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Abstract: Quantum Key Distribution seems very promising as it offers 
unconditional security, that’s why it is being implemented by the tech giants of the 
networking industry and government. Having quantum phenomenon as a 
backbone, QKD protocols become indecipherable. Here we have focused on the 
complexities of quantum key distribution and how this technology has contributed 
to secure key communication. This article gives an updated overview of this 
technology and can serve as a guide to get familiar with the current trends of 
quantum cryptography. 

Keywords: Quantum information; quantum cryptography; quantum entanglement 

1 Introduction 
     Quantum Cryptography was first proposed and theoretically shown by Stephen Wiesner in the early 
1970s. He introduced the concept of quantum conjugate coding [1]. In this theory he has shown how to 
store or transmit two messages by encoding them in two conjugate observables such as linear and circular 
polarization of light so that either but not both of the messages may be received and decoded. Later, Bennett 
and Brassard developed the first key distribution protocol based on this theory [2]. In 1994, Peter Shor has 
developed the famous factoring algorithm that has increased the vulnerability of the widely used RSA 
scheme [3]. Cryptography is a method used to make the communication more secure between two parties 
those are sender and receiver in present of a third party, i.e., an adversary. Basically in cryptography we 
scramble sender's message into some cipher text via some encryption algorithm so that recovering the 
message without its key becomes difficult and only the authenticated receiver can decipher or decrypt the 
message via some decryption procedure. Cryptography is broadly classified into three sections. i) 
Symmetric key cryptography; ii) Asymmetric key cryptography; iii) Hash functions. Quantum key 
distribution protocols generate identical keys for the two parties. It uses quantum mechanical phenomenon 
to secure communication between the two parties. Quantum cryptographic algorithm (BB84 QKD 
PROTOCOL) [3] was first introduced by Charles H. Bennett and Gilles Brassard in 1984. Although it has 
not been yet completely commercialized, QKD protocols have been proven to be the most secure technique 
for communication [4–6]. 

2 Quantum States and Density Matrix Formulation 
 Quantum states can be of two types:  

• Pure state: Here only one wave function is present in the statistical mixture with hundred 
percent probability. 

• Mixed state: Here more than one wave functions present with different probability within the 
statistical mixture, i.e., it is a probabilistic mixture of pure states. We generally formulate these 
mixed states using “Density Matrix” ρ. 
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 𝜌𝜌 =  ∑ 𝑝𝑝𝑥𝑥|𝜓𝜓𝑥𝑥⟩⟨𝜓𝜓𝑥𝑥|𝑥𝑥                                                                                                                                      (1) 
       Here, Eq. (1) represents a mixed state that has the pure state |𝜓𝜓𝑥𝑥⟩ with probability 𝑝𝑝𝑥𝑥. 
       If,  𝜌𝜌 =  𝜌𝜌2, i.e., ρ is an idempotent matrix then it is a pure state and else a mixed state. Tr(ρ) = 1 holds 
true for all density matrices.                               
       Basically, we use density matrix to characterize a mixed state. Following is the example of pure state 
and mixed state. |0⟩, |1⟩, |+⟩, |−⟩ - these are examples of pure state. Now if we make statistical mixture of 
any pure states then it will be a mixed state like 

|𝜌𝜌𝑥𝑥⟩ =
1
2

(𝛼𝛼|0⟩ + 𝛽𝛽|1⟩)(𝛼𝛼∗⟨0|+𝛽𝛽∗⟨1|) +
1
2

(𝛾𝛾|0⟩ + 𝛿𝛿|1⟩)(𝛾𝛾∗⟨0|+𝛿𝛿∗⟨1|) 

        = 1
2

(|𝛼𝛼|2 + |𝛾𝛾|2)|0⟩⟨0| + 1
2

(𝛼𝛼𝛽𝛽∗ + 𝛾𝛾𝛿𝛿∗)|0⟩⟨1| + 1
2

(𝛽𝛽𝛼𝛼∗ + 𝛿𝛿𝛾𝛾∗)|1⟩⟨0| + 1
2

(|𝛽𝛽|2 + |𝛿𝛿|2)|1⟩⟨1|        (2) 

So, here by density matrix 𝜌𝜌𝑥𝑥 we generally represent a mixed state [7]. 

