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ABSTRACT

This paper is focused on the state estimation problem for nonlinear systems with unknown statistics of measure-

ment noise. Based on the cubature Kalman �lter, we propose a new nonlinear �ltering algorithm that employs a

skew t distribution to characterize the asymmetry of the measurement noise. The system states and the statistics

of skew t noise distribution, including the shape matrix, the scale matrix, and the degree of freedom (DOF) are

estimated jointly by employing variational Bayesian (VB) inference. The proposed method is validated in a target

tracking example. Results of the simulation indicate that the proposed nonlinear �lter can perform satisfactorily

in the presence of unknown statistics of measurement noise and outperform than the existing state-of-the-art

nonlinear �lters.
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1 Introduction

State estimation serves as an important role in various �elds, such as control, signal process-
ing, fault detection and diagnosis, and many more [1–7]. Due to its effectiveness and optimality,
the Kalman �lter (KF) is the state estimation method of the most widespread used for linear
systems with Gaussian noise distribution [8–10]. Limited by the assumption of linear, many non-
linear �lters have been presented [11–13], the most famous of which is the extended Kalman �lter
(EKF) [14]. To solve the error caused by linearization in EKF, the cubature Kalman �lter (CKF)
and unscented Kalman �lter (UKF) were developed by using sigma points to approximate the
posterior distribution [15,16]. Among them, CKF is proven to have better estimation performance
in high-dimensional nonlinear estimation. However, the above state estimation methods assume
Gaussian noise distribution and their noise statistics are completely known, which is not available
in practice.
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To deal with the unknown noise statistics, various adaptive and robust �lters were designed
for joint state estimation [17–19]. For example, a recursive state estimation method was presented
with unknown Gaussian noise covariance for linear systems [20]. Further, an adaptive variational
Bayesian (VB)-based �lter was designed for estimating the covariance of process noise and mea-
surement noise by selecting inverse Wishart priors [21]. Combining with maximum correntropy
criterion, an adaptive and robust �lter was developed by estimating the Gaussian measurement
noise covariance [22]. However, the above Gaussian-based estimation methods are unsuitable for
the heavy-tailed noise which caused by outliers or impulse interferences. In the case where both
the measurement noise and the process noise are Student’s t distributed noise, the Student’s t �lter
was �rst proposed in [23]. By minimizing the Kullback-Leibler divergence, an adaptive t-�lter was
developed to estimate the scale matrix of Student’s t distribution [24]. For nonlinear system, a
recursive outlier-robust nonlinear �lter was proposed for Student’s t distributed noise in [25] and
a robust Gaussian approximate �lter was presented with unknown statistics of Student’s t noise
distribution in [26].

Due to the complex environment, not only the noise distribution with heavy-tailed charac-
teristics but also the asymmetry of noise distribution should be considered. As shown in Fig. 1,
skew t distribution obtains better �tting performance than the Gaussian distribution and Student’s
t distribution, which are symmetric distributions. Thus, several estimation methods were presented
for the skew t distribution, which has both skewness and heavy-tails [27–29]. For example, a skew
t variational Beyasian �lter was designed for measurement noise with heavy-tails and skewness
in [30] and the estimation accuracy was improved by covariance matrix approximation in [31].
In [32], a robust �lter was developed to estimate the skew t distribution, consisting of the scale
matrix and degree of freedom (DOF). Moreover, some other �ltering algorithms that can describe
asymmetric noise distribution also have been proposed in [33,34]. Unfortunately, the above skew t
distribution-based methods are all in linear systems and cannot be applied to nonlinear systems.

Figure 1: Skew t distribution has better �tting than symmetric distributions

In this paper, a new skew t cubature Kalman �lter (STCKF) is proposed for nonlinear system
with heavy-tailed and skewed measurement noise. The skew t distribution is adopted to describe
the measurement noise and the prior distributions of the shape matrix, scale matrix and DOF
are chosen as Gaussian, inverse Wishart and Gamma distributions, respectively. The unknown
statistics including shape matrix, scale matrix and DOF are inferred with the VB approach and
the posterior of states is also simultaneously obtained. The results of simulation demonstrate that
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the proposed STCKF has better estimation accuracy as compared with the CKF and Student’s t
distribution-based CKF.

