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Abstract: This article presents a multilayer hybrid classical-quantum classifier for 
predicting the lifetime of LiFePO4 batteries using early degradation data. The 
multilayer approach uses multiple variational quantum circuits in cascade, which 
allows more parameters to be used as weights in a single run hence increasing 
accuracy and provides faster cost function convergence for the optimizer. The 
proposed classifier predicts with an accuracy of 92.8% using data of the first four 
cycles. The effectiveness of the hybrid classifier is also presented by validating the 
performance using untrained data with an accuracy of 84%. We also demonstrate 
that the proposed classifier outperforms traditional machine learning algorithms in 
classification accuracy. In this paper, we show the application of quantum machine 
learning in solving a practical problem. This study will help researchers to apply 
quantum machine learning algorithms to more complex real-world applications, 
and reducing the gap between quantum and classical computing. 
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1 Introduction 
Quantum computers promise to solve the complex problems of the world, which would be impossible 

for classical computing machines by offering groundbreaking exponentially faster computation. However, the 
fully developed fault-tolerant quantum computers will still take some years to come. The concept of hybrid 
classical-quantum computing algorithm development is becoming popular for the first generation of the 
quantum computer. The combination of machine learning with the quantum computing reveals surprising 
results. The advantage to process quantum coherence and entanglement gives quantum computing a sharp 
edge over classical computations. Quantum computing provides square-root speedup as compared to 
traditional machine learning techniques [1]. The proposed classifier is based on a multilayer variational circuit 
which provides better accuracy. The variational circuit opens a new era of research in the field of quantum 
learning. Some of the variational circuit-based quantum classifiers are presented in [2–4]. We also show the 
importance of combining classical computing with quantum computing in the actual classification task 
through this paper. The results of the study will help in early prognostics of lithium-ion batteries. 

Lithium-ion has high energy density, long maintenance-free life, and low carbon emission profile. 
These characteristics make lithium-based batteries suitable candidates for usage in laptops, cell-phones, 
power tools, and electric vehicles (EV) as energy storage devices [5–6]. Lithium-ion has high energy 
efficiency, which also improves the power quality of renewable energy systems like wind and solar energy. 
Therefore, industry and, government agencies are giving more importance to lithium-based energy storage 
systems. Lithium iron phosphate (LiFePO4) is one of the important lithium-based batteries with high 
specific experimental capacity (165 mAh g–1) [7–8]. Lithium-ion suffers degradation during its lifetime. 



 
90                                                                                                                                                   JQC, 2021, vol.3, no.3 

During initial cycles, this degradation is caused by the initial formation of SEI and depletion of mobile 
lithium of anode. The main reason of capacity degradation is due to the decrease in lithium inventory (LLI) 
and loss of active cathode including, lithiated material loss and particle cracking [9–11]. This chemical 
degradation is influenced by operating temperature, charge and discharge rate, operating depth of discharge 
(DOD), and charging protocol [12–14]. 

Model and data-driven based lithium-ion remaining useful lifetime predictions is a relatively new area 
of research. Researchers are using statistical and machine learning algorithms for estimating the remaining 
useful lifetime and in prognostics and health management of lithium-ion batteries [15–16]. These 
algorithms include statistical models such as Kalman filter [17], Gaussian process regression [18–19], 
Dempster Shafer theory and Bayesian Monte Carlo method [20], k-nearest neighbors [21] and artificial 
intelligence techniques like deep learning methods [22–25]. 

Life cycle predictions of lithium-ion batteries in the early stages of the operation will help in the faster 
development of large battery banks. In this study, we develop a data-driven hybrid classical-quantum 
prediction model using initial degradation data of the LiFePO4 in fast charging application. This study uses 
data of the initial four cycles to classify the life cycle of the lithium-ion battery into long and short lifetime 
groups. It will help manufacturers to predict the life of the battery in initial stages without going through the 
long cycling durations saving the development time. We demonstrate that our classifier will classify with an 
accuracy of greater than 92.8% despite computational complexity. In this study, we use the degradation data 
published in [26]. This dataset is generated by applying multistep fast charging on LiFePO4 cells. The fast 
charging of lithium-ion cells is of great interest to the consumer electronics industry nowadays. 

The contribution of this paper is to present multilayer hybrid classical-quantum classifier and use it to 
predict the remaining lifecycle of the lithium-ion batteries. The article is organized as follows. Section 2 
provides details of proposed classical-quantum classifier. Section 3 discuss the testing procedures and data 
generated from [26]. Section 4 present the experimental results of the model and performance evaluation. 
The conclusion is drawn in Section 5. 

2 Multilayer Classical-Quantum Classifier 
2.1 Basic Principle 

The primary concept is based on variational Eigen-solver, which was proposed to find the lowest 
energy state of a quantum system. The main purpose behind the proposed classifier is to develop a quantum 
device to calculate the value of an objective function f (θ) for a given set of classical parameters θ. A 
classical algorithm will minimize the outcome f (θ) by optimizing the parameter θ by reiteratively running 
the quantum device. 

