Journal on Big Data <:I':eéh Science Press

DOI:10.32604/jbd.2021.017017
Article

Application of Quicksort Algorithm in Information Retrieval

Jiajun Xie', Zuyan Li', Han Wu!, Linhan Li?, Bin Pan!, Peng Guo® and Guang Sun'"

"Hunan University of Finance and Economics, Changsha, 410205, China
2Changjun Meixihu Middle School, Changsha, 410205, China
3University Malaysia Sabah, Kota Kinabalu, 999004, Malaysia

*Corresponding Author: Guang Sun. Email: simon5115@163.com
Received: 06 May 2021; Accepted: 19 October 2021

Abstract: With the development and progress of today’s network information
technology, a variety of large-scale network databases have emerged with the
situation, such as Baidu Library and Weipu Database, the number of documents
in the inventory has reached nearly one million. So how do you quickly and
effectively retrieve the information you want in such a huge database? This
requires finding efficient algorithms to reduce the computational complexity of
the computer during Information Retrieval, improve retrieval efficiency, and
adapt to the rapid expansion of document data. The Quicksort Algorithm gives
different weights to each position of the document, and multiplies the weight of
each position with the number of matches of that position, and then adds all the
multiplied sums to set a feature value for Quicksort, which can achieve the full
accuracy of Information Retrieval. Therefore, the purpose of this paper is to use
the quick sort algorithm to increase the speed of Information Retrieval, and to
use the position weighting algorithm to improve the matching quality of
Information Retrieval, so as to achieve the overall effect of improving the
efficiency of Information Retrieval.

Keywords: Quicksort; Information Retrieval; information processing

1 Introduction

With the rapid development of Internet technology and the increasingly widespread use of the
Internet, more and more information needs to be stored in the form of electronic data. How do you find
the information you want in such a huge data storage warchouse? In response to this demand, information
retrieval technology has emerged. Information Retrieval technology is one of them [1]. Compared with
the original immature Information Retrieval technology, this type of technology has now been greatly
improved and gradually matured. Literature retrieval is an important way for researchers to obtain
resource information, and it has become a very important field in Information Retrieval. Scientific
literature retrieval can help researchers learn from and summarize the research results of predecessors. It
can not only promote the rapid development and utilization of literature resources, but also avoid repeated
research and other phenomena [2].

The previous traditional Information Retrieval techniques generally have a single function. Either
only considers word frequency and ignores the document value manifestation brought by the number of
references between users and the number of document downloads, or considers the latter and ignores the
former, and ultimately cannot Retrieve documents that are closest to user needs, which reduces user
experience. On the basis of combining these loopholes, this paper further proposes a comprehensive idea,
that is, to increase the function of users to independently select more detailed requirements, and finally
meet the requirements of full accuracy of Information Retrieval [3]. Furthermore, this paper is committed

@ This work is licensed under a Creative Commons Attribution 4.0 International License, which
@ permits unrestricted use, distribution, and reproduction in any medium, provided the original

work is properly cited.

mailto:author@institute.xxx

136 JBD, 2021, vol. 3, no. 4

to achieving comprehensiveness and accuracy of Information Retrieval, and at the same time, it uses a
Quicksort Algorithm to sort and output the documents. The Quicksort Algorithm can achieve the fastest
sorting when there are many and disorderly arranged data. The speed is very suitable for the huge amount
of literature nowadays, and it can well meet the requirements of rapid Information Retrieval. This paper
simulates the experiment under ubuntu with C++ environment installed, and finally proves that the
research content of the paper is correct and can be implemented. The Quicksort Algorithm can improve
the Information Retrieval rate very well without being affected by the hardware equipment, and has real
application prospects.

2 Related Works

One of the core problems of Information Retrieval technology is to retrieve the results through a
certain rule algorithm, and then use the Sorting algorithm to sort and output the retrieval results in a
certain order [4]. There have been many research precedents for retrieval technology at home and abroad.
The generalization can be divided into three generations: the first—generation Information Retrieval
system based on word frequency, the second—generation Information Retrieval system based on links, and
the third—generation Information Retrieval system based on intelligent sorting [5]. Take the three—
generation Information Retrieval system as a clue to introduce the research status at home and abroad [6].