The paper is structured as follows: Section 2 describes the problem studied in this paper.
Section 3 proposes a skew t cubature Kalman �lter based on VB inference. In Section 4, an
example of target tracking is presented to verify the estimation performance of the proposed
STCKF. The conclusions of this paper are given in Section 5.

Notations: R
K denotes the K-dimensional Euclidean space, E[·] and tr(·) represent the expec-

tation operator and the trace operator, I is the identity matrix with appropriate dimension, AT is
the transpose of matrix A, diag(·) is the diagonal matrix, N(x,P) is a Gaussian distribution with
mean vector x and covariance matrix P, N+(µ,6) represents the truncated Gaussian distribution
in positive orthant, and its location is µ and scale matrix is 6.

2 Problem Formulation

Consider the nonlinear state-space model

xn =f (xn−1)+wn−1, (1)

zn =h(xn)+ vn, (2)

where n is the discrete time index, f (·) and h(·) are the nonlinear state function and measurement
function, zn ∈ R

d is the measurement vector, xn ∈ R
m is the state vector. The process noise wn

is Gaussian white noise and wn ∼ N(0,Qn). The measurement noise vn is the heavy-tailed and
asymmetric noise. The initial state vector x0 is assumed to have a Gaussian distribution,

p(x0)=N(x0;x0|0,P0|0). (3)

The skew t distribution is used to describe the heavy-tailed and asymmetric of noise, therefore,
the measurement noise vn:

p(vn)= ST(vn; 0,1n,Rn,νn). (4)

where ST(vn; 0,1n,Rn,νn) denotes the skew t distribution with location 0, shape matrix 1n, scale
matrix Rn and DOF νn. Speci�cally, the de�nition of skew t distribution can be seen in [30,32].

Fig. 2 shows the different 1 of distributions ST(x; 0, 1,1, 3). As shown, with the decreasing
of 1, the skew t distribution will deteriorate to the Student’s t distribution. Therefore, the skew t
distribution has both heavy-tails and asymmetric properties with suitable values.

Figure 2: Different 1 for ST(x; 0, 1,1, 3)
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In the following, based on the CKF, we will design a nonlinear �lter under nonlinear model
(1)–(2) with the measurement noise followed by skew t distribution. Speci�cally, the statistics of
skew t distribution including the shape matrix, the scale matrix and the DOF are unknown and
need to be estimated together with the system states by using VB inference.

3 Proposed Skew t Cubature Kalman Filter Using VB Inference

3.1 Prior Distributions Update

Similar to CKF, the predicted distribution of system state xn is

p(xn|z1:n−1)=N(xn;xn|n−1,Pn|n−1), (5)

where xn|n−1 and Pn|n−1 can be approximated by the CKF here. More speci�cally, the cubature
points are obtained by

χ̄i,n−1 = xn−1|n−1+
√

Pn−1|n−1ξi, (6)

where i= 1, · · · , 2m, ξi =
√
m× [1]i, and [1]i denotes the i-th element of the following set:
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The predicted cubature points are

χi,n−1 = f (χ̄i,n−1), (7)

Hence, the predicted state and the corresponding error covariance are given by

xn|n−1 =
1

2m

2m
∑

i=1

χi,n−1 (8)

Pn|n−1 =
1

2m

2m
∑

i=1

χi,n−1χ
T
i,n−1− xn|n−1x

T
n|n−1+Qn−1. (9)

