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ABSTRACT

Since Corona Virus Disease 2019 outbreak, many expert groups worldwide have studied the problem andproposed
many diagnostic methods. This paper focuses on the research of Corona Virus Disease 2019 diagnosis. First,
the procedure of the diagnosis based on machine learning is introduced in detail, which includes medical data
collection, image preprocessing, feature extraction, and image classification. Then, we review seven methods in
detail: transfer learning, ensemble learning, unsupervised learning and semi-supervised learning, convolutional
neural networks, graph neural networks, explainable deep neural networks, and so on.What’smore, the advantages
and limitations of different diagnosis methods are compared. Although the great achievements in medical images
classification in recent years, Corona Virus Disease 2019 images classification based on machine learning still
encountered many problems. For example, the highly unbalanced dataset, the difficulty of collecting labeled data,
and the poor quality of the data. Aiming at these problems,we propose some solutions and provide a comprehensive
presentation for future research.
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1 Introduction

The novel coronavirus pneumonia broke out in 2019 [1]. The pathogen is identified as a new
enveloped ribonucleic acid-β (RNA-β) coronavirus, and it is similar to Severe Acute Respira-
tory Syndrome Coronavirus (SARS-CoV), now named SARS-CoV-2 [2]. The novel coronavirus
pneumonia is transmitted through interpersonal transmission [3], and the recent emergence of
large numbers of infected people without initial symptoms of infection accelerates the spread of
the disease [4], the surge in patients has put a lot of pressure on medical institutions [5]. On
March 11, 2020, the World Health Organization (WHO) announced that Corona Virus Disease
2019 (COVID-19), an acute respiratory syndrome, is pandemic [6]. WHO recommended people
avoid close contact with infected people and wash their hands frequently, especially after direct
contact with patients [7]. At the same time, different countries imposed border restrictions, flight
restrictions, social distancing, and increased awareness of hygiene [8].
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COVID-19 is an acute resolved disease with a case fatality rate of 2% [9]. Its clinical
symptoms mainly include fever, cough, headache, and breathing difficulty [10]. And studies have
shown that patients with high blood pressure are at greater risk of death, followed by those with
diabetes or heart disease [11], and children are usually less symptomatic than adults, but young
children and infants are vulnerable [12]. Currently, there is no specific drug. Reverse-transcription
polymerase chain reaction (RT-PCR) is the current standard test for the COVID-19 diagnosis [13],
and it is to collect samples by nasopharyngeal swab or laryngopharyngeal swab [14]. RT-PCR is a
genetic test in which RNA is reverse transcribed into complementary deoxyribonucleic acid [15],
but this method has some limitations, especially in middle and low-income countries, including
time consumption, high cost, and shortage of the kit [16]. Since the viral load of SARS-CoV-2 in
respiratory samples decreases with the prolongation of the disease course, RT-PCR may produce
false negative results [17]. Some research revealed that RT-PCR positive rate for pharyngeal swabs
was about 30%–60% at initial detection [18], but chest CT images have a sensitivity of 97%
and an accuracy of 68% in the diagnosis of COVID-19 [16]. In general, doctors gain significant
information and make a diagnosis with CT scan images or X-ray images, and the process is faster,
cheaper, and more readily available than RT-PCR [19]. However, a large number of medical images
must be evaluated by doctors in a short period of time, which may increase the probability of mis-
classification [20]. So, artificial intelligence is increasingly used in the diagnosis of reference [21].
Deep learning plays an important role in this diagnosis, which includes plenty of training methods
and models. By reading the literature, we know that the learning methods are varied, such as
traditional methods, transfer learning, multi-task learning, end-to-end deep learning, and so on. In
addition, convolutional neural networks (CNNs), graph neural networks (GNNs), and explainable
deep neural networks (xDNNs) have been widely used in researches. However, with so many
methods, the classification accuracy of each one is different. Through reading the literature about
the diagnosis of the COVID-19, it was found that the following seven learning methods (transfer
learning, ensemble learning, unsupervised learning and semi-supervised learning, convolutional
neural networks, graph neural networks, explainable deep neural networks, and so on) are more
commonly used in the diagnosis of the COVID-19. Moreover, most experiments encountered some
problems, such as the highly unbalanced dataset, the difficulty of collecting labeled data, and the
poor quality of the data. Therefore, we summarize these seven learning methods in this paper,
and propose solutions to these problems encountered.

