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Abstract: Nitric oxide (NO) and hydrogen sulfide (H2S) are two molecules that share signaling properties in plant and

animal cells. NO and H2S originate two families of derived molecules designated reactive nitrogen and sulfur species (RNS

and RSS, respectively). These molecules are responsible for certain protein regulatory processes through posttranslational

modifications (PTMs), being the most remarkable S-nitrosation and persulfidation, which affect the thiol group of

cysteine residues. NO and H2S can also exert regulatory functions due to their interaction through the iron present in

proteins that contain heme groups or iron-sulfur clusters, as reported mainly in animal cells. However, the available

information in plant cells is still very limited thus far. In higher plants, NO and H2S are involved in a myriad of

physiological events from seed germination to fruit ripening, but also the mechanism of response to biotic and abiotic

stress conditions. This viewpoint manuscript highlights the functional regulatory parallelism of these two molecules

which also interact with the metabolism of reactive oxygen species (ROS) in plant cells.

Brief Historical Perspective

Nitric oxide (NO) and hydrogen sulfide (H2S) are two gaseous
molecules that were initially considered dangerous because
they were associated with some detrimental effects on
animal and plant cells. However, this perspective underwent
a drastic change of mind when it was found that these
molecules were endogenously generated in animal cells
(Kolluru et al., 2013). There was a gap of about 10 years
between the initial research works that described the
signaling functions of either NO or H2S in living organisms.
Accordingly, key research on NO, published in 1987
(Palmer et al., 1987), and on H2S in 1996 (Abe and Kimura,
1996) in animal systems provided the first pieces of
evidence showing that these molecules exerted diverse
signaling roles in the cardiovascular and nervous systems,
respectively. Years later, plant biologists also found that
these molecules were also endogenously generated in plant
cells where they are involved in almost all of the stages of
plant development including seed germination, root
development, plant growth, stomata movement, senescence,

flowering and fruit ripening (Leshem et al., 1998; Lamattina
et al., 2003; Simontacchi et al., 2004; Corpas et al., 2004;
Corpas et al., 2006; Corpas et al., 2008; Zhou et al., 2018;
Chen et al., 2019; González-Gordo et al., 2019; Mukherjee
and Corpas, 2020; Zuccarelli et al., 2021). And both
compounds were also linked to the mechanisms of response
against adverse environmental conditions triggered by either
abiotic or biotic agents (Corpas, 2019; Kharbech et al., 2020;
Iqbal et al., 2021). Fig. 1 illustrates the key functions in
which NO and H2S have been shown to participate in
higher plants.

Chemistry and Biochemistry of NO and H2S

Although NO and H2S are very simple molecules, their (bio)
chemistry is more complex than it could be thought
(Stamler et al., 1992; McCleverty, 2004; Hughes, 2008; Kabil
and Banerjee, 2010; Filipovic et al., 2018; González-Gordo
et al., 2020). NO is a colourless gas that belongs to the free
radical-type molecules because it has an unpaired electron
in the π orbital of the nitrogen atom, what is usually
indicated with a dot in the chemical formula (•NO). Some
of the NO and H2S physical and chemical properties are: (i)
Solubility of NO is 1.9 mM in aqueous solutions at 1 atm
pressure, whereas the solubility of H2S is 100 mM at the
same pressure; (ii) Their in vivo lifetime is relatively short,
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less than 10 seconds for NO and between second to few
minutes for H2S. Therefore, they can trigger regulatory
functions in cellular loci far from their production sites; (iii)
NO and H2S are lipophilic molecules and they can diffuse
across cell membranes; and, (iv) Both molecules can react
with thiol groups from peptides and proteins affecting the
function of the target molecules.

Likewise, NO and H2S can also interact with iron
containing-proteins, where the metal is present as either
heme group or as part of the iron-sulfur cluster. Thus, there
are multiple examples in higher plants where either NO and
H2S, or both, can modulate, through their interaction with
the cysteine thiol groups, the functions of proteins such as
cytochrome c oxidase, catalase, Fe-superoxide dismutase,
ascorbate peroxidase, ferredoxin(Fd)-NADP reductase,
glutaredoxin, Fd-dependent glutamine:2-oxyoglutarate
aminotransferase (Fd-GOGAT) or phytoglobins, (Ramirez
et al., 2011; Aroca et al., 2017; Bahmani et al., 2019; Palma et
al., 2020; Niu et al., 2019; Corpas et al., 2021). These proteins
are involved in essential plant processes including
photosynthesis, respiration, antioxidant system, nitrogen and
sulfur assimilation, which remarks the physiological relevance
of these signaling molecules. However, in higher plants, the
available information about the direct interaction of NO and
H2S with the iron side of protein is still scarce. In addition to
reactions that can originate the respective families of
molecules derived from nitric oxide and hydrogen sulfide
(RNS and RSS, respectively), NO and H2S can interfere with
the biosynthesis of each other and also produce novel species
through their chemical interaction, thereby expanding the
network of interactions that can affect to macromolecules
(Kolluru et al., 2013; Scuffi et al., 2014; Kolluru et al., 2015;
Hancock and Whiteman, 2016; Iqbal et al., 2021).