3 Properties of Quantum State 
3.1 Superposition 

According, to the law of superposition a quantum particle can be at its all possible state before being 
measured. On measuring its wave function collapses to any one of the possible states and gives us the result. 
Here we can show an example of superposed state|𝜙𝜙⟩,  

|𝜙𝜙⟩ = 1
√3

|0⟩ + √2
√3

|1⟩                                                                                                                                    (3) 

       Generally, a single qubit quantum state |𝜓𝜓⟩ is represented in the two dimensional hilbert space as 
𝛼𝛼|0⟩ + 𝛽𝛽|1⟩  where 𝛼𝛼  and 𝛽𝛽  are the complex terms and |𝛼𝛼|2 + |𝛽𝛽|2= 1. After measuring the state the 
probability of finding state |0⟩ is |𝛼𝛼|2 and probability of finding the state |1⟩ is |𝛽𝛽|2 [8]. “⟨𝑥𝑥| 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑥𝑥⟩”–
these two notations are known as Dirac’s Bra-Ket notation. Ket is a vector in the d dimensional Hilbert 
space and Bra is the called the equivalent complex conjugate vector in the dual space of that Hilbert space. 

3.2 Entanglement Theory in Brief 
      Entanglement arises when a group of particle generates or interact in a way such that we cannot 
describe each of their quantum state independently. Although, Einstein has called it as ‘spooky action at a 
distance’ as it seems to violate the concept of locality. But later this conflict has been ended by John Bell 
through his inequality. Moreover, we can say that entanglement is a non-local correlation. 
      There are some mathematical intuition to show whether a state is entangled or not. Pure state |𝜓𝜓𝐴𝐴𝐴𝐴⟩ is 
said to be separable if we can represent it as a tensor product state like 
|𝜓𝜓𝐴𝐴𝐴𝐴⟩ =  |𝜓𝜓𝐴𝐴⟩⊗ |𝜓𝜓𝐴𝐴⟩                                                                                                                                  (4) 
         Or else, it will be an entangled state. Similarly, in case of mixed states, mixed state described by a 
density matrix ρ acting on a composite system ℋ1 ⊗ℋ2 is said to be separable iff it can be represented as 
the following:  
ρ =  ∑ 𝑝𝑝𝑘𝑘𝑘𝑘 𝜌𝜌𝑘𝑘1 ⊗ 𝜌𝜌𝑘𝑘2                                                                                                                                      (5) 
          𝑝𝑝𝑘𝑘 is the weight factor and �𝜌𝜌𝑘𝑘1� and {𝜌𝜌𝑘𝑘2} are the density states for the respective subsystems [9–13]. 

4 Some Facts Related to Quantum Cryptography 
4.1 Monogamy of Entanglement 

Let us have our three friends Alice, Bob and Charlie. Now according to monogamy of entanglement 
if Alice and Bob are entangled to each other, and then that entanglement cannot be shared with a third party, 
i.e., Charlie. For an example let’s make a statement that Alice and Bob are entangled to a bipartite state 
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|𝜓𝜓𝐴𝐴𝐴𝐴⟩ and let’s make a statement that Alice, Bob and Charlie are entangled into a tripartite state |𝜓𝜓𝐴𝐴𝐴𝐴𝐴𝐴⟩. 
Now, if we find the reduced density state from the state |𝜓𝜓𝐴𝐴𝐴𝐴𝐴𝐴⟩ then the reduced density state 𝜌𝜌𝐴𝐴𝐴𝐴 that we 
achieve is a separable state not an entangled state. So, here a contradiction occurs. From this example we 
can draw a conclusion, i.e., monogamy of entanglement exists. Let’s do the following analysis: 
|𝜓𝜓𝐴𝐴𝐴𝐴⟩ =  𝜆𝜆0|00⟩+ 𝜆𝜆1|11⟩                                                                                                                            (6)   

Now copying Bob’s bit to Charlie we have 
|𝜓𝜓𝐴𝐴𝐴𝐴𝐴𝐴⟩ =  𝜆𝜆0|000⟩+ 𝜆𝜆1|111⟩                                                                                                                      (7) 
𝜌𝜌𝐴𝐴𝐴𝐴𝐴𝐴 =  |𝜓𝜓𝐴𝐴𝐴𝐴𝐴𝐴⟩⟨𝜓𝜓𝐴𝐴𝐴𝐴𝐴𝐴|                                                                                                                                  (8) 

We can observe that Bob’s bit has been copied to Charlie’s bit. 
𝜌𝜌𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇𝐴𝐴[𝜌𝜌𝐴𝐴𝐴𝐴𝐴𝐴] =  |𝜆𝜆0|2|0⟩⟨0|⊗ |0⟩⟨0| + |𝜆𝜆1|2|1⟩⟨1|⊗ |1⟩⟨1|                                                           (9) 
        According to Eq. (9) we can observe that 𝜌𝜌𝐴𝐴𝐴𝐴 is a separable state whereas according to Eq. (6) it is an 
entangled state. Here a contradiction arises giving rise to the Monogamy [14–16]. 