In this paper, we will introduce the procedure of diagnosis COVID-19 based on machine
learning in Section 2. Then we will introduce seven methods and the corresponding literature in
detail in Section 3. Finally, the future research directions of COVID-19 diagnosis methods will be
concluded in Section 4. To help understand more clearly, we provide a table with all abbreviations
and full names as Table 1.

2 Computer-Aided Diagnosis (CAD) in COVID-19

CAD is becoming more and more popular in the field of medical diagnosis. It is a method
that uses machine learning to analyze the image or non-image dataset to diagnose the patient’s
condition. The method can be used as an aid in the decision-making process of clinicians and
reduce doctors’ stress in disease diagnosis [22], particularly when COVID-19 breaks out in the
world in a short time. Machine learning algorithms could detect underlying patterns through
training datasets, then make some predictions with the best fit parameter [23]. The procedure of
COVID-19 classification based on machine learning is shown in Fig. 1.
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Table 1: List of all abbreviations and full names

Abbreviations Full names Abbreviations Full names

COVID-19 Corona virus disease
2019

CAD Computer-aided diagnosis

TL Transfer learning SVM Support vector machine
EL Ensemble learning K-NN k-nearest neighbor
CNN Convolutional neural

network
LUS Lung ultrasonography

GNN Graph neural network LSTM Long-short term memory
xDNN Explainable deep neural

network
ReLU Rectified linear unit

RT-PCR Reverse-transcription
polymerase chain
reaction

Grad-CAM Gradient-guided class activation
mapping

ANN Artificial neural network CAP Community acquired
pneumonia

ELM Extreme learning
machine

GCN Graph convolutional network

AUC Area under curve GAT Graph attention network
CAM Class activation

mapping
RNN Recurrent neural network

FC Fully connected ACGAN Auxiliary classifier generative
adversarial network

medical data collection

image preprocessing

feature extraction

image classification

Figure 1: The procedure of COVID-19 classification based on machine learning

Despite that CAD has made great contributions to clinical practice, there are still many
problems in the COVID-19 diagnosis, leading to the low generalization of models and the failure
of diagnostic accuracy to meet the clinical application. For example, during the data collection
stage, labeled data are difficult to collect, and the dataset is highly unbalanced. During the data
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preprocessing stage, the size and protocol of images are inconsistent. In the feature extraction
stage, COVID-19 images have similar features to viral pneumonia images, making it difficult to
accurately extract feature information. In the classification stage, there are many types of classifiers
such as support vector machine (SVM), k-nearest neighbor (K-NN), random forest, Bayesian
network, Gaussian network, and so on, so the selection and optimization of classifiers are a
challenge [24].

2.1 Medical Data
In the COVID-19 diagnostic research based on machine learning, X-ray images, CT images,

and lung ultrasonography (LUS) images are the main medical images. Chest CT imaging is a
widely available, time-saving, and noninvasive method for the detection of COVID-19 [25], and
the characteristic of COVID-19 CT images as ground-glass opacities at the early stage, air space
consolidation during the peak stage, bronchovascular thickening in the lesion stage, and traction
bronchiectasis are visible during the absorption stage [26]. So, medical practitioners can distinguish
different features from early to late stages and distinguish the asymptomatic patients via chest CT
images [27]. Despite some advantages of CT scans, CT scan machines are difficult to clean [28].
Compared with CT images, the X-ray images of COVID-19 patients did not show obvious
symptoms in the early stage; hence the early chest X-ray images of COVID-19 patients could be
easily misdiagnosed [29]. However, with the disease progressing, COVID-19 gradually manifests
as a typical unilateral patchy infiltration involving the middle, upper or lower zone of the lungs,
occasionally with evidence of a consolidation [30]. And an open image library was set up on
GitHub by Mohammadi et al. [31], consisting of a large number of COVID-19 chest X-ray images
with new images added regularly. In recent years, in addition to X-ray images and CT images, LUS
images have also been used for medical diagnosis [32], which is cheap and safe. And LUS images
have minimal infection spreading risks since they can be used at the bedside of patients, without
the need to go to the public examination room [30]. Carrer et al. [33] conducted experiments using
LUS from Italian COVID-19 LUS Database. They proposed an automatic pleural line location
method based on the hidden Markov model and Viterbi algorithm for LUS data. The findings
suggest specific LUS characteristics and imaging biomarkers for COVID-19 patients, so the LUS
can be used to the COVID-19 diagnosis [34].