S-nitrosation and Persulfidation: Two Protein PTMs that
Exert Redox Control of Thiol Groups

The amino acid cysteine (Cys) can play relevant roles in
proteins such as a structural function through disulfide
bonds, but it could also have implications on redox
reactions by means of its thiol group (–SH). Thus,
depending on the conditions surrounding the thiol group in
the protein, Cys can be found in its anionic form,
designated as thiolate (RS–), which is a stronger nucleophilic

agent than its protonated form (Netto et al., 2007). Fig. 2A
depicts the different oxidation states of sulfur which range
from thiol (–2) to sulfonic acid (+4). Among these states,
NO or H2S can interact with the thiolate form through
either S-nitrosation or persufidation (Fig. 2B), also known
previously as protein S-nitrosylation and S-sulfhydration,
respectively (Aroca et al., 2018; Wolhuter et al., 2018;
Corpas et al., 2019, Corpas et al., 2021). For that reason,
Cys is considered as a redox switch in the protein
metabolism because it is the main target of these two PTMs,
and this could affect significantly the biological activity of
the corresponding protein, either positively or negatively.

Ascorbate Peroxidase (APX) in Plant Cells: A Case Study of
NO and H2S Target

In-plant systems, the number of identified proteins that
undergo PTMs mediated by either NO or H2S has
progressively increased thanks to the efforts of many
researchers focused on this biochemical area (Lindermayr
et al., 2005; Tanou et al., 2009; Fares et al., 2011; Begara-
Morales et al., 2013; Kato et al., 2013; Chen et al., 2014;
Aroca et al., 2015; Liu et al., 2019). Moreover, the analyses
of these modified proteins have revealed that many of them
can be the simultaneous target of both PTMs and, by in
vitro assays, it has been also proven the relevance of these
two regulatory molecules to modulate the biological activity
of the affected proteins (Muñoz-Vargas et al., 2018, 2020;
Palma et al., 2020; Corpas et al., 2021). Among the different
plant proteomic studies focused on the identification of the
potential targets of PTMs mediated by either NO or H2S, it
has been found that ascorbate peroxidase (APX) is one of
those shared targets.

FIGURE 1.Main processes where both nitric oxide (NO) and hydrogen
sulfide (H2S) are involved in higher plants.

FIGURE 2. (A) Oxidation states of sulfur (S) in proteins from thiol
(–2) to sulfonic acid (+4) forms. Under cellular oxidant conditions,
the oxidation from sulfenic acid becomes irreversible. The numbers
in parenthesis represent the different oxidation states of S in the
protein. (B) Protein thiol modifications mediated by NO
(S-nitrosation) and H2S (persulfidation).
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APX is a key antioxidant enzyme that is part of the
ascorbate-glutathione cycle, which is an essential system to
modulate the mechanism of response against (a)biotic stress
environmental conditions (Shigeoka et al., 2002; Asada,
2006; Maruta and Ishikawa, 2018). APX is a hemoprotein
that controls the cellular level of hydrogen peroxide (H2O2)
according to the following reaction:

L�ascorbateþH2O2→dehydroascorbateþ 2H2O

This enzyme system is composed of different isozymes
located in almost all subcellular compartments including
cytosol, chloroplasts, mitochondria and peroxisomes (Asada,
1992; Yamaguchi et al., 1995; Bunkelmann and Trelease, 1996;
Jiménez et al., 1998; Yoshimura et al., 1999; Maruta et al.,
2016; Chin et al., 2019). This molecular and location diversity
suggests the great relevance of APX in cell signaling under
physiological and stressful conditions, which is consolidated by
its regulation through both S-nitrosation and persulfidation, as
indicated above. Furthermore, it was identified by mass
spectrometric analyses that the Cys32 is the residue that
underwent S-nitrosation and persulfidation (Begara-Morales et
al., 2014; Yang et al., 2015; Aroca et al., 2015) and, in both
cases, the APX activity was positively regulated. This
mimicking biochemical regulation provides a clear connection
between NO and H2S with the metabolism of reactive oxygen
species (ROS) (Rodríguez-Ruiz et al., 2017), thus indicating
the biochemical link among all these families of molecules.

Conclusions and Future Perspectives

The previous perception of NO and H2S as harmful molecules
to plant cells has drastically changed and, nowadays, they are
key signal molecules that regulate a myriad of biochemical and
physiological processes. These two gases have also families of
derived molecules designated as reactive nitrogen and sulfur
species (RNS and RSS, respectively). They have a wide range
of biochemical implications, being S-nitrosation and
persulfidation two representative examples of their cellular
relevance which compete molecularly to modulate protein
functions through the reaction with the thiol group of
cysteines. Additionally, NO and H2S have been started to be
considered as molecules with biotechnological properties
since when they are applied exogenously they can exert
beneficial effects on crops (Corpas et al., 2019; Corpas and
Palma, 2020; Corpas et al., 2020). Therefore, it could be
concluded that NO and H2S behave as competing but
mimicking molecules that they can reinforce each other in
their signaling properties.
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