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Abstract: The Coronavirus Disease 2019 (COVID-19) is wreaking havoc
around the world, bring out that the enormous pressure on national health
and medical staff systems. One of the most effective and critical steps in
the fight against COVID-19, is to examine the patient’s lungs based on the
Chest X-ray and CT generated by radiation imaging. In this paper, five
keras-related deep learning models: ResNet50, InceptionResNetV2, Xcep-
tion, transfer learning and pre-trained VGGNet16 is applied to formulate an
classification–detection approaches of COVID-19. Two benchmark methods
SVM (Support VectorMachine), CNN (ConvolutionalNeural Networks) are
provided to compare with the classification–detection approaches based on
the performance indicators, i.e., precision, recall, F1 scores, confusion matrix,
classification accuracy and three types of AUC (Area Under Curve). The
highest classification accuracy derived by classification–detection based on
5857 Chest X-rays and 767 Chest CTs are respectively 84% and 75%, which
shows that the keras-related deep learning approaches facilitate accurate and
effective COVID-19-assisted detection.

Keywords: COVID-19 detection; deep learning; transfer learning;
pre-trained models

Notation

AI: Artificial Intelligence;
AUC: Area Under Curve;
AUC_LOG: ROC Curves for Logistic Regression Classification;
AUC_NB: ROC Curves for Naive Bayes classification;
AUC_SVM: ROC Curves for SVM classification;
ATC: Average Time cost in Seconds;
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CNN: Conventional Neural Networks;
COVID-19: Coronavirus Disease 2019;
DCNN: Deep Convolutional Neural Network;
FN: False Negative;
FP: False Positive;
MSE: Mean Squared Error;
PTVGG16: Pre-trained VGG16;
TLVGG16: Transfer learning VGG16;
TN: True Negative;
TP: True Positive;
RL: Reinforcement learning;
SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus 2;
SVM: Support Vector Machine;
SSIM: Structural Similarity Index;
VGG16: VGG with 16-weights layers;