In Bayesian theory, the conjugate prior needs ensure posterior distribution have the same
functional form with prior distribution. Therefore, to infer shape matrix 1n, scale matrix Rn, and
DOF νn, the conjugate priors of 1n, Rn, and νn need to be selected. The prior distribution of 1n

is selected as Gaussian distribution [33]:

p(1n|z1:n−1)=
d

∏

j=1

N(1n,j;µn|n−1,j,σn|n−1,j), (10)

where µn|n−1,j is the predicted mean of j-th dimension and σn|n−1,j is the corresponding variance,
respectively. The prior distribution of Rn is selected as inverse Wishart distribution [21]:

p(Rn|y1:n−1)= IW(Rn; cn|n−1,Dn|n−1), (11)
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where Dn|n−1 and cn|n−1 are the inverse scale matrix and DOF, respectively. The prior distribution
of νn is selected as Gamma distribution [26]:

p(νn|z1:n−1)=G(νn;an|n−1,bn|n−1), (12)

where an|n−1 and bn|n−1 are the shape parameter and the rate parameter, respectively.

To obtain (10)–(12), the dynamic model p(1n|1n−1), p(Rn|Rn−1) and p(νn|νn−1) need to be
speci�ed. In practice, the variation of the measurement noise parameters is slow, and we can use
a forgetting factor ρ ∈ (0 1] to describe the predicted distribution in this paper [21]:

µn|n−1,j = ρµn−1|n−1,j, σn|n−1,j = ρσn−1|n−1,j, (13)

cn|n−1 = ρ(cn−1|n−1− d− 1)+ d+ 1, Dn|n−1 = ρDn−1|n−1, (14)

an|n−1 = ρan−1|n−1, bn|n−1 = ρbn−1|n−1. (15)

Because of the skewed t distribution does not have a strictly closed form, the state posterior
distribution will be dif�cult to obtain. With the introduction of two hidden variables un and 3n,
the likelihood p(zn|xn) can be rewritten by the following hierarchical Gaussian model [30]:

p(zn|xn,1n,un,3n,Rn)=N(h(xn)+1nun,3
−1
n Rn), (16)

p(un|3n)=N+(0,3
−1
n ), (17)

p(3n|νn)=G(
νn

2
,
νn

2
). (18)

3.2 Posterior Estimation

In order to estimate xn from (5), (10)–(12), and (16)–(18), the joint posterior p(xn,1n,un,
3n,Rn,νn|z1:n) needs to be computed. According to Bayes’ theorem,

p(H|z1:n)=
p(zn|H)p(H|z1:n−1)

p(zn|z1:n−1)
, (19)

where H = {xn,1n,un,3n,Rn,νn}. Due to inter-coupled parameters, it is infeasible to infer the
posterior p(H|z1:n) analytically. From (19), the logarithmic marginal likelihood logp(zn|z1:n−1) can
be derived as [35]

logp(zn|z1:n−1)=KLD(q(H)‖p(H|z1:n))+L(q(H)), (20)

where KLD(·) and L are the Kullback-Liebler divergence and the lower bound of logp(zn|z1:n−1),
respectively. Due to the non-negativity of the KLD, we can obtain the true posterior by minimiz-
ing the KLD between q(H) and p(H|z1:n) [35,36]. Thus, the �x-point iteration of VB inference
is utilized to approximate p(xn,1n,un,3n,Rn,νn|z1:n) by means of the product of some individual
distributions [21,37], i.e.,

p(xn,1n,un,3n,Rn,νn|z1:n)≈ q(xn)q(1n)q(un)q(3n)q(Rn)q(νn), (21)

where q(·) represents the approximate posterior of p(·). An analytical solution of q(xn), q(1n),
q(un), q(3n), q(Rn), and q(νn) can be obtained by [21]

logq(ϕ)=EH(−ϕ) [logp(zn,H|z1:n−1)]+ cϕ (22)

where ϕ is an element of H, H(−ϕ) is all elements in H except for ϕ, and cϕ is the constant on
the variable ϕ.
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Based on Bayesian theory, we can obtain the joint posterior distribution as follows:

p(zn,H|z1:n−1)=p(zn|H)p(H|z1:n−1)