The first—generation Information Retrieval system based on word frequency is sorted according to
the frequency and position of the retrieved keywords in the document [7]. Its operating principle is: the
higher the number of search terms in a document and the more important the Position, the greater the
correlation between the document and the search term, the TFIDF (Term Frequency—Inverse Document
Frequency) algorithm can better handle the relationship between the frequency of the search term and the
position where it appears, and the relevance score is calculated for ranking, which is considered to be this
One of the most important inventions of the stage [8-9].

Next is the second—generation Information Retrieval system based on links. According to historical
evidence, we know that although the PageRank algorithm improves the efficiency of Google’s web search
system, it only determines the importance of the document by considering the number of times the
document has been cited, while ignoring the relevance of the content of the document itself and the user’s
search terms [10-11]. Although the recommended literature given to users is of high value and authority,
it is not what users need most [12-13].

The third—generation Information Retrieval system is to solve the problem of the single retrieval
result of the second—generation retrieval system. Intelligent sorting is dedicated to providing personalized
services and realizing intelligent retrieval of documents [14-16]. What is intelligent retriecval? Even if the
retrieval technology is more user—friendly. Intelligent retrieval technology can analyze the relevant
keywords of the retrieved keywords on the current Internet, increase the semantic retrieval function and
user feedback function, integrate these for personalized analysis, and finally select and arrange the most
relevant to the user’s search terms. Documents that can meet user needs. Therefore, the third—generation
Information Retrieval system solves the problem of single and inaccurate Information Retrieval results.

3. Technical Foundation
3.1 The meaning of Quicksort Algorithm

In 1962, Tony Hoare developed a sorting algorithm that relied on recursion, called a Quick sort
Algorithm. The Quicksort Algorithm adopts a divide-and-conquer method. In the average state, the time
complexity of the Quicksort Algorithm is O(nlogn), that is, nlogn comparisons are required to quickly
sort n data.

The algorithm rules of the Quicksort Algorithm can be stated as: Pick an element from the sequence to

be sorted and use it as the “benchmark”. Generally, the first number in the sequence is selected as the
benchmark.

JBD, 2021, vol. 3, no. 4 137

Advantages of the Quicksort Algorithm: History has proved through countless experiments that the
Quicksorting Algorithm has a speed advantage over other algorithms when the larger and more disordered
the sequence to be sorted is. Nowadays, the number of documents that can only be described as extremely
large is suitable for Quicksorting Algorithms. Under this condition, the advantages of Quicksort are more
obvious.

3.2 Application of Quicksort Algorithm

In the process of Information Retrieval, we multiply the number of times the search term appears in a
certain position of the document and the weight of that position to obtain a sub-Eigen value, and then add
the sub-Eigen values of all the positions of the document as the relative The Eigen value of this search
term. The eigenvalues of all documents form an unordered number sequence. At this time, we use the
Quicksort Algorithm to sort these eigenvalues, and output the documents with the largest eigenvalues first
to meet the user’s Information Retrieval requirements. In this process of Information Retrieval, the
Quicksort Algorithm has played an important role. We know that, in general, the time complexity of the
Quicksort Algorithm is O(nlogn), which is significantly better than the O(n2) time complexity of some
traditional sorting algorithms such as Selection Sort, Swap Sort, and Insertion Sort. Today, the number of
documents on the Internet is increasing and becoming more and more complex. In the case that the larger
the sequence to be sorted, the more disorderly it is, the Quicksort Algorithm is also superior to some
advanced sorting algorithms with O(nlogn) time complexity, such as Merge Sort. In this way, in today’s
rapid expansion of the number of documents, the Quicksort Algorithm has great advantages to be used in
Information Retrieval, and has great application prospects.