1 Introduction

Using the chest X-ray for radiation imaging to examine the patient’s lungs is one of the
most effective and critical steps in the fight against COVID-19 [1–7]. Many deep learning-based
artificial intelligence (AI) systems have been proposed, and the results show that the chest X-ray
and CT images benefit the detection of COVID-19 infection patients, and can effectively improve
the accuracy of detection. Bernheim et al. [8] analyzed the COVID-19 infection on imaging related
to chest CT of 121 symptomatic patients, and figured out that about 65% patients still has a
normal CT, and later comes with more clinical symptoms, such as consolidation, bilateral as well
as linear opacities. Fang et al. [9] investigated the sensitivity of chest CT as well as viral nucleic
acid assay to compare the results derived by baseline methods [10]. The experiments indicated
that sensitivity of CT and RT-PCR for COVID-19 infection is 98% and 7%, respectively. Hellewell
et al. [11] developed a stochastic transmission model to systematically analyze the quantify the
effectiveness of contact tracing and isolation of cases, and provided an effective strategy to
control the SARS-CoV-2-like pathogen. Shi et al. [12] discussed the descriptive research for the 81
patients with COVID-19 pneumonia by using the radiological findings, and figured out that the
COVID-19 pneumonia can be effectively detected based on the chest CT imaging abnormalities
in asymptomatic patients. Convolutional neural network (CNN) is a kind of feed-forward neural
network with multi-level deep structure, the neurons of which is non-full connected, and share
the network’s weights among some neurons at the same layer. Therefore, CNN has a significant
advantage in processing high-dimensional data and automatically extracting features. Therefore,
deep learning is also increasingly and widely used in medically assisted analysis, such as the CNN
is applied to split the cartilage in the knee based on MRI [13]. In general, CNN requires a large
number of samples for training and structural adjustment in order to form a model with strong
characteristic analysis capabilities. Reinforcement learning (RL) is an important learning method,
the main processing purpose of which is to achieve goal optimization through learning strate-
gies [14]. The significant advantage of the RL approach is that it can receive learning information
and updating model parameters, without any training data in advance, only by receiving feedback
on actions from the external environment. RL has been widely used in image analysis, financial
trading system and planetary vehicle path planning [15–17]. Improving CNN’s generalization
ability with unsupervised competitive learning or RL, can effectively reduce the over-reliance on
large samples and improve model’s classification accuracy.
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Deep Convolutional Neural Network (DCNN) such as VGG16 (VGG with 16-weights layers)
as well as DenseNet121, with transfer learning methods were applied in [18] to enhace the gen-
eralization ability of the proposed model and perform the better classification accuracy based on
the pediatric Chest X-ray dataset. Experiments based on the occlusion test was proposed to detect
the appropriate area and visualize model’s output. Three classification issues, such as normal,
pneumonia-bacterial and pneumonia-viral based on publically available COVID-19 chest X-ray
medical images were implemented through the CNN with transfer learning [19]. The precision,
recall and classification accuracy for COVID-19 dataset were 89.6%, 93.0% as well as 98.2%,
respectively, which shown the better performance compared with the results that reported in the
literatures. Zhang et al. [20] proposed an approach based on confidence-aware anomaly detection
(CAAD) to implement the binary classification. Experiments based on the 5,977 Non-COVID-19
viral pneumonia samples and 18,774 healthy controls cases etc. were provided to shown that viral
pneumonia usually exhibits significant different visual appearances on the Chest X-ray images.
Baltruschat et al. [21] proposed a novel insight of the deep learning approaches related ResNet-50
to classify the ChestX-ray14 dataset, as aforementioned above, the transfer learning without fine-
tuning methods were jointed into the new X-ray network. The ROC statistics of the ResNet-50
with extended architecture, indicating that the proposed deep learning model can achieve the best
overall results compared with different approaches. Bhandary et al. [22] developed a modified
AlexNet (MAN) network with deep-learning architecture to evaluate the human lung abnormality
based on the Chest CT images. The extracted features were effectively selected by the PCA to
construct the principal features dataset and then the experiments compared with the state-of-the-
art methods such as VGG16, VGG19 and ResNet50 shown that the proposed approaches can
achieve the classification accuracy of 97.25%. Moreover, GPU will benefit the rapid convergence
of the CNN model when a large amount of structured data requires floating-point operation.
The deep CNN model can get more detailed feature than the simple one. Especially when the
training samples are difficult to stimulate all the modes of the system due to the limited samples,
resulting that the generalization capability of the CNN model is difficult to be guaranteed. The
RL and pre-training methods are utilized to train deep CNN, i.e., VGG16 model by transferring
the knowledge of the simple CNN network to optimize the deep network architecture, and to
achieve high-precision model recognition and detection of Pneumonia, which undoubtedly benefits
the early diagnosis of COVID-19 pneumonia.

The rest of this paper is organized as follows. In Section 2, we will introduce the experimental
analysis and model performance evaluation, and provide the fundamental analysis according to
the experimental results for the detection of the COVID-19. Finally, Section 3 will conclude the
paper with discussions and provide the further research.

2 Proposed Classification–Detection Approach

In routine medical examinations, usually only the professional experience of medical imaging
doctors can be qualified to accurately determine the difference between normal samples and
infected samples based on the Chest X-ray and CT dataset. Because the difference in image visual
display is difficult to evaluate, the performance indicator used to evaluate the images’ similarity,
such as statistical histogram, Mean Squared Error (MSE) as well as the Structural Similarity
Index (SSIM) [23], are applied to arbitrarily selected two images from the dataset and estimate
the similarity by checking that if their distribution are identical or near identical. MSE and SSIM
used to calculate the quantitative results are provided by Eqs. (1) and (2), respectively.
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where P (i, j) and Q (i, j) are both the pixel intensities corresponding to the location (i, j) of
two arbitrary images, μx (or μ y) and σ 2