=p(zn|xn,1n,un,3n,Rn)p(xn|z1:n−1)p(1n|z1:n−1)p(un|3n)p(3n|νn)
× p(Rn|cn|n−1,Dn|n−1)p(νn|an|n−1,bn|n−1). (23)

Substituting (5), (10)–(12), and (16)–(18) into (23) results in

p (zn,H|z1:n−1)=N
(

zn;h (xn)+1nun,3
−1
n Rn

)

N
(

xn;xn|n−1,Pn|n−1
)

d
∏

j=1

N
(

1n,j;µn|n−1,j,σn|n−1,j
)

×N+
(

un; 0,3
−1
n

)

G
(

3n;
νn

2
,
νn

2

)

IW
(

Rn; cn|n−1,Dn|n−1
)

G
(

νn;an|n−1,bn|n−1
)

. (24)

When ϕ = xn, the posterior distribution q(xn) is calculated as:

q(xn)=N
(

xn;xn|n,Pn|n
)

, (25)

where xn|n and Pn|n are the estimate of state and the corresponding covariance respectively, and
can be obtained by

χi,n|n−1 = xn|n−1+
√

Pn|n−1ξi, (26)

z̄n =
1

2m

2m
∑

i=1

h(χi,n|n−1), (27)

Pxz,n =
1

2m

2m
∑

i=1

(

χi,n|n−1− xn|n−1
) (

h
(

χi,n|n−1
)

− z̄n
)T

, (28)

Pzz,n =
1

2m

2m
∑

i=1

(

h
(

χi,n|n−1
)

− z̄n
) (

h
(

χi,n|n−1
)

− z̄n
)T+ R̃n, (29)

Kx =Pxz,nP
−1
zz,n, (30)

xn|n = xn|n−1+Kx (zn− z̄n−E[1n]E [un]) , (31)

Pn|n =Pn|n−1−KxPzz,nKx, (32)

where R̃n =
{E[R−1

n ]}−1

E[3n]
. The derivation of (25)–(32) can be seen in Appendix A.

When ϕ =1n, the posterior distribution q(1n) is calculated as

q(1n)=
d

∏

j=1

N(1n,j;µn|n,j,σn|n,j), (33)

where the mean µn|n,j and variance σn|n,j are given by

K1,j =σn|n−1,jE
[

un,j
]

(σn|n−1,j(E
[

un,j
]

)2+ R̃n,j)
−1, (34)

µn|n,j =µn|n−1,j +K1,j(εn,j −E
[

un,j
]

µn|n−1,j), (35)
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σn|n,j =σn|n−1,j − σn|n−1,jE
[

un,j
]

K1,j, (36)

where εn =E[zn− h(xn)]. The derivation of (33)–(36) can be seen in Appendix B.

When ϕ = un, the posterior distribution q(un) is calculated as

q(un)=N+(un;un|n,Un|n), (37)

where the location un|n and covariance Un|n are obtained by

Ku =E[1n]
(

(E[1n])
2+ R̃n

)−1
, (38)

un|n =Kuεn, (39)

Un|n = (I−KuE[1n]) (E[3n])
−1 . (40)

The derivation of (36)–(40) can be seen in Appendix B.

When ϕ =3n, the posterior distribution q(3n) is calculated as

q (3n)=G (3n;αn,βn) , (41)

where the shape parameter αn and the rate parameter βn are given by

αn =
1

2
(E[νn]+m) , (42)

βn =
1

2
(9n+E[νn]) , (43)

where ψn is an auxiliary parameter and the derivation of (41)–(43) can be seen in Appendix C.

When ϕ =Rn, the posterior distribution q(Rn) is calculated as

q (Rn)= IW
(

Rn; cn|n,Dn|n
)

, (44)

where the DOF cn|n and inverse scale matrix Dn|n are obtained by

cn|n =cn|n−1+ 1, (45)

Dn|n =ϒn+Dn|n−1, (46)

where ϒn is an auxiliary parameter and the derivation of (44)–(46) can be seen in Appendix C.