3.3 Technical Basis of Information Retrieval Technology

When the user enters the word he wants to search in the search box, the search engine searches the
document resource database according to the user search word, and when it finds a document that
matches the user search, it uses a preset algorithm to calculate the document Compare the matching
degree of search terms. Use the same method to retrieve the relevance of each relevant document in the
literature resource database, and then return the corresponding documents to the user according to the
order of relevance. To facilitate understanding, this paper uses word frequency and location weighting
algorithms (that is, giving different weights to the title, subtitle, abstract, text, reference of the document,
etc., and then multiplying the location weight with the matching degree of the location to obtain a sub
Eigen value, add the Eigen values of all positions to get a final Eigen value) Calculate the Eigen value,
use the Quicksort Algorithm to sort the Eigen values, and then sort and output the documents in the sorted
sequence. In order to better meet the needs of users, we preset several priority selection buttons under the
search interface. When users pay attention to the matching degree of search words in a certain position of
the document, they can click the button and the background will check that position. The weight is
weighted. Through this method, the document resource database can efficiently retrieve documents that
match the user’s needs.

4. Quicksort Algorithm Design

Assuming that the online literature resource library to be selected already exists, the order of the
literature is random. Simulate the user’s input of search terms, regard the search terms as a pattern string,
and the documents in the resource library as the target string. Match the target string and the pattern string
formed by each document (KMP Algorithm principle). If there is a segment equal to the pattern string in
the target string, that is, the target substring, it means that a match is successful, and the document Eigen
value is weighted once Processing, otherwise the matching is unsuccessful.

4.1 Design and Calculation of Document Matching

A document resource database of 15 documents has been simulated and established, simulating user
needs to input search terms, the search terms are used as pattern strings, and the documents to be retrieved

138 JBD, 2021, vol. 3, no. 4

are used as target strings, and matching is performed according to the KMP (The Knuth-Morris-Pratt)
algorithm.

Set the pattern string to the sliding window to start matching with the target string one by one. The
matching process is shown in the following simulation:

First match: Target string XYXYZXYZXZYXY

= = I=

Pattern string (search keywords) X Y

7Z X Z
Second match: Target string XYXYZXYZXZYXY
- == = |=
Pattern string (search keywords) XYZXZ
Third match: Target string XYXYZXYZXZYXY
Pattern string (search keywords) XY ZXZ

In this simulation display, when the first match is performed, the third character is not equal. At this
time, according to the principle of the KMP algorithm, the pattern string slides back two characters, and
the third character is compared one by one again. When encountering a situation where the comparison
characters are not equal again, slide and compare according to the same principle until the pattern string
slides to the end of the target string.

4.2 Design and Calculation of Document Eigenvalues

How does the matching degree of the user’s demand reflect? It can be reflected in this way. First, we
assume that when the searched matching position is at the document title, a certain weight is added to the
document, and the corresponding weight needs to be added for each match. Similarly, when the searched
matching position is in the subtitle, in the text, or in the document, the specified weight is added, and the
weight is added once for each match. In addition, in order to consider the value of the literature itself and
the fluidity brought about by mutual references between the literature. We set that when a document is
cited once, it also needs to be marked once, and the corresponding weight is added to increase its
relevance. This requires that the documents in the database have established links. The more citations, the
more authoritative and valuable the documents, and should be output first. Secondly, the number of
downloads of a document can also reflect the needs of users. A document is marked once every time it is
downloaded, weighted, and finally the corresponding Eigen value of each document can be obtained
according to the formula.

The above fully demonstrates the method of using position weighting to calculate Eigen values to
represent the relevance of documents in the conventional mode, and user needs are further considered
here. If the user pays more attention to the matching degree of the terms in the title when searching
documents, then we will weight the matching weight at the title to meet the needs of this user. Similarly,
when users feel that the degree of matching in the text is more important, we give the weight of the text a
proper weight. How to show this choice? We envisage adding a few more priority matching buttons on
the Information Retrieval interface, giving priority to the corresponding positions, and users can choose
by themselves.

We preset the weight settings as shown in Table 1.