x (or σ 2
y ) are the mean and variance of the pixels

intensities, respectively. MSE is a perceived differential measurement that can be used to evaluate
two arbitrary images with the same size, but which is sensitive to outliers because the distance
between the difference pixels intensity will be increased. In other words, it still doesn’t mean
that the two images are dramatically similar even if the MSE is small enough. SSIM as the
performance indicator that focuses more on the similarity assessment of structural information,
which can be used to effectively reflect the properties of the structure of the object between
the two images, and calculate the differences in terms of brightness, contrast and structure to
effectively evaluate their similarity. The quantitative results and the image visual comparison are
shown in Fig. 1. Both normal Chest X-ray and CT, and the corresponding histogram of RGB
pixel intensity etc., are shown in Fig. 2.

Figure 1: MSE and SSIM between the normal and pneumonia samples

The maximum of the RGB pixels intensity histogram of the normal Chest X-ray and CT
are derived when pixels intensity equal to 0.6 and 0.2, respectively. The approximate dispersion
of the former and latter are correspondingly distributed between [0.1, 0.9] and [0.2, 1.0]. Taking
into account the similarity of the Chest X-ray and CT, the MSE and SSIM of the former are
higher than the latter 0.08 and 0.07, respectively. This shows that there are significant differences
in the feature distribution of these two types of samples.

The processing diagram of this paper is shown in Fig. 3. The construction process of the
classification–detection model is divided into three parts: Firstly, the corresponding Chest X-ray
and CT are divided into training samples and testing samples, and then used as the inputs in
features learning; Secondly, five keras-related deep learning models, i.e., ResNet50, InceptionRes-
NetV2, Xception, transfer learning and pre-trained VGGNet16 are provided to formulate the
classification–detection approaches of COVID-19; Finally, the performance indicators, i.e., preci-
sion, recall, F1 scores, confusion matrix and AUC, are used to evaluate the classification–detection



CMES, 2020, vol.125, no.2 583

approaches, and compare two benchmark methods such as SVM and CNN, to demonstrate the
main performance of the proposed approaches.

Figure 2: Normal chest X-ray, CT and three corresponding randomly selected training samples

Figure 3: Processing diagram of this paper
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2.1 Experiments Setup and Design
The data collected from the dataset: Chest X-ray [24–26] and Chest CT [27–29], are precisely

classified as two groups: Normal & Pneumonia. Obviously, this is essentially a typical binary
classification issues to judge if the people are infected or not. The training and testing dataset
are divided in Tab. 1 to evaluate the performance of the proposed approach.

Table 1: Sample division

Dataset Chest
X-ray

Processing
speed (it/s)

Chest CT Processing
speed (it/s)

Xtrain 1349 (Normal) 4.48 300 (Normal) 81.52
ytrain 3884 (Pneumonia) 9.07 300 (Pneumonia) 41.81
Xtest 234 (Normal) 2.47 97 (Normal) 70.59
ytest 390 (Pneumonia) 8.65 70 (Pneumonia) 45.01

The explanation of the abbreviations in Tab. 1 is given as follows, Xtrain and Xtest: rep-
resents the training sample and testing samples related to images of normal persons. ytrain
and ytest: Are the training sample and testing samples related to images of persons infected
by Pneumonia.

(a1) (a2) (b1) (b2)

Figure 4: The 25 normal and pneumonia chest X-ray images. (a1) (25 normal images). (a2)
(Visualizing heatmaps of al). (b1) (25 Pneumonia images) (b2) (Visualizing heatmaps of bl)