When ϕ = νn, the posterior distribution q(νn) is calculated as

q(νn)=G(νn;an|n,bn|n), (47)

where the parameters an and bn are given by

an|n =an|n−1+
1

2
, (48)

bn|n =bn|n−1−
1

2
−

1

2
E[log3n]+

1

2
E [3n] . (49)

The derivation of (47)–(49) can be seen in Appendix D.
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Using (25), (33), (36), (41), (44), and (47), the following expectations are required:

E [3n]= αn/βn, (50)

E[R−1
n ]= (cn|n−M − 1)D−1

n|n, (51)

E[νn]= an|n/bn|n, (52)

E[1n]= diag(µn|n,1, · · · ,µn|n,d), (53)

E[log3n]=ψ(αn)− logβn, (54)

where ψ(·) denotes the digamma function. The computations of E[un] and E[unuTn ] can be found
in [38].

After taking N �x-point iteration steps, the approximations of posterior distributions are
updated as

q(xn)≈N(xn;x
(N)
n|n ,P

(N)
n|n )=N(xn;xn|n,Pn|n), (55)

q(1n)≈
d

∏

j=1

N(1n,j;µ
(N)
n|n,j,σ

(N)
n|n,j)=

d
∏

j=1

N(1n,j;µn|n,j,σn|n,j), (56)

q(un)≈N+(un;u
(N)
n|n ,U

(N)
n|n )=N+(xn;un|n,Un|n), (57)

q(3n)≈G(3n;α
(N)
n ,β(N)n )=G(3n;αn,βn), (58)

q(Rn)≈ IW(Rn; c
(N)
n|n ,D

(N)
n|n )= IW(Rn; cn|n,Dn|n), (59)

q(νn)≈G(νn;a
(N)
n|n ,b

(N)
n|n )=G(νn;an|n,bn|n). (60)

Combining prediction steps (5) and (10)–(12) with measurement updates (25), (33), (36), (41),
(44) and (47), the proposed STCKF can be realized recursively. To implement the proposed �lter,
the initial shape matrix 10, the initial scale matrix R0, the initial DOF ν0, and the forgetting
factor ρ need to be determined. Generally, 10, R0, and ν0 can be approximately achieved from
prior knowledge. The forgetting factor ρ can determine how much information from the previous
estimation. That is, choosing a small ρ means forgetting more information and vice versa. In the
proposed STCKF, the selection of N is a trade-off. Increasing N will obtain better estimation
accuracy but more time-consuming.

4 Target Tracking Simulation

To validate the estimation performance of the proposed STCKF, a target tracking simulation
is introduced to perform an evaluation of the results obtained. The STCKF is compared with
the CKF [16], the Student’s t distribution based-CKF (T-CKF) [25], and the robust Student’s t
distribution-based CKF (RT-CKF) [26].

In this paper, a typical air traf�c control scenario is considered, in which the aircraft per-
forms maneuvering turns on the horizontal plane at a constant but unknown turning rate �.
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The kinematics of rotational motion can be described by the following nonlinear state-space
model [16]:

xn =



















1
sin�T

�
0−(

1− cos�T

�
)0

0 cos�T 0 − sin�T 0

0(
1− cos�T

�
)1

sin�T

�
0

0 sin�T 0 cos�T 0
0 0 0 0 1



















xn−1+wn, (61)

zn =





√

ξ2n + η2n
arctan

ηn

ξn



+ vn, (62)

where the state x = (ξ ξ̇ η η̇ �)T, the position and velocity of target in x and y directions are
(ξ ,η) and (ξ̇ , η̇), T is the time interval and � is the tuning rate. The process noise covariance is
Qn = diag (q1M, q1M, q2T), where

M =







T3

3

T2

2
T2

2
T






.

