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ABSTRACT

The reservoir is the networked rock skeleton of an oil and gas trap, as well as the generic term for the
fluid contained within pore fractures and karst caves. Heterogeneity and a complex internal pore structure
characterize the reservoir rock. By introducing the fractal permeability formula, this paper establishes a
fractal mathematical model of oil-water two-phase flow in an oil reservoir with heterogeneity character-
istics and numerically solves the mathematical model using the weighted least squares meshless method.
Additionally, the method’s correctness is verified by comparison to the exact solution. The numerical results
demonstrate that the fractal oil-water two-phase flow mathematical model developed using the meshless
method is capable of more accurately and efficiently describing the flow characteristics of the oil-water
two-phase migration process. In comparison to the conventional numerical model, this method achieves a
greater degree of convergence and stability. This paper examines the effect of varying the initial viscosity of
the oil, the initial formation pressure, and the production and injection ratios on daily oil production per
well, water cut in the block, and accumulated oil in the block. For 10 and 60 cp initial crude oil viscosities,
the water cut can be 0.62 and 0.80, with 3100 and 1900 m? cumulative oil production. Initial pressures have
little effect on production. In this case, the daily oil production of well PRO1 is 1.7 m? at 7 and 10 MPa
initial pressure. Block cumulative oil production is 3465.4 and 2149.9 m? when the production injection ratio
is 1.4 and 0.8. The two-phase meshless method described in this paper is essential for a rational and effective
study of production dynamics patterns in complex reservoirs and the development of reservoir simulations
of oil-water flow in heterogeneous reservoirs.
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Nomenclature

o> Pw Density of oil and water respectively (kg/m3);

k(r) Fractal permeability (mD);

ki, kro Relative permeability of water phase and oil phase (mD);
Wos My Viscosity of oil phase and water phase mPa-s;

Pos Pw Pressure of oil phase and water phase in Reservoir (MPa);
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o) Fractal porosity;

Sw, So Saturation of water phase and oil phase;

t production time (day);

Goscs Gwse Source-sink phase under standard conditions (m?/day).

1 Introduction

The reservoir is the network of rock skeletons that surround a sealed oil and gas trap, as well
as the generic term for the fluid contained in pore fractures and karst caves. The heterogeneity
and complexity of reservoir rock have a significant effect on reservoir physical properties such
as flowability, reservoir capacity, and rock particle adsorption capacity. To maximize recovery,
it is necessary to master the situation of underground reservoirs as much as possible during
oil field development [I]. However, because the reservoir’s porous media are largely disordered,
it is impossible to accurately describe the reservoir’s actual characteristics when the reservoir is
approximated as a homogeneous model. The introduction of fractal theory enables us to better
understand the pore results and transport properties of porous media [2]. Thus, over the last two
decades, extensive research on the transport characteristics of porous media in oil reservoirs based
on fractal theory has been conducted in the field of petroleum engineering [3].

Mandelbrot pioneered the concept of a fractal, which is used to describe the geometry found
in nature that is self-similar and has no feature length [4]. In 1985, Katz et al. [5] demonstrated
that sandstone interstitial space and pore surface exhibit favorable fractal characteristics through
a large number of data analyses. The relationship between fractal dimension and rock porosity
can be determined using the derived formula, and the porosity value can be calculated using a
logarithmic curve [5]. Chang et al. pioneered the application of fractal theory to porous media
mechanics, proposing the use of fractal dimension and fractal index to describe the complexity
of porous media pore structure, and establishing the fractal Flow model of reservoir, which is
used to reflect the reservoir’s dynamic characteristics [0].