According to the above rules, the Information Retrieval system is constructed. When the user enters the
information to be retrieved in the search box, the program starts to analyze and calculate the Eigen value of
each document in the resource library. The Eigen value calculation principle is R = Y[(The weighted
coefficient + (Priority weighting)) * Matching success times], the finally calculated Eigen value defaults to
the retrieval relevance, importance, and user demand of the corresponding literature, but these Eigen values
are still arranged in disorder. At this time, it is necessary to introduce a Quicksort Algorithm, and use the

JBD, 2021, vol. 3, no. 4 139

Eigen value of the literature as the sorting element to sort and output the literature in the resource library, so
that users can obtain better literature resources first. The use of Quicksort Algorithm is to improve the
efficiency of the system, so that users can retrieve the desired results as quickly as possible.

Table 1: Principles for setting the weight of the Retrieval algorithm

Match success location The weighted coefficient Priority weighting
Title 5
Subtitle 4
Abstract 3
Keywords 5
2
2
5

Text
References

[\STENO, RNV, B NS SN VS I]

Number of downloads

5 Implementation and Analysis of the Quicksort Algorithm

The working principle of quick sort is Divide and Conquer, namely, a huge problem that needs to be
dealt with is transformed into several small problems. These small problems are essentially the same as
the original problem, but they are far less complex than the original problem. In this way, the
decomposition layer by layer is approached successively, and finally the big problem is solved. In the
sorting process, introducing the idea of quick sorting can effectively improve the efficiency of
Information Retrieval.

Use the eigenvalue of the document as the key, and use the Quicksort Algorithm and several
traditional sorting algorithms to sort the output, and compare their operating efficiency. After actual
simulation, we will find that the Quicksort Algorithm is significantly better than the traditional sort
algorithm O(n"2) in time complexity. Output the sorted documents, that can meet the user's retrieval
needs. The following is a comparison simulation with a set of eigenvalues.

After a predetermined Weighted Rule, the feature value of each document is calculated, and finally
the 15 documents in the simulated resource library have obtained their eigenvalue, and these eigenvalues
are recorded on each document as a mark of the document. As shown in Table 2, at this time, these 15
eigenvalues are still out of order and cannot be provided to users. At this time, the Quicksort Algorithm
needs to be executed.

Table 2: The simulated eigenvalues of the first 15 documents sorted

Document serial number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Eigenvalue 4 10 11 8 5 12 14 10 10 10 1 2 1 9 14

5.1 Simulation Implementation of the Quicksort Algorithm

Use the Quicksort Algorithm to sort documents with eigenvalue as keywords.

For example, a group of documents with feature values {4,10,11,8,5,12,14,10,10,10,1,2,1,9,14} are
sorted by the Quicksort Algorithm:

a: {4,10,11,8,5,12,14,10,10,10,1,2,1,9,14}

For the first execution, use the document with the eigenvalue of 4 in the first position as the

reference, and partition. The document with the eigenvalue greater than it is listed on the right, and the
remaining columns are on the left;

b: {1,2,1,4,5,12,14,10,10,10,8,11,10,9,14}

140 JBD, 2021, vol. 3, no. 4

In the second execution, the fifth-ranked document with the eigenvalue of 5 is used as the reference,
and the partition is:

c: {1,2,1,4,5,12,14,10,10,10,8,11,10,9,14}

In the third execution, the first document with the eigenvalue of 1 is used as the reference, and the
partition is:

d: {1,1,2,4,5,12,14,10,10,10,8,11,10,9,14}

In the fourth execution, the document with the eigenvalue of 12 in the sixth position is used as the
reference, and the partition is:

e: {1,1,2,4,5,9,10,10,10,10,8,11,12,14,14}

In the fifth execution, the document with the eigenvalue of 9 in the sixth position is used as the
reference, and the partition is:

f: {1,1,2,4,5,8,9,10,10,10,10,11,12,14,14}

After five operations, the simulation sorting is completed, and the sorted documents are output in
order, which can meet the user’s retrieval needs.

5.2 The Advantages of the Quicksort Algorithm over Merge Sort Algorithm

The time complexity of Merge Sort is also O(nlogn), which is also better than traditional sorting
algorithms. Comparing it with Quicksort Algorithm, it can intuitively reflect the advantages of Quicksort
Algorithm over Merge Sorting algorithms and other sorting algorithms.