4.2 Ignorance 
        We say sometime that the Eve is ignorant about the key or Alice is ignorant about Bob’s input or vice 
versa. Let’s assume that we have a ‘n’ bit key K that can be either 0 or 1. Whereas E is the information that 
Eve contains about the key. Every position in the key is equiprobable. So, probability of each position is 1

2
 

and probability of getting a particular string is 1
2𝑛𝑛

 or in terms of density state it is 𝜌𝜌𝑘𝑘 =  𝕀𝕀
|𝐾𝐾|, where, K = 2𝑛𝑛. 

        Now, E may be quantum or classical anything. So, we can think of a classical-quantum state (cq 
state) 𝜌𝜌𝐾𝐾𝐾𝐾. So, we call Eve as an ignorant if we can represent 𝜌𝜌𝐾𝐾𝐾𝐾 as following: 

𝜌𝜌𝐾𝐾𝐾𝐾 =  𝕀𝕀
|𝐾𝐾| ⊗𝜌𝜌𝐾𝐾                                                                                                                                          (10) 

4.3 Trace Distance 
          In real world we do not get everything ideal, so we have to think of the almost ideal. Now, let’s do 
an experiment that is–let’s say we have two systems System A and System B. System A is ideal and System 
B is real. Alice and Eve does some operations on system A and B and produces two cq(classical-quantum) 
states 𝜌𝜌𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and 𝜌𝜌𝐾𝐾𝐾𝐾𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 . Now, we always want Eve to be ignorant because then only we can achieve 
maximum amount of information from Eve about the key. If, Eve is ignorant about the key then (10) gives 
the status of 𝜌𝜌𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. Now, for 𝜌𝜌𝐾𝐾𝐾𝐾𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 to be almost equals to 𝜌𝜌𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 we must have the distance between them 
lesser than or equals to 𝜖𝜖 or the two states must be 𝜖𝜖 close. The last paragraph says about Distance between 
two states. This distance is known as Trace Distance. It is given as 
𝐷𝐷(𝜌𝜌1,𝜌𝜌2) = max

𝑀𝑀
𝑇𝑇𝑇𝑇[𝑀𝑀(𝜌𝜌1 − 𝜌𝜌2)]                                                                                                             (11) 

         M is the POVM matrix. POVM means positive operator valued measurement. These are set of (𝑎𝑎 × 𝑎𝑎) 
positive semidefinite matrices {𝑀𝑀1,𝑀𝑀2,⋯ ,𝑀𝑀𝐾𝐾}. We have k matrices means that we must have k outcomes. 
So, probability of coming any ith outcome is given by [17] 
Pr(i) = Tr[𝜌𝜌𝑀𝑀𝑖𝑖]                                                                                                                                            (12) 

If 𝜌𝜌1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌2 commute with each other such that 
𝜌𝜌1 = ∑ 𝑝𝑝𝑥𝑥𝑥𝑥 |𝑥𝑥⟩⟨𝑥𝑥|                                                                                                                                       (13) 
𝜌𝜌2 = ∑ 𝑞𝑞𝑥𝑥𝑥𝑥 |𝑥𝑥⟩⟨𝑥𝑥|                                                                                                                                       (14) 

Then Trace distance is given by 

𝐷𝐷(𝜌𝜌1,𝜌𝜌2) = 1
2
𝑇𝑇𝑇𝑇|𝜌𝜌1 − 𝜌𝜌2|         

                 = 1
2
𝑇𝑇𝑇𝑇|∑ 𝑝𝑝𝑥𝑥𝑥𝑥 |𝑥𝑥⟩⟨𝑥𝑥|− ∑ 𝑞𝑞𝑥𝑥𝑥𝑥 |𝑥𝑥⟩⟨𝑥𝑥|| 
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                    = 1
2
∑ |(𝑝𝑝𝑥𝑥 − 𝑞𝑞𝑥𝑥)𝑇𝑇𝑇𝑇(|𝑥𝑥⟩⟨𝑥𝑥|)|𝑥𝑥  

 ∴ D(𝜌𝜌1,𝜌𝜌2) = 1
2
∑ |𝑝𝑝𝑥𝑥 − 𝑞𝑞𝑥𝑥|𝑥𝑥                                                                                                                        (15) 

𝐷𝐷(𝜌𝜌1,𝜌𝜌2) has to > 0 in order to be distinguishable [18]. 