The majority of the research on fractal reservoirs discussed above makes use of numerical
models based on grid systems, such as the finite difference method (FDM) and the finite element
method (FEM) [7]. To provide an accurate description of the morphology and laws governing
heterogeneous reservoirs, A large number of grids must be divided in the grid system, and
the processing before and after is time-consuming, as is the calculation. This paper employs a
meshless numerical model to create a stable, reliable, and accurate numerical model [§]. This
method is a meshless version of the weighted least squares method (MWLS) [9]. In comparison
to the finite difference and finite element methods, this method has the advantages of avoiding
grid generation, requiring minimal data preparation, and allowing for convenient handling both
before and after. The first meshless method was proposed by Lucy [10] in 1977 and successfully
applied to astrophysical problems. Later that year, in 1996, Spanish researchers E Onate proposed
the finite point method (FPM) [11]. This method constructs the shape function using the moving
least squares principle and discretizes it using the collocation scheme; it is a completely meshless
method that does not require a background grid and is primarily used in the field of fluid
mechanics. Atluri et al. [12] and colleagues proposed the Meshless Local Galerkin method in
1998, which eliminated the need for a background grid when integrating. For the first time, Yousef
et al. [13] applied the MWLS method to a complex fault block hydrocarbon reservoir numerical
good test and obtained satisfactory results in terms of calculation accuracy and efficiency. Xu
et al. [14] used fractal theory to characterize the permeability and porosity of horizontal shale
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gas fracturing wells, although they solved the gas-water two-phase flow model using the weighted
least squares meshless method [15].

This Paper introduces the fractal permeability expression, establishes a numerical model of
fractal oil reservoir two-phase, and solves it using the weighted least squares meshless method
(MWLS). Relevant examples are provided to demonstrate the accuracy and benefits of this
method.

2 Mathematical Model

2.1 Basic Model

(1) Assume that the outer boundary of the reservoir is closed; (2) Fluid and rock micro-
compressibility; (3) Isothermal flow event, ignoring heat dissipation; (4) The model applies to
oil-water two-phase, and the two are not mixed; (5) Ignore the influence of capillary force.
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The distribution of reservoir porosity and permeability conforms to the following rules:
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In the formula, r,, is a certain reference length;, k,,, ¢,, corresponding to the lower permeabil-
ity and porosity, respectively; f is the fractal mass dimension, representing the irregular degree of
self-similarity of natural porous media; 6 is the fractal index, the abnormal degree of conductivity
in natural porous media of reservoir is characterized.

2.2 Weighted Least-Squares Meshless Method

The meshless method can be theoretically justified using the weighted residual method. The
Moving Least Square method (SLS) is used to construct approximate functions in this paper,
followed by the Least Square method to discretize the governing equations and establish the
corresponding meshless method, namely the weighted least squares meshless method (MWLS).
For more information about the weighted least squares meshless method, see reference [14].

The time items of the above Fqs. (1) and (2) can be sorted out by difference. The following
Eq. (5) can be obtained
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Among them, A”, A" are the mobility of the oil phase and the water phase at the nth
k(r)kru A, = M
] o —

moment, A,, = m
0

The above Eq. (5) obtains residual Egs. (6) and (7):

R,=V [(AZ AV <NP(,”+1)] _ (d)(;—)tcf)n (NPO”+1 _ NPO”) —0 (6)
Ry=V (A?VVNPO”“) - (ﬁ?) (NS, 1 — N§") =0 (7)

In Eqgs. (6) and (7), the sum refers to the residual quantity of pressure equation and water
saturation equation.

For residual changes:
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The MWLS form of the oil phase pressure equation can be obtained as follows:
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Considering 8 (PZH)T arbitrariness
K,P"t' = F, (11)

which:
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Water saturation MWLS is calculated as follows:
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3 Numerical Examples

Based on the theoretical research described above, a two-dimensional oil-water two-phase
numerical simulation model with fractal properties is established. The model is 100 m * 100
m x 10m in size, with the injection well IN1 in the center, the production wells distributed
around it, an injection rate of 20 m>/day, a recovery rate of 5 m3/day, and a production time of
200 days. The model’s permeability distribution is depicted in Fig. 1. The model’s heterogeneous
characteristics are readily apparent. The distribution interval for this paper is 5m, and Table |
contains some physical property information. The weighted least squares meshless method is used
in this paper, and the node influence domain is set to three.
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Figure 1: Permeability field diagram