1: Now compare the Quicksort Algorithm and Merge Sort by simulation experiment:

Experimental environment: ubuntu operating system with configured C language and C++
environment.

(1) Merge Sort
The operation result is shown in Fig. 1:

Please enter the length of the array : 10
Please assign avaluetothearray: 676 435 443 67 122 78 65 23 4 13
4 13 23 65 67 78 122 435 443 676

sh: 1: pause: not found

The motion time of this program is 0.000177 seconds |

Figure 1: The experimental results of the Merge Sort algorithm when arranging 10 numbers
(2) The Quicksort Algorithm:
The operation result is shown in Fig. 2:

Please enter the length of the array : 10
Please assignavaluetothearay: 676 435 443 67 122 78 65 23 4 13

sh: 1: pause: not found

4 13 23 65 67 78 122 435 443 676
The motion time of this programis (), Q0137 s !

Figure 2: The experimental results of the Quicksort Algorithm when arranging 10 numbers

The comparison shows that when the data to be sorted is small, the Quicksort Algorithm may be
faster than the Merge Sort algorithm (because only one experimental result is simulated, so no conclusion
can be drawn!), we will further increase the length and the degree of randomness fully proves that when
the data is large enough, the Quicksort Algorithm has an absolute advantage over the Merge Sort.

2: Now use the arrangement of ten arrays with lengths of 100, 200, 300, 400, 500, 600, 700, 800, 900,
and 1000 to compare the time complexity of these two algorithms.

Experimental environment: Ubuntu operating system with configured C language and C++
environment.

JBD, 2021, vol. 3, no. 4 141

Here we need to slightly modify the previous algorithm, add a Random function to generate random
numbers, and sort them. When the array is greater than 700, the execution steps can be used to replace the
running time:

(1) The Merge Sort algorithm randomly calls part of the function code:
int const n(700);
int a[n];
srand((int)time(NULL));
for(int i=0;i<n;i++)
a[i]=rand();
mergeSort(a,0,n-1);
for(int i=0;i<n;++i){
cout<<a[i]<<"";
if((i+1)%10==0) cout<<endl;}
cout<<endl,;
cout<<"The number of execution steps is:"<<count<<endl; //count set as a global variable
return 0;

The results of counting the number of steps performed when the array length is 700, 800, 900, and
1000 are shown in Fig. 3 to Fig. 6:

he number of exeastion steps = 16

Figure 4: The experimental results of the Merge Sort Algorithm when arranging 800 numbers

142 JBD, 2021, vol. 3, no. 4

Figure 6: The experimental results of the Merge Sort Algorithm when arranging 1000 numbers

(2) The Quicksort Algorithm randomly generates part of the function code:
int const n(1000);
int a[n];
srand((int)time(NULL));
for(int i=0;i<n;i++)
a[i]=rand();
Qsort(a,0,n-1);
for(int i=0;i<n;i++){
cout<<a[i]<<"";
if((i+1)%10==0)
cout<<endl,
H
cout<<"The number of execution steps is"<<count<<endl;// Set global variables count
return 0;

The results of counting the number of steps performed when the array length is 700, 800, 900, and
1000 are shown in Fig. 7 to Fig. 10:

JBD, 2021, vol. 3, no. 4

43

4

he number of exeartion steps is &

Figure 9: Experimental results of the Quicksort Algorithm when arranging 900 numbers

1695029172
1707707244
1730665072
1752670477
1791104453
1807861671
1820303017
1829032726
1856440891
1880403577
1903354178
1926696336
1941328446
1955069574
1979879587
1997518787
2020657509
2033263790
2050163075
2074360833
2108219999
2133067897

1695483862
1713977200
1732451113
1756650577
1792477397
1810330903
1822683481
1831775988
1859245296
1883453718
1909376785
1927091010
1942196564
1955244590
1979985502
1999713853
2020725934
2034728650
2051784474
2074382227
2108852353
2133295271

