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ABSTRACT

In the paper, with the help of the Faá di Bruno formula and an identity of the Bell polynomials of the second
kind, the authors define degenerate λ-array type polynomials, establish two explicit formulas, and present several
recurrence relations of degenerate λ-array type polynomials and numbers.
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1 Introduction

In this paper, we use the following notation:

Z= {0,±1,±2, . . .}, N= {1, 2, . . .}, N0 = {0, 1, 2, . . .}, N− = {−1,−2, . . . }.
The Stirling numbers of the second kind S(n, m) for n ≥ m ≥ 0 can be generated by(

et − 1
)m

m!
=

∞∑
n=m

S (n, m)
tn

n!
(1)

and can be computed as

S(n, m)= 1
m!

m∑
i=0

(−1)i
(

m
i

)
(m− i)n.

See [[1], p.206] and the paper [2].
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The λ-array type polynomials S(n, m; x;λ) were defined in [3] by the generating function

(λet − 1)m

m!
ext =

∞∑
n=0

S(n, m; x;λ)
tn

n!
. (2)

See also the papers [4,5]. It is clear that S(n, m; 0; 1)= S(n, m). In the paper [6], Simsek obtained
and constructed several generating functions and many relations of generalized Stirling type
numbers, the array type polynomials, and Eulerian type polynomials. In the paper [7], Bayad et al.
deduced interesting and meaningful identities associated with λ-array type polynomials, λ-Stirling
numbers of the second kind, and the Apostol–Bernoulli numbers, while they dealt with λ-array
polynomials by applying λ-delta operator. Readers interested to the Apostol-Bernoulli numbers
and polynomials may consult to the papers [8–10] and closely related references therein.

In the paper [11], Carlitz introduced degenerate Bernoulli and Euler polynomials Bn(x;γ ) and
En(x;γ ) by

t
(1+ γ t)1/γ − 1

(1+ γ t)x/γ =
∞∑

n=0

Bn(x;γ )
tn

n!
(3)

and

2
(1+ γ t)1/γ + 1

(1+ γ t)x/γ =
∞∑

n=0

En(x;γ )
tn

n!
(4)

respectively. For x = 0, the quantities Bn(0;γ ) and En(0;γ ) are called as degenerate Bernoulli and
Euler numbers. Since limγ→0(1 + γ t)1/γ = et, Eqs. (3) and (4) reduce to the generating functions
for classical Bernoulli and Euler polynomials, respectively.

We now define degenerate λ-array type polynomials S(n, m; x;λ;γ ) by

[λ(1+ γ t)1/γ − 1]m

m!
(1+ γ t)x/γ =

∞∑
n=0

S(n, m; x;λ;γ )
tn

n!
. (5)

It is easy to see that

lim
γ→0

S(n, m; x;λ;γ )= S(n, m; x;λ) (6)

which is defined by (2). When x = 0, we call the quantities S(n, m; 0;λ;γ ) degenerate λ-array type
numbers.

In this paper, utilizing the Faá di Bruno formula and an identity of the Bell polynomials of
the second kind, we establish several explicit formulas and recurrence relations of (degenerate)
λ-array type numbers and polynomials.

Let us notice that the Faá di Bruno formula, which can be viewed as an extension of chain
rule to higher derivatives, has been applied to establish explicit and closed-form formulas of
many important numbers and polynomials in analytic and combinatorial number theory. For more
details, please refer to, for example, the papers [12–18] and closely related references therein.
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2 Some Identities of the Bell Polynomials of the Second Kind

The Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1) for n ≥ k ≥ 0 can be defined
by

Bn,k(x1, x2, . . . , xn−k+1)=
∑

1≤i≤n−k+1
�i∈{0}∪N∑n−k+1
i=1 i�i=n∑n−k+1
i=1 �i=k

n!∏n−k+1
i=1 �i!

n−k+1∏
i=1

(
xi

i!

)�i

.

See [[1], p. 134]. For n ∈ N, the Faà di Bruno formula is described in [[1], p.139] in terms of the
Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1) by

dn

dtn f ◦ h(t)=
n∑

k=1

f (k)(h(t))Bn,k
(
h′(t), h′′(t), . . . , h(n−k+1)(t)

)
. (7)

The formula

Bn,k

(
1, 1− λ, (1− λ)(1− 2λ), . . . ,

n−k∏
�=0

(1− �λ)

)
= (−1)k

k!

k∑
�=0

(−1)�
(

k
�

) n−1∏
q=0

(�− qλ) (8)

has been applied and reviewed in [[16], Lemma 2.2], [[17], Remark 6.1], and [[19], Section 1.3].
The explicit formula (8) is equivalent to

Bn,k(〈λ〉1, 〈λ〉2, . . . , 〈λ〉n−k+1)=
(−1)k

k!

k∑
�=0

(−1)�
(

k
�

)
〈λ�〉n, (9)

which was presented in [[20], Theorems 2.1 and 4.1], where the falling factorial 〈x〉n is defined for
x ∈C by

〈x〉n =
n−1∏
k=0

(x− k)=
{

x(x− 1) . . .m(x− n+ 1), n ∈N;

1, n = 0.