The Buckley-Leverett [16] method is used to verify the accuracy of this method. As illustrated
in Fig. 2, the accuracy of this method is nearly identical to that of Bekele, with an error of less
than 2%, thus, the accuracy of this method can be seen. Additionally, the method described in
this paper does not require grid division, and its convergence and stability are significantly higher
than those of traditional numerical simulation methods. Additionally, as illustrated in Fig. 3, the
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daily oil production of well PRO1 decreases significantly less than that of well PRO3. As can be

seen, the characteristics of heterogeneous reservoirs are quite apparent.

Table 1: Physical properties used in Example 1

Properties Values Properties Values
Porosity 0.3 Oil volume factor 1.2
Reservoir size 100 m % 100 m % 10 m Water viscosity 1 cp

Rock compressibility 1.07e-4 MPa~! Water volume factor 1.000

Oil compressibility 3.02e-3 MPa~! Oil density 820 kg/m?
Water compressibility 5e-4 MPa~! Water density 1000 kg/m?
Oil viscosity 20 ¢cp Initial oil saturation 0.80
Initial pressure 7 MPa Initial water saturation 0.20
Fractal index —0.15 Fractal mass dimension 2.0
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Figure 2: Comparison of the oil production rate of a single well (a) #PRO1 (b) #PRO2
(c) #PRO3 (d) #PRO4
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Figure 3: Comparison of the oil production rate of #PRO1 and #PRO3

4 Sensitivity Analysis

Sensitivity analysis is performed on the initial crude oil viscosity, initial water saturation,
initial pressure, and other parameters that affect the production dynamic data, and then the
correctness of this method is verified in the numerical solution of fractal reservoir oil-water
two-phase flow using the above-mentioned theories and methods.

4.1 Effect of Initial Crude Oil Viscosity

The initial formation pressure is the critical factor affecting the reservoir’s daily oil produc-
tion. The development benefit of the reservoir can be determined using the initial formation
pressure, which more intuitively reflects the reservoir’s crude oil diversion capacity. In this paper,
the initial formation pressures of 7, 8, 9, and 10 MPa are used for simulation to ensure that
the other physical parameters are consistent with Table 1. The weighted least squares meshless
method makes use of a Gaussian basis function and a three-dimensional node influence domain.
The fractal index is —0.15 and the fractal mass dimension is 2.0.

Fig. 4 illustrates the daily oil production of each well for various initial crude oil viscosities.
As shown in Fig. 4, after 200 days, the initial crude oil viscosity is 10 cp, and the well PRO1
produces 2.35 m3/day of oil. When the initial viscosity of the crude oil is 60 cp, however, well
PROI produces only 1.23 m3/day of oil. The higher the initial crude oil viscosity, the shorter the
time required for water to penetrate the reservoir. As illustrated in Fig. 5, the initial crude oil
viscosity influences the rate at which the block moisture content increases. When the initial crude
oil viscosity is ten times that of water, the block moisture content in 200 days is only 0.62, but
when the initial crude oil viscosity is sixty times that of water, the block water cut can reach
0.80. This is primarily because the initial crude oil viscosity is higher, the crude oil mobility is
lower, and the reservoir’s water flow capacity is greater. As shown in Fig. 6, after 200 days, the
initial crude oil viscosity is 10 cp, and the block’s accumulated oil can reach 3100 m?. However,
the block’s cumulative oil production is limited to 1900 m> due to the initial crude oil viscosity
of 60 cp. The lower the initial viscosity, the greater the accumulation of oil in the block, which
is primarily determined by the two-phase flow mobility ratio.
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Figure 4: Comparison of daily oil production of Figure 5: Block water cut
well POR1
4.2 Influence of Initial Formation Pressure
The initial formation pressure is the critical factor affecting the reservoir’s daily oil produc-
tion. The development benefit of the reservoir can be determined using the initial formation
pressure, which more intuitively reflects the reservoir’s crude oil diversion capacity. In this paper,
the initial formation pressures of 7, 8, 9, and 10 MPa are used for simulation to ensure that
the other physical parameters are consistent with Table 1. The weighted least squares meshless
method makes use of a Gaussian basis function and a three-dimensional node influence domain.
The fractal index is —0.15 and the fractal mass dimension is 2.0.