2.2 Images Preprocessing
Due to the short duration of the COVID-19 outbreak and the difficulty of obtaining med-

ical images, many datasets are highly unbalanced. Therefore, most researchers proposed many
data augment methods, such as traditional data augment methods of rotation and zoom [35],
conditional generative adversarial nets method [36], and two-stage data argument technique [37].
Conditional generative adversarial nets were composed of generator network and discriminator
network, and the method could enlarge the dataset by ten times. As for the two-stage data
argument technique, the shallow image enhancement method was used in the first stage, and
the synthesis of a few oversampling methods was used in the second stage. And a federated
learning platform and the dual-sampling algorithm were proposed by Wang et al. [38] and Ouyang
et al. [39] to solve the problem of unbalanced datasets.

In addition, the X-ray images or CT images are acquired from different hospitals and agencies,
so the images are different in their sizes and standards. Heidari et al. [40] generated a pseudo-color
image to improve the classification accuracy via two image preprocessing steps. They collected
8,474 COVID-19 chest X-rays from several publicly available image databases. Moreover, they
removed the aperture area of the image and divided the original image into the binary image.
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Then the morphological filter was utilized to smooth the boundary. Finally, the processed binary
image was mapped to the original image. Heidarian et al. [41] used the U-Net network to remove
noise and artifacts of CT images. In their experiments, the bilateral low-pass filter was adopted
to remove noise, and the Gaussian low-pass filter was used when calculating the weight. Then
they used the histogram equalization method to normalize the image. Their experimental results
showed that the two preprocessing steps improved the classification performance of the model
with a classification accuracy of 98.40%, while the classification accuracy was only 88.00% without
two preprocessing steps. Similarly, Togacar et al. [42] proposed a new preprocessing technique,
namely fuzzy technique, and stacking technique. The fuzzy technique played an important role in
the image analysis step, and the results depended on the similarity or difference functions used for
color separation, and the input values were RGB three variables. And the stacking technique was
adopted to improve the quality of images, including original images and fuzzy color images. Zhou
et al. [43] proposed a rapid, accurate, and machine-agnostic quantification method to quantify
the CT images from different sources. The method included two steps, the first one was spatial
normalization, and the other was signal normalization. The two steps resolved the heterogeneity
problem of CT scan images. In addition, contrast limited adaptive histogram equalization and
normalization were used frequently as important techniques of image preprocessing, and the image
data was preprocessed and local features were extracted by exploiting the frequency and texture
regions to generate a feature pool [44]. The literature with images preprocessing is as Table 2.

Table 2: The literature with images preprocessing

Authors Dataset Techniques Results

Heidari
et al. [40]

X-ray Pseudo-color image,
two image
preprocessing steps,
binary image

The processed binary image was mapped to the
original image.

Heidarian
et al. [41]

CT Gaussian low-pass
filter bilateral
low-pass filter
histogram
equalization method

Their experimental results showed that the two
preprocessing steps improved the classification
performance of the model with a classification
accuracy of 98.40%, while the classification
accuracy was only 88.00% without two
preprocessing steps.

Togacar
et al. [42]

X-ray Fuzzy technique,
stacking technique

The proposed technique separated the input data
into blurred windows.

Zhou
et al. [43]

CT Signal normalization,
spatial normalization

The two steps resolved the heterogeneity problem
of CT scan images.

Rajpal
et al. [44]

X-ray Contrast limited
adaptive histogram
equalization and
normalization

The image data was preprocessed and local
features were extracted by exploiting the
frequency and texture regions to generate a
feature pool.

2.3 Features Extraction
Features extraction is a very important part of medical diagnosis. Gray level co-occurrence

matrix, local binary gray level co-occurrence matrix, gray level run length matrix, as well as
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segmentation-based fractal texture analysis and synthetic minority over-sampling techniques, were
used by Ozturk et al. [37]. They proposed a framework, which was based on combining feature
vectors produced by four feature extraction methods and then reproduced with over-sampling and
augmentation methods.