When n ∈N, the explicit formulas (8) and (9) can be rearranged as

Bn,k

(
1, 1− λ, (1− λ)(1− 2λ), . . . ,

n−k∏
�=0

(1− �λ)

)
=

⎧⎪⎪⎨
⎪⎪⎩

(−1)k λnn!
k!

k∑
�=0

(−1)�
(

k
�

)(
�/λ

n

)
, λ �= 0;

S(n, k), λ= 0,

(10)
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where extended binomial coefficient
(z

w

)
is defined by

(
z
w

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(z+ 1)

�(w+ 1)�(z−w+ 1)
, z �∈N−, w, z−w �∈N−

0, z �∈N−, w ∈N− or z−w ∈N−
〈z〉w

w!
, z ∈N−, w ∈N0

〈z〉z−w

(z−w)!
, z, w ∈N−, z−w ∈N0

0, z, w ∈N−, z−w ∈N−

∞, z ∈N−, w �∈Z

(11)

and the classical Euler gamma function �(z) can be defined by

�(z)= lim
n→∞

n! nz∏n
k=0(z+ k)

, z ∈C \ {0,−1,−2, . . .}.

For new results and applications about the Bell polynomials‘ of the second kind Bn,k, please
refer to the papers [13,19,21–23] and closely related references therein.

3 Explicit Formulas of Degenerate λ-Array Type Polynomials

In this section, we establish two explicit formulas for degenerate λ-array type numbers and
polynomials, respectively.

Theorem 3.1. For n ∈N, degenerate λ-array type numbers S(n, m; 0;λ;γ ) can be computed by

S(n, m; 0;λ;γ )= n!
m!

λn(λ− 1)m
n∑

k=1

〈m〉k

k!
1

(1/λ− 1)k

k∑
�=0

(−1)�
(

k
�

)(
�/λ

n

)
, λ �= 0. (12)

Proof. Making use of f (u) = (λu− 1)m and u = h(t) = (1+ γ t)1/γ → 1 as t → 0 in the Faá di
Bruno formula (6) and applying (10) result in

dn
([

λ(1+ γ t)1/γ − 1
]m)

dtn =
n∑

k=1

dk[(λu− 1)m]
duk

Bn,k

(
h′(t), h′′(t), . . . , h(k−�+1)(t)

)

=
n∑

k=1

〈m〉k(λu− 1)m−kλkBn,k

(
(1+ γ t)1/γ−1, (1− γ )(1+ γ t)1/γ−2,

. . . , (1− γ )(1− 2γ ) . . . [1− (n− k)γ ](1+ γ t)1/γ−(n−k+1)
)

→
n∑

k=1

〈m〉k(λ− 1)m−kλkBn,k

(
1, 1− γ , . . . ,

n−k∏
�=0

(1− �γ )

)

=
n∑

k=1

〈m〉k(λ− 1)m−kλk(−1)k λnn!
k!

k∑
�=0

(−1)�
(

k
�

)(
�/λ

n

)
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= n!λn(λ− 1)m
n∑

k=1

〈m〉k

k!
1

(1/λ− 1)k

k∑
�=0

(−1)�
(

k
�

)(
�/λ

n

)

as t → 0. Considering the generating function in (5) for x = 0, we proved the explicit formula (12).
The proof of Theorem 3.1 is complete.

Remark 3.1. From (5), it follows immediately that

S(0, m; 0;λ;γ )= (λ− 1)m

m!
.

By virtue of the explicit formula (12), we obtain the first few values of degenerate λ-array
type numbers S(n, m; 0;λ;γ ) for 1 ≤ n ≤ 6 as follows:

S(1, m; 0;λ;γ )= 1
(m− 1)!

λ(λ− 1)m−1,

S(2, m; 0;λ;γ )= 1
(m− 1)!

λ(λ− 1)m−2[γ (1− λ)+ λm− 1],

S(3, m; 0;λ;γ )= 1
(m− 1)!

λ(λ− 1)m−3[
2γ 2(1− λ)2 + 3γ (1− λ)(λm− 1)+ λ2m2 − 3λm+ λ+ 1

]
,

S(4, m; 0;λ;γ )= λ(λ− 1)m−4

(m− 1)!