The associated parameters are set as: q1 = 0.1 m2s−3, q2 = 1.75 × 10−4 s−3, � = −3◦ s−1,
T = 1 s. The true initial state and the corresponding covariance are x0 = (1000, 300, 1000, 0,−3)T

and P0 = diag (100, 10, 100, 10, 100), respectively.

In this simulation, we consider three cases for measurement noise:

Case 1: Gaussian distribution, that is, vn ∼N(0,Rn) with noise covariance Rn = diag(100, 10),

Case 2: Contaminated Gaussian distribution (mixture Gaussian distribution). The mixture
Gaussian distributed noise is generated according to [33]

vn ∼
{

N(0,Rn) w.p. 1− pc
N(0, 100Rn) w.p. pc,

(63)

where Rn = diag(100, 10). Eq. (63) means that vn is drawn from N(0,Rn) with probability 1− pc
and N(0, 100Rn) with probability pc. In this paper, pc = 0.1.

Case 3: Contaminated skew t distribution (mixture skew t distribution).

According to [32], the measurement noise vn is generated by

vn ∼
{ST(0,Rn,1n,νn) w.p. 1− pc
ST(0, 10Rn,1n,νn) w.p. pc,

(64)

where Rn = diag(100, 10), 1n = diag(5, 5), and νn = 4.
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In this paper, the root mean square error (RMSE) is adopted to test the �ltering performance,
and its formula is

RMSEn =

√

√

√

√

√

1

M

M
∑

j=1

‖xjn|n− x
j
n‖2, (65)

where x
j
n|n and x

j
n are the estimated and true values, respectively, at the j-th Monte-Carlo run.

The simulated inputs are a0 = 4, b0 = 1, c0 = 3, D0 = diag(1, 1), µ0 = diag(1, 1), σ0 = diag(1, 1) ,
ρ = 1− exp(−5) and N= 5.

Figs. 3–5 show that the RMSEs of position, velocity, and tuning rate based on 20 Monte-
Carlo runs for three cases. From Fig. 3, the CKF, T-CKF, RT-CKF and the proposed STCKF
almost have the same estimation accuracy under Gaussian distribution noise. However, the meth-
ods based on the non-Gaussian distribution outperform the methods based on the Gaussian
distribution when the measurement noise no longer satis�es the Gaussian distribution. As shown
in Fig. 4, the non-Gaussian �lters (T-CKF, RT-CKF and STCKF) perform better than the CKF.
From Fig. 5, the proposed STCKF obtains the best accuracy in the case of asymmetric noise
distribution and unknown noise statistics. As also observed in Table 1, the �lter based on the
skewed t distribution and the �lters based on the Student’s t distribution perform better than
the �lter based on the Gaussian distribution in Cases 2 and 3, and the proposed STCKF is
signi�cantly better than other �lters for the asymmetric noise distribution.

Figure 3: RMSEs of the position, velocity, and tuning rate by different �lters under Case 1
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Figure 4: RMSEs of the position, velocity, and tuning rate by different �lters under Case 2

Figure 5: RMSEs of the position, velocity, and tuning rate by different �lters under Case 3
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Table 1: Average RMSEs by different �lters

CKF T-CKF RT-CKF STCKF

Position Case 1 23.392 24.127 23.656 23.142
Case 2 98.756 30.794 30.161 27.920
Case 3 275.719 56.467 56.823 26.715

Velocity Case 1 12.922 12.887 12.889 12.830
Case 2 45.373 11.346 10.680 9.756
Case 3 83.887 22.471 20.631 11.623

Tuning rate Case 1 0.024 0.024 0.024 0.024
Case 2 0.046 0.023 0.021 0.021
Case 3 0.073 0.028 0.027 0.016