2.2 Architecture of the VGGNet
All programming experiments are based on Python 3.6 under OS win10. The hardware used

for experiments are configured as the i7-9750H CPU, 32G RAM, and NVIDIA P620 4G GPU.
VGG16 is proposed by Visual Geometry Group from Oxford. Compared with the AlexNet,
VGG utilized the successive 3 × 3 convolution cores instead of larger convolution nucleus in
AlexNet (11 × 1, 7 × 7, 5 × 5). For a given sensory field (the local size of the input image
associated with the output), VGG using a small convolutionary that accumulates is preferable to
a large convolutionary, because multi-layer nonlinear layers increase the CNN’s depth to ensure
learning more complex patterns at a lower cost and less parameters. In addition, 25 normal
and pneumonia Chest X-ray (and CT) images and the corresponding visualization heatmap are
respectively shown in Figs. 4 and 5, respectively. Essentially, because the distribution of these
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two types of data (positive and negative samples related to normal and pneumonia symptoms)
is uneven, such as training sample size is too much larger than the test sample size. The model
performance may not be effectively evaluated and reflected, especially for the unbalanced class
distribution if only the classification accuracy is provided. In other words, it may be insufficient
to evaluate the model performance only based on model accuracy. To this end, more performance
indicators, such as Precision, Recall, F1-score and Support, are provided to comprehensively
evaluate the performance of the classification–detection approaches.

(a1) (a2) (b1) (b2)

Figure 5: The 25 normal and pneumonia chest CT images. (a1) (25 normal images). (a2) (Visual-
izing heatmaps of al). (b1) (25 Pneumonia images) (b2) (Visualizing heatmaps of bl)

2.3 Experimental Comparison and Analysis
In order to further verify the performance of model classification detection, SVM, two hidden

layers of CNN (i.e., two layers of convolution layer and maximum pooled layer), ResNet50,
InceptionResNetV2, Xception, transfer learning VGG16 and pre-trained VGG16 model, are
respectively utilized to evaluate the final classification detection based on the positive and negative
samples. The parameter gamma and the punitive parameters of the utilized Radial Basis Func-
tion kernel in SVM are 0.001 and default value, respectively. Similarly, based on the excellence
classification performance of the deep learning, the Keras framework is used to build a CNN
network classification model. The positive and negative samples as the inputs are normalized to
150×150×1, and the two convolution layer and the maximum pooled layer are then set, and the
output classified result is calculated through two layers of full-connection layer. Stochastic gradi-
ent descent algorithm is then applied to optimize the architecture of CNN model and improve
feature learning ability, and the learning rate of the outlined five models i.e., ResNet50, Inception-
ResNetV2, Xception, TLVGG and PTVGG is 0.0001. Performance evaluation and comparison of
the SVM, CNN, ResNet50, InceptionResNetV2, Xception, TLVGG16 (Transfer learning VGG16)
and PTVGG16 (Pre-trained VGG16) are given in Tabs. 2 and 3, respectively. The computational
resources consumption of the deep learning approaches are given in Tab. 4. where ATC: Average
time cost in seconds per step in each learning epoch. The number of the training (or validation)
samples of the X-ray and CT are 2698 (468) and 600 (140), respectively. The experimental results
show that the classification accuracy calculated by SVM for pneumonia is 0.77 (Chest X-ray) and
0.63 (Chest CT), respectively. More precisely, the classification accuracy related to the positive
samples is significantly higher than that of negative samples by 0.20 (Chest X-ray) and 0.17
(Chest CT), respectively. This indicates that the SVM has a stronger ability to identify normal
lungs, but it is still not qualified to identify patients with pneumonia. For Chest X-ray images,
the significant increase in training and testing sample size will effectively improve the classification
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accuracy although increasing training time. The aforementioned methods facilitates the accurate
identification and detection of pneumonia.