4.4 Randomness 
        Let’s assume that we have a randomness generator that generates a string X of n bit randomly such 

that X = {𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑛𝑛}. P(X = x) = 1
2𝑛𝑛

. The density state of the above string X is 𝜌𝜌𝑥𝑥 = 𝕝𝕝
2

⊗𝑛𝑛
and now, if we 

write the state 𝜌𝜌𝑥𝑥  𝑎𝑎𝑎𝑎 𝜌𝜌𝑥𝑥′ = 𝕝𝕝
2

⊗𝑛𝑛−1
⊗ |0⟩⟨0|, i.e., the last bit is always zero, then if we find the trace distance 

between 𝜌𝜌𝑥𝑥  𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌𝑥𝑥′ , i.e., D(𝜌𝜌𝑥𝑥 ,𝜌𝜌𝑥𝑥′  ), it comes to be large enough such that we can distinguish between the 
states. So, the eavesdropper can easily detect the string X that is being sent. So, trace distance is not a 
fruitful measure to quantify randomness. If we define our probability distribution like the following:                           

𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = �
1
2

, 𝑋𝑋 = 111⋯1
1

2(2𝑛𝑛−1)
,𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑇𝑇𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒

                                                                                                             (16) 

         In that case, if we find out the Shannon’s entropy [19] then it becomes 𝑛𝑛
2
. So, the problem with 

Shanon’s entropy is the eavesdropper can always guess the string correctly with probability 1
2
 and otherwise 

it is always dependent of the string’s length. So, Shannon’s entropy cannot give us the maximum 
information. So, it becomes very necessary for us to define an entropic relation that can retrieve the 
maximum information. So, in case of Quantum cryptography we use “Min Entropy”. The min entropic 
relation is given by  
𝐻𝐻𝑚𝑚𝑖𝑖𝑛𝑛(𝑋𝑋) = −max

𝑥𝑥
[log2 𝑃𝑃(𝑋𝑋 = 𝑥𝑥)]                                                                                                           (17)   

         For the above given probability distribution if we find 𝐻𝐻𝑚𝑚𝑖𝑖𝑛𝑛(𝑋𝑋) it comes as 1, i.e., hundred percent 
information we can retrieve [20].              

5 Classical One Time Pad  
        Here, we will recall our two protagonists Alice and Bob. The idea we use here is the concept of 
symmetric Key cryptography, i.e., the key used in encryption is same as the key used in decryption. The 
key length must be same as the message length. So, initially we will encrypt our message |𝑚𝑚⟩ using the 
Pauli’s X matrix, i.e.,     
|𝑒𝑒⟩ = 𝑋𝑋𝑘𝑘|𝑚𝑚⟩ [Encryption]                                                                                                                         (18) 
 where, |𝑒𝑒⟩ is the encrypted message or the cipher text that is being sent by Alice to Bob. Whereas, Bob 
decrypt the cipher text into plain text by applying one more Pauli’s X matrix, i.e.,  
|𝑚𝑚⟩ = 𝑋𝑋𝑘𝑘𝑋𝑋𝑘𝑘|𝑒𝑒⟩ [Decryption]                                                                                                                     (19) 

K is the key here. 

5.1 Mathematical Analysis 

          Density matrix of |𝑒𝑒⟩ is  𝜌𝜌𝑖𝑖. The key k will be 0 or 1 with probability 1
2
 each. 