Let us assume a Hamiltonian ℋ of quantum system S having N qubits. The Hamiltonian ℋ having 
eigenvectors η𝑖𝑖  and eigenvalues 𝜆𝜆𝑖𝑖 . Such that, 𝜆𝜆1 ≤ 𝜆𝜆2 ≤ 𝜆𝜆3 …  ≤ 𝜆𝜆𝑁𝑁  and 𝜆𝜆1correspond to the lowest 
energy state of the system. The expectation value of the Hamiltonian with respect to state  |𝜓𝜓› is given by 
Eq. (1). 

‹ℋ› |Ψ› = ‹Ψ|ℋ|Ψ›
‹Ψ|Ψ›

                  (1) 

Consider a vector 𝜃𝜃 having real-valued parameters 𝜃𝜃𝑗𝑗and we apply this vector to the Hamiltonian of 
the system S. If we prepare quantum state variable depending upon the vector 𝜃𝜃𝑗𝑗, such that |Ψ�𝜃𝜃�›. The 
variational method of quantum mechanics states that: 
‹ℋ› |Ψ�𝜃𝜃��⃗ �› =� ‹ℋ›�𝜃𝜃� = ‹Ψ�𝜃𝜃�|ℋ|Ψ�𝜃𝜃�› ≥ 𝜆𝜆1              (2) 

The main objective is to optimize the selection of 𝜃𝜃, which minimizes ‹ℋ›�𝜃𝜃� as shown in Fig. 1. 
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        Figure 1: A classical-quantum method to find the lowest energy state of the system 

2.2 Quantum Encoding 
The dataset for training and validation should be represented into quantum states in order to process it 

by a quantum computer called state preparation or quantum encoding. Amplitude encoding is adopted to 
encode our dataset into quantum states in order to process by our quantum circuit. The most significant 
advantage of amplitude encoding is that only log(XY) qubits are required to represent the data of Y features 
and X inputs as compared to processing required by classical machine with some linear function of XY [27]. 

The states of our dataset are prepared by the method proposed in [28] using multi-controlled rotation 
of qubits. In this method, we perform different uniformly controlled rotations for each branch of 
superposition based on the amplitude of the input vector. The controlled rotation with angle 𝛽𝛽 in quantum 
circuits is a gate 𝐺𝐺𝑚𝑚𝑙𝑙 (𝜗𝜗𝑥𝑥,𝑦𝑦,𝑧𝑧,𝛽𝛽) of one controlled qubit on m target qubits in x, y or z-axis. Consider an input 
vector (�⃗�𝑥), the state preparation is done by applying controlled rotation  𝐺𝐺𝑚𝑚𝑚𝑚−1(𝜗𝜗𝑦𝑦,𝛽𝛽) on the y-axis. It will 
zero all the vectors corresponding to the states equivalent to bit value one in the qubit m. 

𝐺𝐺𝑚𝑚𝑚𝑚−1�𝜗𝜗𝑦𝑦,𝛽𝛽�|𝑥𝑥�› = �𝑥𝑥1,2, 0, 𝑥𝑥2,2, 0, … , 𝑎𝑎𝑁𝑁
2 ,2, 0�

𝑇𝑇
                                     (3) 

This method is repeated for all non-zero elements. 

𝐺𝐺𝑚𝑚𝑚𝑚−1�𝜗𝜗𝑦𝑦,𝛽𝛽�|𝑥𝑥�› =  �𝑥𝑥1,2,𝑥𝑥2,2, … ,𝑎𝑎𝑁𝑁
2 ,2�

𝑇𝑇
⨁ (1,0)𝑇𝑇             (4) 

On gate level, it can be achieved using CNOT gate and one qubit rotation on the y-axis for m-1 
controlled qubits. Fig. 2 shows the state preparation circuit for two qubits on y rotation. The angles for 
rotation β related to the amplitude of input vector �⃗�𝑥,  can be found by Eq. (5). 

𝛽𝛽𝑗𝑗𝑚𝑚 = 2𝑠𝑠𝑠𝑠𝑠𝑠−1 �
�∑ �𝑥𝑥(2𝑗𝑗−1)2𝑠𝑠−1+𝑜𝑜�

22𝑚𝑚−1
𝑜𝑜=1

�∑ �𝑥𝑥(𝑗𝑗−1)2𝑠𝑠+𝑜𝑜�
22𝑚𝑚

𝑜𝑜=1

�               (5) 

Here, 𝑗𝑗 = 1,2, … , 2𝑙𝑙−𝑚𝑚.  

|q1>

|q2>

 
        Figure 2: Quantum circuit for state preparation 

2.3 Multilayer Quantum Circuit for Classification 
Our basic quantum circuit is a two-qubit circuit having unitary operations depends upon the rotation 

angle (θ), U (θ). For this purpose, we design a simple quantum circuit that provides single-qubit rotation to 
both qubits and entangles them by CNOT gate, which makes up a single quantum circuit layer. This basic 
layer is used in series to make a multilayer quantum circuit. In the final stage, measurements of the states are 

<H>𝜃𝜃 
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calculated through Pauli operators. Like classical machine learning, the rotation angle θ is adjusted by a back-
propagation algorithm on the classical computer after measuring the cost function of the quantum circuit. 