[
6γ 3(1− λ)3 + 11γ 2(1− λ)2(λm− 1)

+ 6γ (1− λ)
(
λ2m2 − 3λm+ λ+ 1

)+ λ3m3 − λ2(6m2 − 4m+ 1)+ λ(7m− 4)− 1
]
,

S(5, m; 0;λ;γ )= λ(λ− 1)m−5

(m− 1)!

{
24γ 4(λ− 1)4 − 50γ 3(λ− 1)3(λm− 1)

+ 35γ 2(λ− 1)2(
λ2m2 − 3λm+ λ+ 1

)
− 10γ (λ− 1)

[
λ3m3 − λ2(

6m2 − 4m+ 1
)+ λ(7m− 4)− 1

]
+ λ4m4 − λ3(

10m3 − 10m2 + 5m− 1
)+ λ2(

25m2 − 30m+ 11
)− λ(15m− 11)+ 1

}
,

S(6, m; 0;λ;γ )=−λ(λ− 1)m−6

(m− 1)!

{
120γ 5(λ− 1)5 − 274γ 4(λ− 1)4(λm− 1)

+ 225γ 3(λ− 1)3(
λ2m2 − 3λm+ λ+ 1

)
− 85γ 2(λ− 1)2[

λ3m3 − λ2(
6m2 − 4m+ 1

)+ λ(7m− 4)− 1
]

+ 15γ (λ− 1)
[
λ4m4 − λ3(

10m3 − 10m2 + 5m− 1
)

+ λ2(
25m2 − 30m+ 11

)− λ(15m− 11)+ 1
]− λ5m5

+ λ4(
15m4 − 20m3 + 15m2 − 6m+ 1

)− λ3(
65m3 − 120m2 + 91m− 26

)
+ 2λ2(

45m2 − 73m+ 33
)− λ(31m− 26)+ 1

}
.



300 CMES, 2022, vol.131, no.1

Remark 3.2. The explicit formula (12) in Theorem 3.1 and seven concrete values listed in
Remark 3.1 reveal that degenerate λ-array type numbers S(n, m; 0;λ;γ ) are polynomials of λ and
γ with degrees m and n− 1 ≥ 0, respectively.

Theorem 3.2. For n ∈N, degenerate λ-array type polynomials S(n, m; x;λ;γ ) can be computed
by

S(n, m; x;λ;γ )= n!
m!

λn(λ− 1)m
n∑

k=1

(−1)k

k!

[
k∑

�=0

(
k
�

)〈m〉�〈x〉k−�

(1− 1/λ)�

][
k∑

�=0

(−1)�
(

k
�

)(
�/λ

n

)]
. (13)

Proof. For k ∈N, it is easy to see that

dk

duk

[
(λu− 1)m

m!
ux

]
= 1

m!

k∑
�=0

(
k
�

)
〈m〉�λ�(λu− 1)m−�〈x〉k−�ux−k+�

→ 1
m!

k∑
�=0

(
k
�

)
〈m〉�〈x〉k−�λ

�(λ− 1)m−�

as u → 1. Letting u = h(t) = (1 + γ t)1/γ → 1 as t → 0 and making use of the Faà di Bruno
formula (7) give

dn

dtn

(
[λ(1+ γ t)1/γ − 1]m

m!
(1+ γ t)x/γ

)

=
n∑

k=1

dk

duk

[
(λu− 1)m

m!
ux

]
Bn,k

(
h′(t), h′′(t), . . . , h(k−�+1)(t)

)

= 1
m!

n∑
k=1

[
k∑

�=0

(
k
�

)
〈m〉�λ�(λu− 1)m−�〈x〉k−�ux−k+�

]

×Bn,k

(
(1+ γ t)1/γ−1, (1− γ )(1+ γ t)1/γ−2, . . . , (1+ γ t)1/γ−(n−k+1)

n−k∏
�=0

(1− �γ )

)

→ 1
m!

n∑
k=1

[
k∑

�=0

(
k
�

)
〈m〉�〈x〉k−�λ

�(λ− 1)m−�

]
Bn,k

(
1, 1− γ , . . . ,

n−k∏
�=0

(1− �γ )

)

= 1
m!

n∑
k=1

[
k∑

�=0

(
k
�

)
〈m〉�〈x〉k−�λ

�(λ− 1)m−�

][
(−1)k λnn!

k!

k∑
�=0

(−1)�
(

k
�

)(
�/λ

n

)]

= n!
m!

λn(λ− 1)m
n∑

k=1

(−1)k

k!