Table 2: Performance evaluation and comparison (chest X-ray)

Samples Methods Accuracy Precision Recall F1-score Support

Normal SVM 0.77 0.94 0.41 NA NA
CNN 0.63 0.79 0.40 NA NA
ResNet50 0.84 0.97 0.71 0.82 234
InceptionResNetV2 0.82 0.97 0.67 0.79 234
Xception 0.71 0.69 0.77 0.73 234
TLVGG16 0.85 0.99 0.62 0.76 234
PTVGG16 0.80 0.98 0.65 0.78 234

Pneumonia SVM 0.77 0.74 0.98 NA NA
CNN 0.63 0.62 1.00 NA NA
ResNet50 0.84 0.77 0.98 0.86 234
InceptionResNetV2 0.82 0.75 0.98 0.85 234
Xception 0.71 0.74 0.66 0.70 234
TLVGG16 0.85 0.72 0.99 0.83 234
PTVGG16 0.80 0.74 0.99 0.84 234

Table 3: Performance evaluation and comparison (chest CT)

Samples Methods Accuracy Precision Recall F1-score Support

Normal SVM 0.63 0.81 0.47 NA NA
CNN 0.56 0.72 0.40 NA NA
ResNet50 0.75 0.72 0.81 0.77 70
InceptionResNetV2 0.71 0.73 0.69 0.71 70
Xception 0.71 0.69 0.77 0.73 70
TLVGG16 0.69 0.71 0.66 0.68 70
PTVGG16 0.75 0.72 0.83 0.77 70

Pneumonia SVM 0.63 0.54 0.84 NA NA
CNN 0.56 0.49 0.79 NA NA
ResNet50 0.75 0.79 0.69 0.73 70
InceptionResNetV2 0.71 0.70 0.74 0.70 70
Xception 0.71 0.74 0.66 0.70 70
TLVGG16 0.69 0.68 0.73 0.70 70
PTVGG16 0.75 0.80 0.69 0.74 70

Table 4: The comparison of computational efficiency (five deep learning models)

Methods ResNet50 InceptionResNetV2 Xception TLVGG16 PTVGG16

ATC (2698-X-ray) 172.064 170.230 171.064 171.063 164.728
ATC (600-CT) 178.130 181.803 178.464 137.730 137.896
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Figure 6: The accuracy and cost of the five deep learning models. (a-1, a-2) Model accuracy,
model cost of ResNet50. (b-1, b-2) Model accuracy, model cost of InceptionResNetV2. (c-1, c-2)
Model accuracy, model cost of Xception. (d-1, d-2) Model accuracy, model cost of TLVGG16.
(e-1, e-2) Model accuracy, model cost of PTVGG16
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Figure 7: The accuracy of the five deep learning models. (a) Train and validation accuracy of
ResNet50. (b) Train and validation accuracy of InceptionResNetV2. (c) Train and validation
accuracy of Xception. (d) Train and validation accuracy of TLVGG16. (e) Train and validation
accuracy of PTVGG16
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The accuracy curve (and loss function curve) of the five outlined keras-related deep learning
models are successively marked as a-1–e-1 (a-2–e-2) in Fig. 6. Moreover, the model training and
the curve related to the verification curve and the number of iteration steps are also sequentially
shown in a-e of the Figs. 7, while the corresponding confusion metrics are provided in a-e of the
Fig. 8. In addition, the final model performance is reported by the Tabs. 5–9. The AUC (Area
Under Curve) is defined as the area enclosed with the axes under the ROC (Receiver Operating
Characteristic) curve, the value of which is between the interval (0.5, 1). More precisely, the closer
the AUC is to 1.0, the higher the credibility of the detection methods are. Especially, the method
will show meanness in the real application if the AUC equals to 0.5. In order to verify the
performance of the utilized methods in this paper, AUC_SVM, AUC_NB and AUC_LOG related
to the ResNet50 X-ray (CT), InceptionResNetV2 X-ray (CT), Xception X-ray (CT), TLVGG16
X-ray (CT) and PTVGG16 X-ray (CT) are listed in Tab. 10. Where AUC_NB and AUC_LOG
represent the ROC Curves for naive Bayes and logistic regression classification, respectively. SVM
produces lower ROC values compared with naive Bayes and logistic regression, and the ROC
curve for naive Bayes is generally equal to logistic regression, which indicates better performance
than the SVM classifier method.