The biggest advantage of using this multilayer technique is that the classical computer can adjust a 
larger set of rotation angles in a single epoch. It provides faster con-vergence for optimizer and gives higher 
accuracy. The quantum circuit first produces initial cost function C (θ) using initial parameters which are 
given by Eq. (6). 
𝐶𝐶(𝜃𝜃) =  ‹Ψ�𝜃𝜃�|ℋ|Ψ�𝜃𝜃�›                 (6) 

The classical computing algorithm then reiteratively lowers the energy by evaluating cost function and 
minimizing it using optimizers. Fig. 3 shows the complete block diagram of the multilayer classical-
quantum hybrid classifier. The rotation angles in the quantum circuit are initialized to a random value. The 
rotation angles (weights) are updated in every iteration to minimize the cost function. 
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Figure 3: Multilayer classical-quantum classifier 

3 Experimental Data 
For our analysis and classification, we use lithium-ion capacity degradation data from [26]. The aging 

is performed by charging in CC-CV charging protocol at different multistep fast charging rates on 124 
commercially available cells. The test was per-formed in three batches at different time. Among them, we 
have selected data from one batch, which consists of degradation data of 46 cells for training and validation. 
The data is divided randomly into training and testing data, having 30% data for validation of the model. 
The failure criteria are set to be 20% decrease in the initial capacity of the cells. Fig. 4 shows a glimpse of 
different features present in the data, correlate to the aging of four cells selected randomly at different 
charging protocols. 

Unlike [26], we use data of only the first four cycles for our analysis and divided our results into two 
groups, long lifecycle (>= 700 cycles) and short lifecycle (<700 cycles) based on the 80% remaining 
discharge capacity threshold. As shown in Fig. 4, the data does not show any sign of degradation in the 
capacity of the batteries at initial stage. We extract four features for the classifier from average charging 
current, impedance, charging time, and discharging profile. 

 
(a)                                                                         (b) 
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          (c)               (d) 

Figure 4: Degradation curves of the four randomly selected cells from the dataset charged at different rates. 
The inset graph shows the detail view of the initial 20 cycles. (a) Degradation at 4.32A charging current. 
(b) Degradation at 4.2A charging current. (c) Degradation at 5.4A (40%) and 3.6 (60%) charging current 
(d) Degradation at 4.8A charging current 

4 Results and Discussion 
The quantum circuit was run on a prototype quantum processor to verify the functionality through the 

actual quantum device through IBM Q Experience [29]. The quantum circuit consists of 5 layers to use as 
a classifier. The hybrid model was tested through three different back-propagation optimizer: Adam [30], 
AdaGrad [31], and Nesterov accelerated gradient [32]. Nesterov accelerated gradient showed the best 
convergence capability and, we use it to minimize the cost function. Table 1 enlists the parameters for the 
Multilayer Quantum Circuit (MQC) and Classical Computing Unit (CCU) of the classifier. The classifier 
gives 12.5% and 7.2% of misclassification error on training and testing datasets, respectively. We also test 
our classifier with another batch of 44 lithium-ion data to verify the universality of the classifier. The 
misclassification error for the new and untrained data is only 16%, which shows that the classifier can be 
used to predict the lifecycle of the same model very uniquely. Table 2 shows the classification accuracy of 
the classifier on testing data and untrained data. 

Table 1: Characteristics and parameters of the multilayer quantum circuit and classical computing unit 
 
Multilayer Quantum Circuit 

Qubits 
Layers 
Quantum encoding 
Number of gates for each layer 

2 
5 

Amplitude Encoding 
7 

 
Classical Computing Unit 

Batch Size 
Optimizer 
Optimizer step size 
Loss function 

4 
Nesterov Accelerated Gradient 

0.01 
Squared Loss 

Table 2: Model metrics of the classifier on trained and untrained data 
 Training accuracy (%) Validation accuracy (%) 
Trained data 87.5 92.8 
Untrained data                                                               84 

The benchmarking is performed by comparing the proposed classifier with classical binary classifiers. 
Fig. 5 shows the comparison among different classifiers based on Area Under the Receiving Operating 
Curve (AUROC) criteria. The proposed multilayer hybrid classical-quantum classifier shows better 
performance than other classifiers. 
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Figure 5: Performance comparison between proposed classifier and classical binary classifiers on same 
dataset 

5 Conclusion 
In this article, we present a multilayer hybrid classical-quantum classifier and display its application 

in prognostics application and compare it with classical algorithms. The proposed classifier and its 
application for prognostics is novel. The model is trained from data of the initial four cycles, and we obtain 
only 7.2% error in the testing data. The model gives excellent results (84% accuracy) when predicting 
lifetime groups using untrained data. Our future work will focus on developing a full-scale quantum model 
for estimating cost function as well in prognostics application and increasing the accuracy of the classifier. 
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