The pressure change value for well PRO1 at various initial formation pressures is depicted in
Fig. 7. As illustrated in Fig. 7, when the initial formation pressure changes over time, the decrease
range is not large, owing to the small amount of produced fluid used in this paper and the small
pressure drop required at the wellhead. As illustrated in Fig. 8, when the initial formation pressure
changes, the daily oil production per well essentially does not match. This is because, while crude
oil production is determined by the pressure difference, in this paper, different initial formation
pressure cannot affect daily oil production under the assumption of fixed liquid production.

4.3 Effect of Injection and Production Parameters

In actual reservoir production, injection-production parameters are critical for maximizing
economic benefits. The injection volume is kept constant in this paper, and simulations using the
production-injection ratios of 0.8, 1.0, 1.2, and 1.4 are used to ensure that all other physical
parameters are consistent with Table 1. The weighted least squares meshless method makes use
of a Gaussian basis function and a three-dimensional node influence domain. The fractal index
is —0.15, and the fractal mass dimension is 2.0.
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Figure 8: Comparison of daily oil production of well PRO1

From Figs. 9-11, it is clear that the block’s water cut and accumulated oil increase as the
production and injection ratios increase. When the production-injection ratio is 1.4, the FWCT
after 300 days can reach 0.7322 and the FOPT can reach 3465.4 m3, but when the injection
ratio is 0.8, the FWCT after 300 days is only 0.6872 and the FOPT is only 2149.9 m?3, while
when the injection ratio is 0.8, the FWCT after 300 days is only 0.6872 and the FOPT is only
2149.9 m3. Therefore, if the water cost of processing production is low, increasing the injection
ratio can result in a higher FOPT, which can be used to guide production.
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5 Conclusion

The weighted least squares meshless method is introduced in this paper to solve an oil
reservoir oil-water two-phase flow model with fractal characteristics. The fractal permeability
formula is used to establish a fractal mathematical model of oil-water two-phase flow in an oil
reservoir that takes heterogeneity into account, and the mathematical model is numerically solved
using the weighted least squares meshless method. The following are the major conclusions:

(1) According to the model developed in this paper, the difference between this method and
the analytical model is only 2%. The numerical results demonstrate that using the meshless
method, the fractal oil-water two-phase flow mathematical model can more accurately and
efficiently describe the flow characteristics of the oil-water two-phase migration process.
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(2) The effects of varying the initial crude oil viscosity on the daily oil production of a single
well, water cut, and cumulative oil production are examined in this article. When the initial
crude oil viscosity is 10 and 60 cp, the water cut can reach 0.62 and 0.80, respectively,
resulting in cumulative oil production of 3100 and 1900 m>. According to objective facts,
this method’s stability and convergence are also demonstrated from the side.

(3) This paper investigates the effect of different initial formation pressures on the daily output
of a single well and the pressure of a single well, concluding that different initial formation
pressures do not affect the output. This is consistent with the objective understanding
that differential pressure drives oil-water two-phase flow in reservoir production. In this
example, the daily oil production of well PROI is 1.7 m? in 200 days when the initial
pressure is 7 and 10 MPa.

(4) This paper relates the effects of various production injection ratios on daily oil production
from a single well, block water cut, and cumulative oil production from a block. When
the production injection ratio is 1.4 and 0.8, respectively, the block water cut is 0.7322
and 0.6872, and the cumulative oil production of the block is 3465.4 and 2149.9 m?,
respectively. As a result, during actual production, the injection ratio should be rationally
planned to maximize economic benefit.
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