chen and Yu [19]. First, the probabilities are
equiprobable for points appearing in the same ring of the circular
range, and are inversely proportional to the square of distance
for points appearing in different ring areas of the circular range.
That is

Pr,i = 1

i2 Pr,1, 1 ≤ i ≤ r, (3)

and
r∑

i=1

Pr,i ni = 1, (4)

where Pr,i is the probability for the points appearing in the ith
ring, ni is the number of points in the ith ring. Second, the
Gaussian function can be used to simulate the contribution of
the point to the information decreasing from the center to the
boundary of the circular range. Thus, Ir (x, y) defined in Equa-
tion 2 may be finally modified as:

Ir (x, y) =
r∑

i=1

3

2i
ni Pr,i (log

1

Pr,i
), (5)

where 3
2i approximates to the Gaussian function. The optimal

sampling radius rx,y for a point p(x, y) is then determined by
finding the maximal information:

rx,y = arg max
r

Ir (x, y). (6)

For implementation, given a point p(x, y), rx,y is initialized as
1 and iteratively incremented by 1, until reaches a maximum

(a) (b)

(c) (d)

Figure 4 The optimal circle with radius r containing maximum effective infor-
mation captures the intrinsic property of the underlying 2D shapes with different
level of sparseness. (a) 40% noise. (b) 60% noise. (c) 80% noise. (d) 90% noise.
The index of the colorbar is the corresponding radius represented by the color.
Circles with maximum radius and minimum radius are drawn in each images.

size T . T is fixed as 20 for all the experiments in this paper.
Then, rx,y is selected as the one which has the maximal value of
Ir (x, y).

In Figure 4, we show the optimal radii of the points of "A" un-
der different internal noise levels. The radius roughly increases
its size from the center to the boundary of the shape, and captures
the intrinsic property of the underlying 2D shapes. Meanwhile,
the sizes of the radii are suitable for the following node sampling
process.

Node sampling. The sampling process initializes randomly,
proceeds with the covered point which has the farthest distance
between it and the current sample nodes, and makes a decision
on whether to select the point as a member of sample nodes with
a sampling circle of the mentioned radius r or not. The sampling
process ends when all the points in P have been covered by the
sample circles. The flowchart is illustrated in Figure 5, where V
represents sample node set, S represents the points included in
the current sampling circle, C represents the points having been
covered by the sampling circles, D consists of the distances
between the points in P to these nearest nodes in V , and is
initialized with zero.

Edge contraction. After the sampling process, each sample
node vi ∈ V represents a set of associated points Pi ∈ P , such
that P = ⋃

i Pi , Pi
⋂

Pj = φ.
⋃

i Pi is a partition of P ,
similar to a Voronoi diagram. The edge set E is constructed by
connecting vi and v j if their associated points share common
K -nearest neighbors (KNN), which imitates the construction of
a Delaunay triangulation from the Voronoi diagram (Figure 3-
a). A small value K is chosen to avoid error links between two
separated objects.
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Figure 5 The flowchart of the farthest point sampling process.

Finally, we iteratively collapse unnecessary edges by their
midpoints until no triangles exist to simplify the skeleton graph
G (Figure 3-b). The points associated with the two endpoints
of the edge are assigned to the newly created point during the
process. In order to make the final curve skeleton nodes uni-
formly distributed and preserve the shape better, the edge with
minimum length is firstly collapsed.

4.2 Skeleton Fitness

To better fit the skeleton to the original points, we optimize the
skeleton graph G by minimizing the following quadratic energy.
See Figure 3-c as an example.

E(V ) = LV\2 +
∑

i

w2
i v_i-v’_i\

2. (7)

where V is the vertices of the graph G, L is the Laplace matrix
of the graph G, providing the smoothing constrains. Equation 7
defines a Least-squares mesh [28], and minimizes the thin-plate
energy [29], which is similar to the thin plate spline.

To keep the skeleton adherent to the original points, we exploit
L1 approximation that is robust to outliers, i.e., v′i is the L1
median of the associated points of vi , and is defined to be any
point which minimizes the sum of Euclidean distances to all the
associated points.

v′i = arg min
x

∑
j∈N(i)

p_{j}-x\, (8)

N(i) represents the set of points associated with vi . The penalty
coefficient wi in Equation 7 plays the balancing role between
the smoothness and the approximation of the skeleton. wi is
set equal to a constant value or designed according to the local
geometry, to preserve the features. We demonstrate it in Figure
10.