[
k∑

�=0

(
k
�

)〈m〉�〈x〉k−�

(1− 1/λ)�

][
k∑

�=0

(−1)�
(

k
�

)(
�/λ

n

)]

as t → 0. Considering the generating function in (5), we proved the explicit formula (13). The
proof of Theorem 3.2 is complete.
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Remark 3.3. From the generating function (5), we can easily obtain

S(0, m; x;λ;γ )= (λ− 1)m

m!
.

By virtue of the explicit formula (13), we can calculate the first few values of degenerate
λ-array type polynomials S(n, m; x;λ;γ ) for 1 ≤ n ≤ 3 as follows:

S(1, m; x;λ;γ )= (λ− 1)m−1

m!
[λ(m+ x)− x],

S(2, m; x;λ;γ )= (λ− 1)m−2

m!

[
λ2(m+ x)(m− γ + x)+ λm(γ − 2x− 1)+ 2λx(γ − x)+ x(x− γ )

]
,

S(3, m; x;λ;γ )= (λ− 1)m−3

m!

{
λ3(m+ x)

[
2γ 2 − 3γ (m+ x)+ (m+ x)2]

+ λ2[
3m2(γ − x− 1)−m

(
4γ 2 − 12γ x− 3γ + 6x2 + 3x− 1

)− 3x
(
2γ 2 − 3γ x+ x2)]

+ λ
[
m

(
2γ 2 − 6γ x− 3γ + 3x2 + 3x+ 1

)+ 3x
(
2γ 2 − 3γ x+ x2)]− x

(
2γ 2 − 3γ x+ x2)}

.

Remark 3.4. From the explicit formula (13) in Theorem 3.2 and the four concrete values in
Remark 3.3, we conclude that degenerate λ-array type polynomials S(n, m; x;λ;γ ) are polynomials
of x, λ, and γ of degrees n, m, and n− 1 ≥ 0, respectively.

Remark 3.5. When x = 0 in Theorem 3.2, the explicit formula (13) becomes (12) in Theorem
3.1.

Remark 3.6. For further better understanding degenerate λ-array type polynomials
S(n, m; x;λ;γ ), we demonstrate two angles of the graph of S(3, 2; 4;λ;γ ) for −9 < λ < 9 and
0 < γ < 9 in Fig. 1. The blue plane in Fig. 1 is the (λ,γ )-plane.

Figure 1: Two angles of the graph of S(3, 2; 4;λ;γ ) for −9 < λ < 9 and 0 < γ < 9, plotted by
Wolfram Mathematica 12.0
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Remark 3.7. For further better understanding degenerate λ-array type polynomials
S(n, m; x;λ;γ ), we demonstrate two angles of the graph of S(3, 2; x; 4;γ ) for 0 < x < 9 and
0 < γ < 9 in Fig. 2. The blue plane in Fig. 2 is the (x,γ )-plane.

Figure 2: Two angles of the graph of S(3, 2; x; 4;γ ) for 0 < x < 9 and 0 < γ < 9, plotted by
Wolfram Mathematica 12.0

Remark 3.8. For further better understanding degenerate λ-array type polynomials
S(n, m; x;λ;γ ), we demonstrate two angles of the graph of S(3, 2; x;λ; 4) for 0 < x < 9 and
−9 < λ < 9 in Fig. 3. The blue plane in Fig. 3 is the (x,λ)-plane.

Figure 3: Two angles of the graph of S(3, 2; x;λ; 4) for 0 < x < 9 and −9 < λ < 9, plotted by
Wolfram Mathematica 12.0

4 Recurrence Relations of Degenerate λ-Array Type Polynomials

In this section, we establish several recurrence relations of degenerate λ-array type
polynomials.
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Theorem 4.1. Degenerate λ-array type polynomials satisfy the recurrence relation

λS(n, m; x+ 1;λ;γ )= (m+ 1)S(n, m+ 1; x;λ;γ )+S(n, m; x;λ;γ ). (14)

Proof. From Eq. (5), it follows that

∞∑
n=0

[S(n, m; x+ 1;λ;γ )−S(n, m; x;λ;γ )]
tn

n!