𝜌𝜌𝑖𝑖 = |𝑒𝑒⟩⟨𝑒𝑒| = 𝑋𝑋𝑘𝑘|𝑚𝑚⟩⟨𝑚𝑚|𝑋𝑋𝑘𝑘 

     = 1
2

|𝑚𝑚⟩⟨𝑚𝑚| + 1
2
𝑋𝑋|𝑚𝑚⟩⟨𝑚𝑚|𝑋𝑋 

     = 1
2

[|0⟩⟨0| + |1⟩⟨1|] 

          = 1
2
�1 0
0 1�  
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 ∴ 𝜌𝜌𝑖𝑖 = 𝕝𝕝
2
                                                                                                                                                      (20) 

We get 𝜌𝜌𝑖𝑖 as the maximally mixed state that is independent of the message m. So, the eavesdropper 
cannot be able to detect what is the main encrypted text and each time as the message reaches to Bob the 
key ‘k’ will be discarded and ‘k’ is random every time depending on the message ‘m’. 
        But, classical one time pad has a disadvantage, i.e., if the message |𝑚𝑚⟩ = |+⟩ state or |𝑚𝑚⟩ = |−⟩ state 
in that case X |+⟩ = |+⟩ and X |−⟩ = -|−⟩, i.e., no inversion of state has happened. So, if this occurs, in that 
case the eavesdropper will be able to detect the message very easily. So, here comes the idea of Quantum 
one time pad to draw over this disadvantage, shown as Fig. 1. 

 
Figure 1: One time pad 

6 Quantum One Time Pad 
        Quantum one time pad is also a symmetric key cryptography but here in this case the number of keys 
are increased. We will use here two keys 𝑘𝑘1 and 𝑘𝑘2 and to veil over the previous disadvantage. Here Pauli’s 
Z matrix is used along with the X matrix because Z |+⟩ =  |−⟩ and Z |−⟩ =  |+⟩. So the problem disappears. 
Now the algorithm for this one is like the following: 
|𝑒𝑒⟩ =  𝑋𝑋𝑘𝑘1𝑍𝑍𝑘𝑘2|𝑚𝑚⟩ [Encryption]                                                                                                                  (21) 
|𝑚𝑚⟩ = 𝑍𝑍𝑘𝑘2𝑋𝑋𝑘𝑘1|𝑒𝑒⟩ [Decryption]                                                                                                                  (22) 

6.1 Mathematical Analysis 
         Density matrix of cipher text |𝑒𝑒⟩ 𝑒𝑒𝑎𝑎 𝜌𝜌𝑖𝑖. Table 1 shows the key combinations and respective probabilities. 

Table 1: Probability distribution                                                                        
     𝑘𝑘1     𝑘𝑘2 Probability of getting this    

combination 
      0      0                1

4
 

      0          1                1
4
 

      1       0                1
4
 

      1      1                1
4
 

                                                                     
 𝜌𝜌𝑖𝑖 = |𝑒𝑒⟩⟨𝑒𝑒| 
       = 𝑋𝑋𝑘𝑘1𝑍𝑍𝑘𝑘2|𝑚𝑚⟩⟨𝑚𝑚|𝑍𝑍𝑘𝑘2𝑋𝑋𝑘𝑘1 

       = 1
4

[ |𝑚𝑚⟩⟨𝑚𝑚| + 𝑍𝑍|𝑚𝑚⟩⟨𝑚𝑚|𝑍𝑍 + 𝑋𝑋|𝑚𝑚⟩⟨𝑚𝑚|𝑋𝑋 + 𝑋𝑋𝑍𝑍|𝑚𝑚⟩⟨𝑚𝑚|𝑍𝑍𝑋𝑋 ] 

       = 𝕝𝕝
2
                                                                                                                                                                                                          (23) 
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          It is a maximally mixed state. So, the eavesdropper will see a state that is completely independent of 
the message |𝑚𝑚⟩. In this case we are using qubits and it is a glimpse of Quantum Cryptography [21,22]. 

7 Quantum Key Distribution 
7.1 Introduction 
        In this section, we will briefly introduce to the quantum key distribution. The first quantum key 
distribution protocol is BB84 protocol which was developed by Charles H. Bennett and Gilles Brassard in 
the year of 1984. Some famous QKD protocols are BB84 protocol, B92 protocol, E91 protocol, etc. 