(a) (b) (c)

(d) (e)
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(a) (b) (c)

(d) (e)

Figure 8: Confusion matrices of the five deep learning models. (a) Confusion matrix of ResNet50.
(b) Confusion matrix of InceptionResNetV2. (c) Confusion matrix of Xception. (d) Confusion
matrix of TLVGG16. (e) Confusion matrix of PTVGG16

Table 5: Performance of the ResNet50 based on chest X-ray (CT)

Methods Precision Recall F1 score Support

Normal 0.97 (0.67) 0.71 (0.74) 0.82 (0.70) 234 (70)
Pneumonia 0.77 (0.71) 0.98 (0.63) 0.86 (0.67) 234 (70)
Accuracy NA (NA) NA (NA) 0.84 (0.69) 468 (140)
Macro avg 0.87 (0.69) 0.84 (0.69) 0.84 (0.68) 468 (140)
Weighted avg 0.87 (0.69) 0.84 (0.69) 0.84 (0.68) 468 (140)
Keras CNN-accuracy 0.84 (0.69)

2.4 Performance Analysis of the Proposed Approaches
Precision usually refers to the ratio of the number of correctly predicted positive samples to

the total number of predicted positive samples, that is, Precision=TP/(TP+FP). A higher value
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means a lower false positive rate. The highest precision of patients with normal and pneumonia
infections are: 0.99 (TLVGG16, Chest X-ray, Normal), 0.75 (InceptionResNetV2, Chest X-ray,
Pneumonia), 0.81 (SVM, Chest CT, Normal), 0.80 (PTVGG16, Chest CT, Pneumonia), and
generally almost all of the outlined five deep learning models are higher than 0.7 on both of the
Chest X-ray and Chest CT. This shows that the performance of the outlined five deep learning
model in this paper is excellent.

Table 6: Performance of the InceptionResNetV2 based on chest X-ray (CT)

Methods Precision Recall F1 score Support

Normal 0.97 (0.73) 0.67 (0.69) 0.79 (0.71) 234 (70)
Pneumonia 0.75 (0.70) 0.98 (0.74) 0.85 (0.72) 234 (70)
Accuracy NA (NA) NA (NA) 0.82 (0.71) 468 (140)
Macro avg 0.86 (0.71) 0.82 (0.71) 0.82 (0.71) 468 (140)
Weighted avg 0.86 (0.71) 0.82 (0.71) 0.82 (0.71) 468 (140)
Keras CNN-accuracy 0.82 (0.71)

Table 7: Performance of the Xception based on chest X-ray (CT)

Methods Precision Recall F1 score Support

Normal 0.97 (0.69) 0.67 (0.77) 0.79 (0.73) 234 (70)
Pneumonia 0.75 (0.74) 0.98 (0.66) 0.85 (0.70) 234 (70)
Accuracy NA (NA) NA (NA) 0.82 (0.71) 468 (140)
Macro avg 0.86 (0.72) 0.82 (0.71) 0.82 (0.71) 468 (140)
Weighted avg 0.86 (0.72) 0.82 (0.71) 0.82 (0.71) 468 (140)
Keras CNN-accuracy 0.82 (0.71)

Table 8: Performance of the TLVGG16 based on chest X-ray (CT)

Methods Precision Recall F1score Support

Normal 0.99 (0.71) 0.62 (0.66) 0.76 (0.68) 234 (70)
Pneumonia 0.72 (0.68) 0.99 (0.73) 0.83 (0.70) 234 (70)
Accuracy NA (NA) NA (NA) 0.80 (0.69) 468 (140)
Macro avg 0.85 (0.69) 0.80 (0.69) 0.80 (0.69) 468 (140)
Weighted avg 0.85 (0.69) 0.80 (0.69) 0.80 (0.69) 468 (140)
Keras CNN-accuracy 0.80 (0.69)