5 Conclusion

In this work, we consider the joint estimation problem of system states and unknown noise
statistics for nonlinear discrete-time systems. Combining with the properties of skew t distri-
bution, a hierarchical nonlinear Gaussian model is developed. Based on this model, a skew t
cubature Kalman �lter is proposed, in which the states, shape matrix, scale matrix and DOF
are simultaneously estimated by using VB approach. The results of simulation show that the
proposed �lter in this paper has better estimation accuracy than the conventional CKF and the
Student’s t distribution-based CKF under heavy-tailed and skewed measurement noise. It should
be noted that the proposed method in this paper can only realize state estimation of asymmetric
measurement noise. How to extend the proposed method to handle asymmetric process and
measurement noise is still an open problem.
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Appendix A

Substituting ϕ = xn into (22) yields

logq(xn)=−
1

2
(zn− h(xn)−E[1n]E[un])

TE[R−1
n ]E [3n] (zn− h(xn)−E[1n]E[un])

−
1

2
(xn− xn|n−1)

TP−1
n|n−1× (xn− xn|n−1)+ cx. (66)

De�ning the modi�ed likelihood distribution p(zn|xn) as
p(zn|xn)=N(h(xn)+E[1n]E[un], R̃n), (67)

and using (5) and (67) in (66), we have

q(xn)∝N(zn;h(xn)+E[1n]E[un], R̃n)N(xn;xn|n−1,Pn|n−1). (68)

According to (5) and (66)–(68), (25)–(32) can be obtained.

Appendix B

Substituting ϕ =1n into (22) yields

logq(1n)=−
1

2
(εn−1nE[un])

TE[R−1
n ]E [3n] (εn−1nE[un])

−
d

∑

j=1

1

2
(1n,j −µn|n−1,j)

Tσ−1
n|n−1,j(1n,j −µn|n−1,j)+ c1, (69)

where the auxiliary parameter εn is given by

εn =E[zn− h(xn)]= zn− h(xn|n). (70)

Substituting ϕ = un into (22), we have

logq(un)=−
1

2
(εn−E[1n]un)

TE[R−1
n ]E [3n] (εn−E[1n]un)−

1

2
(uTnE[3n]un)+ cu. (71)

Similar to (66)–(68), (33)–(40) can be obtained.

Appendix C

Substituting ϕ =3n into (22), we have

logq(3n)=−
1

2
3n9n+

(

〈νn〉+ d

2
− 1

)

log3n−
〈νn〉
2
3n+ c3, (72)

where

9n =tr(E[R−1
n ]E[(zn− h(xn))(zn− h(xn))

T]− tr(E[R−1
n ]E[1n]E[un]ε

T
n )− tr(E[1n]E[R

−1
n ]εnE[un]

T)

+ tr((E[1n]E[R
−1
n ]E[1n]+ I)E[unu

T
n ]). (73)
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Substituting ϕ =Rn into (22) yields

logq(Rn)=−
1

2
(cn|n−1+ d+ 2) log |Rn| −

1

2
tr((ϒn+Dn|n−1)R

−1
n )+ cR. (74)

where

ϒn =E[3n]E[(zn− h(xn))(zn− h(xn))
T]+E[3n]E[1n1

T
n ]E[unu

T
n ]−E[3n]E[1n]E[un]ε

T
n

−E[3n]E [1n] εnE[un]
T. (75)

According to (72) and (74), (41)–(46) can be obtained.

Appendix D

Substituting ϕ = νn into (22) yields

logq(νn)=
νn

2
log

νn

2
− logŴ(

νn

2
)+ (

νn

2
− 1)E[log3n]−

νn

2
E [3n]+ (an|n−1− 1) logνn− bn|n−1νn+ cν .

(76)

Using Stirling’s approximation: logŴ( νn2 )≈
νn−1
2 log( νn2 )−

νn
2 [26], logq(νn) can be rewritten as

log q(νn)= (an|n−1+
1

2
− 1) logνn− (bn|n−1−

1

2
−

1

2
E[log3n]+

1

2
E [3n])νn+ cν . (77)

According to (77), (41)–(43) can be obtained.