7.2 Theory 
         As shown in Fig. 2, QKD protocols are used to generate identical keys for Alice and Bob without 
transferring any information to the adversary. The two basic building blocks of a quantum cryptographic 
protocol are: 

• Heisenberg’s uncertainty principle 
• Photon polarization 

         According to uncertainty principle it is not possible to measure a quantum state without disturbing its 
state which makes the quantum cryptographic protocols almost unbreakable because if the eavesdropper try 
to measure the quantum state coming from Alice it will change the state of the message and Bob will receive 
wrong information which clearly shows that someone has tried to eavesdrop the channel. Secondly, to encode 
the message bits practically Alice uses rectilinear and diagonal polarizer to restrict the orientation of the 
unpolarized light in a particular direction, i.e., to encode them in vertical (90o or ↑) or horizontal (0o or →) or 
diagonal (±45o or ↗ or ↖  ) basis. After the encoding process is done Alice sent those via the quantum 
communication channel and at the receiving end Bob measures those in random basis and get respective 
results. Now, Bob and Alice discuss the basis they have used via classical public channel and accordingly 
discard the unused one and get a key. After that in almost all quantum cryptographic protocols there is a 
function called extractor function which is used to extract randomness. This function takes one ‘n’ bit input 
string X and one d bit seed Y which is uncorrelated from X and eavesdropper information E as inputs and 
generate a ‘m’ bit string Z that is totally uncorrelated from the eavesdropper. This step is known as privacy 
amplification which is used in all quantum cryptographic protocol as a final step to generate the final key. In 
order to be a quantum key distribution protocol it has to be 𝜖𝜖 correct and 𝜖𝜖 secure [23–25]. 

 
Figure 2: QKD scheme 

7.3 Extractor 
        Extractor is a function that is used to extract randomness. Extractors can be of three kinds: 
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• Deterministic extractors 
• Seeded extractors 
• Multiple source extractors 

       In this context we will only talk about the strong seeded extractors. Extractors are defined as Ext: 
{0,1}𝑛𝑛 × {0,1}𝑖𝑖 → {0,1}𝑚𝑚, where X is the n bit weak secret that is to be amplified. Y is called the seed of 
the extractor which is d bit long and it is uncorrelated from X and eavesdropper side information E. The 
output of the extractor function is a ‘m’ bit string Z which is completely random from the eavesdropper 
side and also uncorrelated from the input string X and eavesdropper side information E. 
      ∴ Z = Ext(X , Y). Z is the amplified secret. It is called a (k, 𝜖𝜖) strong seeded extractor if the min entropy 
conditioned on eavesdropper side information E is at least k, i.e., 𝐻𝐻𝑚𝑚𝑖𝑖𝑛𝑛(𝑋𝑋|𝐸𝐸) ≥ 𝑘𝑘 and  �𝜌𝜌𝑍𝑍𝑍𝑍𝐾𝐾 −

𝕝𝕝
2𝑚𝑚

⊗

𝜌𝜌𝑍𝑍𝐾𝐾�
𝑇𝑇𝑟𝑟
≤  𝜖𝜖 [26]. 

7.4 Key Distribution Scheme 
         At the beginning, we have to consider that Alice and Bob both has access over an insecure public 
classical channel, a secure classical channel and a quantum channel. Eve has also access to the public 
classical channel and the quantum channel. The scheme is described as below: 

1. Let us think that Alice wants to send a message 11001011 to Bob. Now to send it to Bob she 
chooses random basis like XZZXZZXX and then encode the message string accordingly 
into |+⟩|0⟩|1⟩|−⟩|0⟩|0⟩|−⟩|+⟩. 

2. Alice sends this encoded message to Bob via quantum communication channel. 
3. Now what Bob does is he chooses his random basis like XXZXZXXZ and measure the incoming 

encoded message in the basis he has chosen and gets the result like 10001111. Now point to be 
remembered that when measuring |+⟩ in Z basis it will give 0 or 1 with probability 1

2
. 

4. Alice and Bob now discuss the basis they have used through the public channel and discard the cases 
where they do not agree and both of them at last comes up with a string 𝑋𝑋𝐴𝐴 = 100111 and 𝑋𝑋𝐴𝐴 = 100111. 

5. After this the final step comes privacy amplification. In this step Alice will generate a random seed 
‘r’ and send to bob via the public channel. Now Alice and Bob generate the keys using the extractor 
function as 𝐾𝐾𝐴𝐴  = Ext(𝑋𝑋𝐴𝐴, 𝑇𝑇)  and 𝐾𝐾𝐴𝐴  = Ext(𝑋𝑋𝐴𝐴, 𝑇𝑇) . 𝐾𝐾𝐴𝐴  and 𝐾𝐾𝐴𝐴  are completely uncorrelated from 
Eve and from 𝑋𝑋𝐴𝐴, 𝑋𝑋𝐴𝐴 and 𝑇𝑇. 