(a) (b)

(c) (d)

Figure 6 The skeleton refinement step re-samples nodes with prior vertices and
radii reflecting local shape scales. (a) The skeleton graph after generation step.
(b) The skeleton graph after fitness step. (c) The skeleton graph after refinement
step. (d) The final skeleton graph after long edge processing.

The system Equation 7 is equivalent to solving a linear system
in least squares sense,

AV = b, (9)

where

A =
(

L
F

)
, Fij =

{
wi j = i
0 otherwi se

,

bk =
{

0 k ≤ n
wiv
′
i k = n + i

.

The unique analytical solution of Equation 9 is V =
(AT A)−1 AT b. Since Laplace matrix L in this paper is com-
puted by Fujiwara weights [30] to compensate for irregular edge
lengths, which is related to V , Equation 9 is iteratively solved as
Au et al. [31] suggested.

4.3 Skeleton Refinement

This step is utilized to cope with different local shape attributes
and noise better by more intuitive samples and sampling radii.
The above skeleton graph provides us with a candidate Vold for
V and a proper sampling radius ri for the point vi in Vold, where
ri is set equal to the minimum length of edges linked to vi . These
prior knowledge reflect the scales of local shapes. Take Figure
6 for an example. The lizard is a multi-scale model with large
scales in the trunk regions and low scales in the foot regions.
Figure 6-b shows that the prior radii adaptively changes these
lengths with the scales.

We redo the generation step and fitness step with these prior
knowledge. The regeneration step first samples all the nodes
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vi in Vold with the sampling radius ri , and labels the points in
P which have been covered by the sampling circles, and then
samples the unlabeled points with the radii equaling to the radii
of these nearest nodes in Vold . The sampling process finally
terminates when all points in P are labeled. A graph G is built
and then collapsed with the method mentioned before. Since
the prior sampling radii reflect the local scales of the shape, the
refinement step with these radii avoids poor edges in G to a
certain extent. See Figure 3-d, e and Figure 6-c.

Although the refinement step is effective, our algorithm may
still suffer from some imperfections, such as short branches,
short loops or two junction vertices in intersectional regions con-
nected by a short path. In this paper, we utilize the restructuring
operations proposed by Kégl and Krzyzak [26] to handle such
cases. See Figure 3-f. More robust method to cope with inter-
sectional regions can be found in [13].

After the above operations, the resulting skeleton graph G
captures the topology of the object correctly. However, the shape
approximation of the skeletal representation may be not good in
the long edges areas. We follow the approach suggested in [10],
and iteratively add a new vertex at the middle of an edge if the
length of the edge is larger than a threshold δmax. After that, we
associate the points in P with their nearest vertex vi and fit the
skeleton again by the Laplacian smoothing method mentioned
above. Take Figure 6-d as an example.

5. RESULT

The experiments are carried out on a computer with a Core2
Quad 2.33GHz CPU and 2 GB memory. We have implemented
our algorithm in Matlab 2009,and used the following parameters
in default cases: the maximum length of edges δmax = min(r),
r is the sampling radii, the number of neighbors K = 5, penalty
coefficient wi = 1.

Analysis of the result. In Figure 7, we test our skeletonization
algorithm on images with different level of sparseness to confirm
the feasibility of the algorithm. In order to simulate the sparse-
ness of the object, the noise was randomly added in the object
and it changed the black pixels to white pixels. The amount of
the noise is varied between 0 to 95% (SNR = 0.22 dB) of the
original number of pixels in the object. SNR represents signal
to noise ratio,

SNR = 10 ∗ lg
Signal

Noise
. (10)

The skeletonization result degrades gracefully as the sparse-
ness of “A” in the image increases. It shows that our algorithm
deals with sparseness well.

In Figure 8, we test our skeletonization algorithm with dif-
ferent values of the parameter K . As we can see in Figure 8-a
and 8-c, the number of edges in the skeleton graph after farthest
sampling step increases with the parameter K increasing, and
the final skeleton graphs of the shape are almost the same. Thus,
our algorithm is insensitive to the number of neighbors K .