1698677284
1716023384
1732669941
1756724899
1792512340
1811832049
1822699427
1835140744
1860782115
1885597974
19609691762
1928060284
1942239447
1960337995
1980255976
2002163449
2021825761
2035034402
2052195903
2075277642
2112460084
2135687022

1700797228
1716132876
1736357552
1759473717
1794161160
1814193629
1823466879
1836755180
1861190032
1887727293
1916940400
1931538828
1942991408
1964189903
1983419454
2004405072
2023815109
2035264231
2060454467
2075396252
2113833520
2137684812

he number of execution steps is 9508

Figure 10: The experimental results of the sorting algorithm when arranging 1000 numbers

1701922379
1716548461
1736438809
1759994352
1794616553
1815339922
1823599600
1838195688
1863808012
1888685460
1913707656
1934701795
1943896681
1964268065
1985007640
2008466496
2024698655
2036268228
2064132908
2079541659
2115139767
2137827282

1703062951
1717393368
1740119218
1760158900
1794986497
1816136479
1825055680
1840970591
1864287333
1892085549
1916118378
1935193606
1947076503
1966032653
1986170022
2008860883
2025493784
2042447179
2064912068
2083991887
2115974370
2138993796

1704340911
1717927570
1740158983
1765209753
1797151610
1816481348
1825154813
1841616184
1867187128
1893958467
1917850733
1936031387
1948354070
1971734500
1986898756
2010394361
2027930768
2042722856
2065663013
2084552296
2120750395
2139452065

1706784589
1720230724
1743464503
1769333298
1797705577
1816979304
1826330775
1848209424
1874873929
1898164868
1919815593
1938482820
1949903558
1973285337
19896003031
2013485746
2029211316
2043988073
2068081072
2084588909
2120971541
2140996073

1706962045
1724247184
1744188149
1776643728
1800577623
1817070542
1828493935
1853214427
1877836685
1898752311
1923639884
1939976486
1951145339
1976922311
1991520909
2013686066
2029632811
2045074825
2071416486
2088457933
2121405461
2143958270

1707014665
1728925735
1750121304
1790706591
1805837594
18192301560
1828590433
1855248092
1878818177
1900820912
1926207952
1940247192
1953510067
1978545985
1994287597
2016351825
2029744254
2045180641
2073787017
2098164261
2127201321
2147352130

143

144 JBD, 2021, vol. 3, no. 4

(3) Draw a broken line as shown in Fig. 11 for the result obtained:

n 100 200 300 400 500 600 700 800 900 1000
Merge 13809 16115 18397 20701
Quicksart 6420 7436 8508 9508

nlogn 664.3856 1528.771 2468.646 3457.542 4482.892 5537.291 6615.848 7715.085 8832.403 9965.784

25000

20000 /
15000 /
=—#=—Merge Sort

== Quicksort I

10000 e nlogn

/

—

5000

T T T T T T T T T
100 200 300 400 500 600 700 800 200 1000

Figure 11: Comparison of the running speed of the Merge Sort and the Quicksort Algorithm when n = 700
ton=1000

It can be seen from Fig. 11 that when the data becomes larger and larger, the time complexity of the
Quicksort Algorithm is almost O(nlogn), and the time complexity of the Merge Sort has far exceeded
O(nlogn). Since the data is randomly generated, it can basically represent generality. Therefore, it can be
proved that the Quicksort Algorithm is better than the Merge Sort when the number of permutations
increases. the Quicksort Algorithm is more adaptable to the increasing number of documents, and can
better improve the efficiency of Information Retrieval!

6 Conclusion

In recent years, with the increasing number and variety of documents on the Information Retrieval
platform and the ever-expanding demand of users, the society urges us to put forward higher requirements
for the technology and efficiency of the Information Retrieval. In the design ideas of the Information
Retrieval system in this paper, we fully refer to the more common design ideas of position weighting and
user behavior feedback in current Information Retrieval engines, and combine the characteristics of
Information Retrieval to increase the function of independent selection by users. It further improves the
comprehensive indexes such as the matching degree, value, importance, and user needs of the retrieved
documents. While improving the retrieval accuracy, the quick sorting algorithm is introduced to improve
the sorting rate of document eigenvalue, optimize the performance of the Information Retrieval system,
and finally achieve the effect of searching documents that meet the needs at the fastest speed, which has
great applications prospect.