6. After generation of the keys, they discuss the keys via the secret channel they have. This whole 
scenario is implemented using the photon polarization phenomenon. 

7.5 Challenges in Implementation 
         The following factors are playing a major role in order to develop high performance and low cost 
QKD systems [27]. 

• Key rate is a major factor in implementing QKD. Encryption keys generated using QKD can be 
used in symmetrical cipher scheme like one time pad to enhance the security. Nowadays there 
exists strong disparity between classical and QKD key rates. Today, Mbit/sec rate is enough for 
video transmission using QKD. But in order to encrypt high volumes of classical network traffic 
using one time pad major developments on key rate of QKD is required. This key rate crucially 
depends on the detectors used. As shown in Fig. 3, for QKD systems having single photon detectors, 
high efficiency and short dead time of the detectors are mandatory to reach a higher key rate. 
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    Figure 3: Implementation of BB84 QKD Scheme 

• Distance or technically the communication range is the major factor for future implementations 
of QKD in different networking applications. Here the low noise single photon detectors are the 
key enabling factors. The maximum attainable range through QKD depends on the type of 
operation and temperature of the detectors used. In GaAs avalanche photodiodes can tolerate losses 
of 30 and 52 dB when cooled to –30o and –120oC respectively whereas SNSPD’s cooled to 
cryogenic temperature can withstand with a loss of 72 dB. This loss is analogous to 360 km of 
general single mode fiber or about 450 km of ultra-low loss fiber. Now further increasing the point 
to point communication range although technologically possible, but the channel noise will reduce 
the key rate which is unwanted. 

• For, QKD systems to be used in real time applications lower cost & robustness are the inevitable 
features. As QKD techniques have been implemented along a single point-to-point link till date, it 
might happen that the link is being disrupted (maybe through active eavesdropping). Then in that 
case all the flow of communication will be interrupted and the data will be ceased. So, robustness 
of a QKD network is indispensable.   

8 Recent Advancements in Industry 
        At present the Quantum Cryptography market is dominated by a few globally established organizations 
such as ID Quantique(Switzerland), ISARA(Canada), Quintessence Labs(Australia), MagiQ Technologies(US), 
QuantumCTek(China). The global quantum cryptography market size is estimated to be USD 89 million in 2020 
and projected to reach USD 214 million by 2025. Recent developments include [28]:  

• In March 2021, ISRO has successfully demonstrated free-space Quantum Communication over a 
distance of 300 m. The demonstration has included live videoconferencing using quantum-key-
encrypted signals. This is a major milestone achievement for unconditionally secured satellite data 
communication using quantum technologies [29]. 

• In May 2020, Crypta Labs collaborated with Space Research and Innovation Network for 
Technology (SPRINT) to develop its QRNGs for space applications [30]. 

• In January 2020, Qubitekk acquired QinetiQ’s Quantum Key Distribution (QKD) patent portfolio. 
The portfolio covers novel technological approaches in quantum science, including 57 patent 
filings, across 17 patent families [31]. 
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• In December 2019, ID Quantique announced that its product Cerberis3 Quantum Key Distribution 
(QKD) system could be deployed in any network configurations, including point-to-point 
communication [32]. 

9 Conclusion 
         At last we can conclude that quantum computing has changed the way of working of classical systems 
those, which use the classical bits. In quantum computing we use the qubits those use quantum parallelism. 
Due to this all conventional classical cryptographic algorithms turns out to be abortive in terms of speed 
and accuracy. There have been substantial advancements in the field of quantum computing for last several 
years. QKD protocols have become the most useful in the field of cryptography in terms of secrecy 
maintaining and randomness but there are still challenges ahead in this field. In this era of digitalization the 
increasing number of connected device has given rise in frequent cyber-attacks. Although quantum 
cryptography is an effective solution which enhances the security, these technologies are highly expensive 
and time consuming to implement. The cost goes up with increase in distance which includes developing 
complicated hardware for long range communication. Proper customer awareness is also needed to enhance 
the market growth. Nevertheless, as a new science this is still under development and researchers around 
the globe have already made a breakthrough contribution in this field which seems that in near future 
quantum cryptography will be uncrackable. The laws of quantum mechanics have made this technology as 
one of the hot research topics of this decade [33]. 
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