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Abstract: Lightning disaster risk assessment, as an intuitive method to reflect the
risk of regional lightning disasters, has aroused the research interest of many
researchers. Nowadays, there are many schemes for lightning disaster risk
assessment, but there are also some shortcomings, such as the resolution of the
assessment is not clear enough, the accuracy rate cannot be verified, and the weight
distribution has a strong subjective trend. This paper is guided by lightning disaster
data and combines lightning data, population data and GDP data. Through support
vector machine (SVM), it explores a way to combine artificial intelligence
algorithms with lightning disaster risk assessment. By fitting the lightning disaster
data, the weight distribution between the various impact factors is obtained. In the
experiment, the probability of lightning disaster is used to compare with the actual
occurrence of lightning disaster. It can be found that the disaster risk assessment
model proposed in this paper is more reasonable for the lightning risk. It has been
verified that the accuracy rate of the assessment model in this paper has reached
80.2%, which reflects the superiority of the model.
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1 Introduction

In recent years, due to the global warming, extreme weather has occurred frequently. As a natural
disaster, lightning disaster greatly threaten the daily life of human beings, causing a large number of
casualties and economic losses [1-2]. Various industries such as aviation, power facilities, railway
transportation, and telecommunications are all affected by it [3]. In the cases of casualties caused by
meteorological disasters, lightning disasters account for almost the vast majority. Therefore, related
researchers have aroused the exploration of the law of lightning activities. Lightning disaster risk
assessment, as a method of statistics and research on the disaster risk of specified areas, has made
considerable progress. Some countries have also designated relevant industry standards to guide the
departments to carry out lightning disaster risk assessment.

At present, many researchers have conducted in-depth research on the risk assessment of lightning
disasters. Most studies on the lightning disaster risk assessment in specified areas use the analytic hierarchy
process (AHP) to classify the issues, as shown in Fig. 1, starting from the three aspects of disaster-causing
factors, disaster-pregnant environment and disaster-resistance capabilities to calculate and assess the risk
value of the area. These three aspects are composed of many different factors, and the choice of factors in
the research of different researchers also varies. This paper lists several main influencing factors in each
aspect in Fig. 1.
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Figure 1: Hierarchical division of lightning disaster risk assessment

In terms of disaster-causing factors, the cloud-to-ground (CTG) lightning density, thunderstorm day
index and average current intensity are the more prominent indicators. The cloud-to-ground lightning
density refers to the number of lightning in a unit area; the thunderstorm day index refers to the days of
lightning discharge in a specified area for one year. The lightning current intensity is the average value of
the current intensity (unit: kiloampere) of the return strike in the specified time period and within the
specified area. The disaster-pregnant environment is mainly composed of factors such as soil utilization
type, altitude, and soil resistivity. Soil use type refers to the land use category of the area, which can
generally be industrial land or agricultural land, etc.; altitude refers to the height difference between the
area and sea level; soil resistivity is the product of average value of soil resistance per unit length and the
cross-sectional area. In terms of disaster resistance, there are generally influencing factors such as
population density, scale of economic development, and scale of loss of life. Population density is the
number of people per unit area; the scale of economic development is the GDP value of the region; the
scale of loss of life is the average annual number of casualties per unit area caused by lightning disasters in
the region. This indicator can objectively reflect regional causes. The degree of casualties caused by
lightning disasters also reflects the ability of people in the area to defend against lightning disasters. The
core work after selecting the relevant factors is the establishment of the weight distribution method and the
index evaluation system [4—5]. Li et al. [6] used a weighted comprehensive evaluation algorithm and used
factors such as lightning density, lightning disaster frequency, property loss and life loss as evaluation
indicators to carry out a research on the lightning disaster risk zoning of Sanming City. Cheng et al. [7]
combined the weighted comprehensive evaluation method with statistical method, disaster analysis method
and expert scoring method to comprehensively evaluate impact factors.

They used thunderstorm days and CTG lightning density as two factors to analyze which areas in Anhui
Province are most vulnerable to lightning disasters. Cui et al. [8] used the weighted comprehensive evaluation
method and the AHP to evaluate the disaster risk and vulnerability of Nanjing according to the standard
mathematical formula of natural disaster risk and the conceptual framework of flood disaster risk. The AHP
is based on the opinions of experts and researchers in various fields. Wang et al. [9] used prefectures and cities
as analysis units to evaluate the vulnerability of lightning disaster areas using the information method, and
then used the reverse derivation method to evaluate and zoning of the vulnerability of Yunnan Province.
Recently, Chen et al. [10] and Liu et al. [11] conducted a more comprehensive zoning study on the basis of
previous research results by introducing parameters such as population distribution and soil conductivity.
Although there are few related studies in this field abroad, some international researchers have also put
forward some meaningful studies. Biswas et al. [12] proposed a GIS and IDW statistical model for spatial
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vulnerability analysis of lightning disasters, which can determine the spatial heterogeneity of lightning risks.
Nastos et al. [13] used precision lightning network (PLN) to process lightning data and analyzed the
characteristics of lightning disaster risk from the perspective of time and space.