Funding Statement: This work was supported in part by the National Natural Science Foundation of
China, Grant No. 72073041; Open Foundation for the University Innovation Platform in the Hunan
Province, Grant No. 18K103.2011; Collaborative Innovation Center for Development and Utilization of
Finance and Economics Big Data Property. Hunan Provincial Key Laboratory of Finance & Economics
Big Data Science and Technology; 2020 Hunan Provincial Higher Education Teaching Reform Research
Project under Grant HNJG-2020-1130, HNJG-2020-1124; 2020 General Project of Hunan Social Science
Fund under Grant 20B16.

JBD, 2021, vol. 3, no. 4 145

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[11 W. M. Yan and W. M. Wu, Data Structure. Beijing: Tsinghua University Press, 2016.

[2] F. Cheng, “Research on Information Retrieval model based on ranking learning,” Doctoral dissertation,
University of Science and Technology of China, 2012.

[3] J. Yao, “Information Retrieval technology based on the quicksort algorithm,” Anhui Vocational and Technical
College of Posts and Telecommunications, Hefei, 2014.

[4] H. X. Zuo, C. Zhang, L. Peng and Y. M. Niu. “CINAHL database retrieval system and related retrieval
methods,” Chinese Journal of Evidence-Based Cardiovascular Medicine, 2017.

[5] J.J. Tian, “Overview of two sorting algorithms based on divide and conquer strategy,” School of Computer and
Information Engineering, Tianjin Normal University, Tianjin, vol. 10, 2015.

[6] Q. Guo, “Expansion research based on the Quicksort method,” Department of Information Management,
Liaoning University of International Business and Economics, Dalian, vol. 5, 2017.

[7] Q.F. Wang and Y. Y. Wei, “Research on literature ranking method based on citation context analysis,” School
of Information Management, Central China Normal University, Wuhan, vol. 16, no. 5, pp. 146-169, 2017.

[8] S.L.LouandY. Xu, “Analysis of the impact of keyword expansion on search results,” Hubei Center for Patent
Examination Cooperation of the State Intellectual Property Office, Wuhan, vol. 27, no. 1, pp. 298, 2017.

[9] L.Y. Li, “Research on Semantic-based Technology Information Retrieval,” Ph.D. dissertation, Master thesis,
Guizhou University, Guizhou, 2011.

[10] Z. B. Huang, Q. Zhao and S. Y. Sun, “Design and optimization of multithreaded quick sort based on Java,”
North China Institute of Computer System Engineering, vol. 35, no. 16, 2016.

[11] Z. W. Wang, “Research and improvement of PageRank algorithm in Information Retrieval ranking,” Ph.D.
dissertation, Master’s thesis, Nanchang University, 2016.

[12] R. Wang, S. Chen Shu and B. Zeng. “Research on Information Retrieval system based on metadata,” Ph.D.
dissertation, Naval Engineering University of Chinese People’s Liberation Army, Wuhan, 2017.

[13] Y. Jiang, “Research and implementation of Information Retrieval engine technology,” Ph.D. dissertation,
Master’s thesis, Guizhou University, Guizhou, 2011.

[14] M. Thelwall, “Exttracting macroscopic information from Web links,” Journal of the American Society for
Information Science & Technology, vol. 51, no. 13, pp. 1157-1168, 2012.

[15] M. J. K. E. Han, “Stablishing sustainable and scalable workflows for cataloging and metadata services,”
Library Management, vol. 2016, no. 6, pp. 308-316, 2016.

[16] C. F. Huang, “A hybrid stock selection model using genetic algorithms and support vector regression original
research article,” Applied Soft Computing, vol. 12, no. 2, pp. 807-818, 2012.

	Application of Quicksort Algorithm in Information Retrieval
	1Hunan University of Finance and Economics, Changsha, 410205, China