Examples of images with multi-scale objects and faded texts
are shown in Figure 9 and Figure 10, which contain 2170 and
3345 points respectively. We compare our algorithm with the
classic SOM method [10]. We try our best to adjust the main

Figure 7 Our skeletonization algorithm handles images with different levels of
sparseness introduced by internal noise.

parameters of the SOM method: the initialization number of map
units N , minimum length of edge δmin, maximum length of edge
δmax, iteration times T . However, the SOM method gives poor
results for objects with different local scales and links separate
characters due to the drawbacks mentioned above. While our
algorithm handles these cases well, since the generation step
captures the underlying topology correctly, and the refinement
step refines the skeleton respecting the local scales.

The processing time spent for the examples demonstrated in
Figure 9, 10 are 0.54s, 1.08s, respectively. While the runtime
for the same models in Figure 9, 10 are 1.97s and 4.11s when
using the SOM method.

Table 1 shows the computing time of the three steps for all
models presented in this paper, which indicates that our algo-
rithm can produce good results with satisfied runtime.

Furthermore, in Figure 10-c, following the method proposed
in [26], we classify vertices into end-vertex, corner-vertex, line-
vertex, T-vertex, Y-vertex according to the local geometry, and
design penalty coefficient wi for each cases. Specially speaking,
at an end-vertex or a corner-vertex, the penalty coefficient wi is
simply set to 100, to preserve the local geometry and avoid over-
smoothing. At a line-vertex or a Y-vertex, the smoothness of the
polygonal curve is ensured to set wi = 1 as the default cases. At
a T-vertex, to penalize one of the three angles for its deviation
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(a) (b)

(c) (d)

Figure 8 Our method is insensitive to parameter K changing. (a) The skeleton
graph after farthest sampling in generation step (K =10). (b) The final skele-
tonization result of (a). (c) The skeleton graph after farthest sampling in gener-
ation step (K =20). (d) The final skeletonization result of (c).

(a) (b)

Figure 9 Comparison with SOM method for images with multi-scale objects.
(a) SOM method (N=30, δmin=5, δmax=10, T =40). (b) Our method.

Table 1 Time statistics of the proposed skeletonization scheme on different mod-
els (seconds).

Models � Points Generation Fitness Refinement Total
Figure 3 6603 0.91 0.05 0.41 1.37
Figure 6 3271 0.57 0.05 0.30 0.92

Figure 7-a 12044 3.44 0.08 0.65 4.17
Figure 7-c 4818 0.87 0.02 0.15 1.04
Figure 7-f 603 0.04 0.01 0.02 0.07
Figure 9 2170 0.29 0.04 0.21 0.54

Figure 10 3345 0.61 0.07 0.40 1.08
Figure 11-a 16510 5.17 0.10 0.82 6.09
Figure 11-b 6604 0.89 0.06 0.40 1.35

(a)

(b)

(c)

Figure 10 Comparison with SOM method for image with multi-unconnected
objects. (a) Original image of faded text. (b) SOM method (N=50, δmin=5,
δmax=15, T =40). (c) Our method with constant penalty coefficient (up) and
feature-preserving penalty coefficient (down).

from straight angle, we assume no perpendicular edge existing
when computing the Laplace matrix, and then treat it as a line-
vertex. As we can see in this figure, the skeletonization results
keep the features near the crossing regions of "E" and "T" better.
Limitations. Complex shapes present difficulties for most skele-
tonization algorithms, especially when the shapes are with large
sparseness. Since we capture the approximate topology of the
shapes by building and collapsing edges, our skeletonization al-
gorithm cannot preserve the details of shape well sometimes. An
example is shown in Figure 11. Although our method is able to
extract a correct curve skeleton of the major parts of the gear,
many gear teeth are lost during the skeletonization process.

Another limitation of our algorithm is that single letter’s skele-
ton may be disconnected, if the sparse shape is extremely non-
uniformly distributed. Adjusting the parameter K carefully by
hand may overcome it. We will also try to solve this problem by
using direction fields.
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(a) (b)

Figure 11 The skeletonization result of the gear image with different levels of
sparseness. (a) Without noise. (b) 60% noise.

6. CONCLUSION

We propose an effective and efficient feature-preserving skele-
tonization algorithm for sparse shapes, which also works well
for non-sparse shapes. The skeletonization strategy consisted
of node sampling and edge contraction handles complicated
cases, such as objects with multi-unconnected parts and self-
intersections. And the refinement process improves the quality
of acquired skeletons when the object regions contains noise or
different local shape scales. Furthermore, it provides an intu-
itive and linear method to tune the smoothness and fitness of the
final skeleton. Accordingly, our algorithm can be used in a wide
variety of recognition and classification tasks.
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