Recall is usually also called sensitivity, which is defined as Recall=TP/(TP+FN), and can be
used to represent the ratio of the number of correctly predicted samples to the number of samples
in all actual categories. That is, the number of the positive samples are correctly predicted. In
other word, the deep learning model usually has better sensitivity if its value is higher than 0.5.
The highest Recall of patients with normal and pneumonia infections are: 0.77 (Xception, Chest
X-ray, Normal), 0.99 (TLVGG16 and PTVGG16, Chest X-ray, Pneumonia), 0.83 (PTVGG16,
Chest CT, Normal), 0.84 (SVM, Chest CT, Pneumonia), and generally almost all of the outlined
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five deep learning models is higher than 0.6 on both of the Chest X-ray and Chest CT. This
shows that the overall performance of the model is good.

Table 9: Performance of the PTVGG16 based on chest X-ray (CT)

Methods Precision Recall F1score Support

Normal 0.98 (0.72) 0.65 (0.83) 0.78 (0.77) 234 (70)
Pneumonia 0.74 (0.80) 0.99 (0.69) 0.84 (0.74) 234 (70)
Accuracy NA (NA) NA (NA) 0.82 (0.76) 468 (140)
Macro avg 0.86 (0.76) 0.82 (0.76) 0.81 (0.76) 468 (140)
Weighted avg 0.86 (0.76) 0.82 (0.76) 0.81 (0.76) 468 (140)
Keras CNN-accuracy 0.82 (0.75)

Table 10: AUC of the SVM, NB and LOG

Methods AUC_SVM AUC_NB AUC_LOG

ResNet50 X-ray (CT) 0.92 (0.56) 0.92 (0.76) 0.92 (0.76)
InceptionResNetV2 X-ray (CT) 0.90 (0.52) 0.90 (0.62) 0.90 (0.62)
Xception X-ray (CT) 0.92 (0.52) 0.92 (0.59) 0.92 (0.59)
TLVGG16 X-ray (CT) 0.85 (0.50) 0.85 (0.69) 0.85 (0.69)
PTVGG16 X-ray (CT) 0.86 (0.50) 0.86 (0.73) 0.86 (0.73)

F1 Score = 2 ∗ (Recall ∗ Precision)/(Recall + Precision), which is the weighted average of
Precision and Recall. Especially, when the data presents an uneven class distribution, the P and
R indicators sometimes are inconsistent, at this time, F-Measure is intuitively (also known as
F-Score) and more helpful to measure the cost of false positives and false negatives. The highest
Recall of patients with normal and pneumonia infections are: 0.82 (ResNet50, Chest X-ray,
Normal), 0.86 (ResNet50, Chest X-ray, Pneumonia), 0.77 (ResNet50 and PTVGG16, Chest CT,
Normal), 0.74 (PTVGG16, Chest CT, Pneumonia), and generally almost all of the outlined five
deep learning models is higher than 0.7 on both of the Chest X-ray and Chest CT. This shows
that the performance of the model is generally superior.

The confusion matrix is mainly used to evaluate the performance of the classification model
according to a given test sample, which includes four parts: True Positive (TP), False Positive
(FP), True Negative (TN) and False Negative (FN), where TP and FP are usually related to
the number of the correct positive samples and false positive samples, respectively. TN and FN
respectively indicate the number of the correct negative samples and false negative samples. In
other word, the less the false positives and false negatives are, the better the model’s classification
performance is. Based on the discussion, deep transfer learning approaches is suitable for the
rapid and accurate detection of pneumonia in theoretical analysis.

3 Conclusions

The main purpose of this paper is to formulate the keras-related deep learning approach for
classification–detection of COVID-19. Model architecture design, structure selection and model
summary are illustrated in detail to illustrate the main processing diagram of the proposed
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approaches. The experimental results obtained by five keras-related deep learning approaches are
provided and applied to compare with the benchmark methods according to the performance
indicators. The experimental evaluation indicates that the deep learning approaches benefits the
accurate auxiliary detection of COVID-19. In our further work, the clinical dataset analysis
in combination with the classification–detection approach will be considered to further improve
the performance.
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