The above-mentioned related methods can make a relatively accurate assessment of the lightning
disaster risk to a certain extent, but there are still three major problems: 1. The results of the assessment are
not granular enough; 2. The weight setting of the impact factors is often more one-sided; 3. The assessment
results are often only driven by impact factor data, and the connection between the setting of the evaluation
model and the actual situation of lightning disasters is not close. Aiming at the above problems, this paper
develops a rasterized lightning disaster risk assessment model based on SVM, which is driven by lightning
disaster data, improving the scientificity of the model.

2 Methodology

Before setting up the model, this paper statistically displays lightning disaster data and lightning data
from 2010 to 2018. From the Fig. 2, it can be roughly seen that the more lightning activities occur in the
year, the more frequent lightning disasters occur. Therefore, it can be concluded that lightning activities are
closely related to the occurrence of lightning disasters.
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Figure 2: The number of lightning disaster varies with the years

nnnnnn

=}
=N
=

) 308947 390353 385278
uuuuu 428731

o 300000 50586

AN A1 1 AN 13 N4 N5 i

=

2017 2018

=3

Years

Figure 3: The number of lightning varies with the years

This paper first collects relevant data and rasterizes various data. The so-called rasterization refers to
dividing the studied area into 1 km * 1 km geographic grids from the geographic level, and then putting the
collected data into the corresponding grid. Secondly, we make the data in each grid dimensionless, which
allows all the data to be unified in dimension so that subsequent calculations can be convenient. Then, the
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data is randomly shuffled, 70% of which is used as the train set and 30% as the test set. With the help of
SVM [14-15], We draw the final conclusion. The specific calculation process is shown in Fig. 4.
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Figure 4: The calculation process of the model

2.1 Data Collection

The data in this paper collected the lightning disaster data (Table 1), ADTD lightning location data
(Table 2), geographic slice data, population and GDP data of Hunan Province from 2010 to 2018.

Table 1: Lightning disaster data

Casualt Economic
Latitude Longitude Industry Level 4 Losses Type City County

(Person)

(Thousand)

26.6 112.4 housing 3 2 130 direct thunder Hengyang Hengnan
27.2 111.6 countryside 3 1 50 direct thunder Shaoyang Shaodong
28.3 113.1 flammability 1 1 600 direct thunder Changsha Liuyang
29.1 110.5 communication 1 0 16.5 direct thunder Zhangjia Jie Sangzhi

Table 2: ADTD lightning location data

Position

Date  Time Latitude Longitude Power Steepness  Deviation Province  City County
ay
2015 . .
13/22 21:35:21 28.2 110.4 -23.7 -6 0 TSTDDF  Hunan Huaihua Yuanling
2015 . .
13/22 22:48:22 28.8 112.5 —40.7 -153 74 TSTDDF  Hunan Yiyang Yuanjiang
2.2 Data Processing

Step 1: Put the data into the corresponding geographic grid

According to the geographic spatial extent of each grid and the latitude and longitude of each lightning,
the geographic grid to which each lightning belongs can be determined. Similarly, rasterize the lightning
disaster data to determine its corresponding geographic grid.

Step 2: Average the intensity of lightning data in the grid

In actual situations, each geographic grid contains multiple pieces of lightning data, and the intensity
of the lightning data in the grid is averaged. The average lightning intensity of each grid is:

im0 Si
G = === (1)
where k is the grid number, Gy represents the average lightning intensity in grid k, and n represents n
lightning data in grid k. S; is the i-th lightning intensity of the lightning data in grid k.
Step 3: Add labels to the geographic grid
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According to the collected lightning disaster data, the geographic grids that have experienced lightning
disasters are marked as 1, which is called a positive sample. The grids that have not experienced lightning
disasters are marked as —1, which is called a negative sample.

Step 4: Make the data dimensionless

In order to calculate the data of different dimensions together, the “maximum and minimum
dimensionless data standardization” method is selected in the model. The log function is used to normalize
the data. The formula is:

logso i
Xt =SBt 2
10810 Xmac ( )

s the i-th sample data, X, is the maximum value of the sample data.

After completing the above four steps, a standard data set that can be used in the experiment has been
constructed.

2.3 Construction of Lightning Disaster Risk Assessment Model Based on SVM

We consider that lightning disaster risk assessment is a two-category problem in the experimental stage,
that is, lightning disasters occur or not, so we introduce the idea of SVM to train and experiment the model.

This paper selects lightning data, lightning disaster data, and population GDP data as experimental
data, and constructs a function F such that:

Y=FW,LS,G,P) 3)
Among them, [ is the lightning frequency data of the grid, S is the average current intensity data of the

grid, G is the GDP data, P is the population data, and Y is the actual result, that is, whether there is a
lightning disaster.