=
[
λ(1+ γ t)1/γ − 1

]m

m!
(1+ γ t)x/γ

[
(1+ γ t)1/γ − 1

]

=
[
λ(1+ γ t)1/γ − 1

]m+1

m!
(1+ γ t)x/γ

[
(1+ γ )1/γ − 1

λ(1+ γ t)1/γ − 1

]

=
[
λ(1+ γ t)1/γ − 1

]m+1

m!
(1+ γ t)x/γ

[
1
λ
+ (1− λ)/λ

λ(1+ γ t)1/γ − 1

]

= m+ 1
λ

[
λ(1+ γ t)1/γ − 1

]m+1

(m+ 1)!
(1+ γ t)x/γ + 1− λ

λ

[
λ(1+ γ t)1/γ − 1

]m

m!
(1+ γ t)x/γ

= m+ 1
λ

∞∑
n=0

S(n, m+ 1; x;λ;γ )
tn

n!
+ 1− λ

λ

∞∑
n=0

S(n, m; x;λ;γ )
tn

n!
.

Comparing coefficients of the terms tn

n! on both sides concludes (14). The proof of Theorem
4.1 is complete.

Theorem 4.2. Degenerate λ-array type polynomials S(n, m; x;λ;γ ) satisfy the recurrence rela-
tion

S(n+ 1, m; y+ γ ;λ;γ )= λS(n, m− 1; y+ 1;λ;γ )+ (y+ γ )S(n, m; y;λ;γ ). (15)

Consequently, we have

S(n+ 1, m; y;λ)= λS(n, m− 1; y+ 1;λ)+ yS2(n, m; y;λ). (16)

Proof. Differentiating with respect to t yields

d
dt
{[λ(1+ γ t)1/γ − 1]m(1+ γ t)x/γ } = λm

[
λ(1+ γ t)1/γ − 1

]m−1
(1+ γ t)(x+1−γ )/γ

+ x
[
λ(1+ γ t)1/γ − 1

]m
(1+ γ t)(x−γ )/γ ,

where, on the other hand,

d
dt
{[λ(1+ γ t)1/γ − 1]m(1+ γ t)x/γ } = m!

∞∑
n=0

S(n+ 1, m; x;λ;γ )
tn

n!
,

x
[
λ(1+ γ t)1/γ − 1

]m
(1+ γ t)(x−γ )/γ = xm!

∞∑
n=0

S(n, m; x− γ ;λ;γ )
tn

n!
,
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and

λm
[
λ(1+ γ t)1/γ − 1

]m−1
(1+ γ t)(x+1−γ )/γ = λm!

∞∑
n=0

S(n, m− 1; x+ 1− γ ;λ;γ )
tn

n!
.

Further replacing x by y+ γ and simplifying lead to (15).

Taking γ → 0 in (15) and considering (6) give (16). The proof of Theorem 4.2 is complete.

Remark 4.1. One of anonymous referees commented that the λ-array type polynomials are
related to numbers considered in the papers [24–26].

5 Conclusions

In this paper, with the help of the Faá di Bruno formula (7) and the identity (10) for the Bell
polynomials of the second kind Bn,k, we define degenerate λ-array type polynomials S(n, m; x;λ;γ )

by (5), establish two explicit formulas (12) and (13) in Theorems 3.1 and 3.2, and present several
recurrence relations (14), (15), and (16) of degenerate λ-array type polynomials and numbers
S(n, m; x;λ;γ ) and S(n, m;λ;γ ) in Theorems 4.1 and 4.2.
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23. Wang, Y., Dağlı, M. C., Liu, X. M., Qi, F. (2021). Explicit, determinantal, and recurrent formulas of
generalized Eulerian polynomials. Axioms, 10(1), 37. DOI 10.3390/axioms10010037.

24. Corcino, R. B. (1999). The (r,β)-Stirling numbers. Mindanao Forum, 14, 91–99.
25. Corcino, R. B., Corcino, C. B. (2012). The Hankel transform of generalized Bell numbers and its q-analogue.

Utilitas Mathematica, 89, 297–309.
26. Corcino, R. B., Corcino, C. B., Aldema, R. (2006). Asymptotic normality of the (r,β)-Stirling numbers. Ars

Combinatoria, 81, 81–96.

http://dx.doi.org/10.1186/s13662-016-1014-0
http://dx.doi.org/10.1016/j.amc.2015.03.132
http://dx.doi.org/10.2298/PIM1920113K
http://dx.doi.org/10.3906/mat-2009-92
http://dx.doi.org/10.1017/S0004972719001266
http://dx.doi.org/10.1007/s11139-017-9907-4
http://dx.doi.org/10.1016/j.cam.2017.07.013
http://dx.doi.org/10.1007/s00009-017-0939-1
http://dx.doi.org/10.3390/math4040065
http://dx.doi.org/10.1016/j.jmaa.2020.124382
http://dx.doi.org/10.11575/cdm.v15i1.68111
http://dx.doi.org/10.3934/math.2021438
http://dx.doi.org/10.2298/AADM190118018Q
http://dx.doi.org/10.3390/axioms10010037