We record the i-th geographic grid data as the vector x;, x; = (I, s, G,P ), and record y; as whether
there has been a lightning disaster in the i-th geographic grid, and record it as 1, if it has occurred. There is
the entire data set D, and the expression of D is shown in Eq. (4):

D= {(xi:yi)l (xini)J "'J(xini)} (4)

We believe that there is a certain correspondence between the data vector x; in each geographic grid
and its label y;. In high-order dimensions, this problem is a linearly separable problem. There exists a
hyperplane in high-order dimensions for data points that do not have lightning disasters and data points that
will have lightning disasters [16—17]. The data points we record above the hyperplane will not have
lightning disasters, that is, y; > 1. The data points we record below the hyperplane will have lightning
disasters, that is, y; > 1. The distance we record between the data vector x; of each geographic grid in the
high-order dimension and the hyperplane is r, then the expression of r is shown in Eq. (5):

_ wlx+b

r= Tl %)
Then there is an expression for the distance from a point above the hyperplane to the hyperplane as:
wTx+b
= Tl >0 (6)

In the same way, the expression for the distance from the point below the hyperplane to the hyperplane
is:
_ wlx+b
[Iwl]
For the support planes on both sides, there is an expression for the distance from a point above the
support plane to the support plane:

_ wlx+b
=Tl >1 (8)

In the same way, the expression for the distance from a point above the support plane to the support

<0 (7
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plane is:
_ wTx+b
[wl
The point on the support plane is the support vector. By scaling the w and b values of the hyperplane,
the function distance from the support vector to the hyperplane is 1. The support vector is the point closest
to the hyperplane, so other vector points are to the hyperplane. So the function distance of must be greater
than or equal to 1. In fact, the initial model can be established at this time, and the objective function F is:

< -1 ©

_ 2
F = maxllw|| (10)
s.t. yy(wTx+b) > 1 (11)

Through data training, we can finally get the optimal hyperplane, which is the linearly separable
function we require.

3 Experimental Results
3.1 Evaluation Criteria and Accuracy

We record the model output as the probability P; of the occurrence of lightning disasters in the grids,
and binarize the output of the model during the model reliability assessment stage, that is, if P; > 0.5, it is
considered that the grid is prone to lightning disasters, then this value is defined as 1. If P; < 0.5, it is
considered that the grid is not prone to lightning disasters, then the value is defined as 0, and then the result
of the binarization process is compared with the real situation to evaluate the reliability of the model. It is
defined as follows:

Definition: After binarization, if the evaluation value of the geographic grid corresponding to the actual
lightning disaster is 1, the evaluation made by the model is a correct evaluation. Otherwise, it is an erroneous
evaluation. The overall accuracy Py ¢cyrqcy Of the model is calculated as follows:

N
Paccuracy =7 (12)

Among them, N represents the number of correct evaluations, and T represents the total number of
lightning disaster grids in the test set. The accuracy Pyccurcy reflects the reliability of the model used for
lightning disaster risk assessment.

In order to improve the accuracy of the experimental process and experimental results, this model uses
a cross-validation method to test the accuracy of the model, that is, all data is randomly scrambled, and
each time 70% of the data set is used as the test set and 30% as the training set. Let P be the final accuracy
rate, and P; is the accuracy rate of the i-th experiment. The specific verification calculation formula is
shown below:

1
P = YkiP .

In the process of experiment, the value of nn is 5, and the accuracy rate of each experiment is shown in
Table 3.

Table 3: Experimental accuracy

Number N T The accuracy rate
1 119 150 79.3%
2 105 148 70.9%
3 143 168 85.1%
4 99 122 81.1%
5 99 115 85.6%

Average 565 703 80.3%
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After cross-validation, the evaluation accuracy of this model is 80.2%, which reflects the superiority of
the model.

3.2 Display the Evaluation Results

In this paper, the data of 2010 to 2018 years in Changsha is used for calculation, the output of the
model is visually displayed, and the output value of each raster is segmented and colored by the Jenks
natural breakpoint algorithm. In Fig. 5, we divide the entire risk area into five levels. The red area indicates
the area with a higher probability of lightning disasters, and the green area has the lowest risk.
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Figure 5: The map of lightning disaster risk assessment results and actual location

4 Conclusion

On the basis of previous research, this paper introduces the idea of geographic rasterization to further
improve the evaluation model. By using the SVM, driven by lightning disaster data, in the training process
of the algorithm, we continuously adjust and optimize the weight of each impact factor until the entire
evaluation model is constantly approaching the final result, and finally a model with the best generalization
and the highest evaluation accuracy is fitted. In future research, we can continue to explore the advantages
of artificial intelligence algorithms for lightning disaster risk assessment, and try to introduce more impact
factors to develop a more complete and accurate lightning disaster risk assessment mechanism.
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