Since many studies have found that viral pneumonia and COVID-19 are similar in terms
of pulmonary infection area and infection characteristics [45], Haralick feature was adopted to
extract texture features from chest X-ray images [46]. Haralick feature could derive textual feature
measures from the co-occurrence matrix and could provide information about how the intensity
of a particular pixel is related to the intensity of adjacent pixels. Compared with the existing
methods, Haralick feature method was relatively easy to extract features. Zargari et al. [47] used
texture, gray level co-occurrence matrix, gray level difference method, fast Fourier transform, and
wavelet to calculate image features. A total of 252 chest X-ray image features were extracted by
their feature extraction scheme, including 14 features from texture, 14 features from fast Fourier
transform, 56 features from gray level co-occurrence matrix, 56 features from gray level difference
method, and 112 features from wavelet. Then, the matrix of feature combination was obtained
by Pearson correlation coefficient. Finally, the best feature vector was obtained by the principal
component analysis method. Ismael et al. [48] used wavelet transform, shearlet transform, and
contourlet transform to decompose the chest radiograph images and then normalized feature
extraction from the decomposed chest X-ray images.

Hussain et al. [49] applied five classifiers (XGB-L, XGB-Tree, classification and regression tree,
K-NN, and Naive Bayes) to classify the chest X-ray images of COVID-19, bacterial pneumonia,
non-COVID-19 viral pneumonia, and health. In addition, gray level co-occurrence matrix tech-
nique was adopted to extract texture features of images, and the morphological feature-extracting
method was utilized to obtain morphological features. The results showed that the combined effect
of texture features and morphological features made the model classification accuracy higher than
that of single feature extraction, and in binary classification, the accuracy of the K-NN classifier
was lower than other classifiers. The flow of data and analysis is as Fig. 2.

X-ray images

texture

morphological

XGB-L

XGB-Tree

CART

K-NN

NB

Feature extraction Classification Data validationInput images

fold1

fold2

fold3

fold4

fold5

Figure 2: Flow of data and analysis

The literature with features extraction is as Table 3.
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Table 3: The literature with features extraction

Authors Dataset Techniques Results

Ozturk
et al. [37]

X-ray, CT Gray level
co-occurrence matrix,
local binary gray level
co-occurrence matrix,
gray level run length
matrix,
segmentation-based
fractal texture
analysis, synthetic
minority
over-sampling
technique

According to the obtained results, it is
seen that the proposed method has
leveraging performance, especially to
make the diagnosis of COVID-19 in a
short time and effectively.

Ilango
et al. [46]

X-ray Haralick feature Compared with the existing methods,
Haralick feature method was relatively
easy to extract features.

Zargari
et al. [47]

X-ray Texture, gray level
co-occurrence matrix,
gray level difference
method, fast Fourier
transform, wavelet,
principal component
analysis

By using global features of the whole
X-ray images, they were able to
successfully implement their classifier
using a relatively small dataset of CXR
images.

Ismael
et al. [48]

X-ray Wavelet transform,
shearlet transform,
contourlet transform

Shearlet transform outperformed at all.
99.29% accuracy score was obtained by
using shearlet transform.

Hussain
et al. [49]

X-ray Gray level
co-occurrence matrix,
morphological
feature-extracting

The results showed that the combined
effect of texture features and
morphological features made the model
classification accuracy higher than that
of single feature extraction.

2.4 Classification
There are many types of traditional classification methods, such as SVM, K-NN, decision

tree, random forest, AdaBoost, XGBoost, and Bagging. Tabrizchi et al. [50] utilized EL to improve
the classification accuracy of COVID-19. They used SVM, artificial neural network (ANN), Naive
Bayes, and CNN for classification. Among them, the SVM is good at classifying non-linear prob-
lems, and ANNs can analyze features of samples and make predictions, and multilayer perceptron
is distributed in the connected layer of ANN. Naive Bayes is a famous probabilistic classi-
fier, which estimates the previous probability by means of posterior probability and conditional
probability density function, and then makes the final prediction with the maximum posterior
probability. The results showed that SVM outperformed other classifiers with an accuracy of
99.00%. Likewise, Turkoglu [51] used AlexNet as a pre-training model for transfer learning, and
SVM as a classifier. They were trained and tested in the COVID-19 X-ray dataset and achieved
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a classification accuracy of 99.18. In addition, K-NN is commonly used in image classification.
Arslan [52] used the K-NN for COVID-19 diagnosis. They utilized genomic sequences as datasets.
The accuracy of K-NN mainly depends on the distance measurement. Five groups of measure-
ments were used in their experiments, and the results showed that the best group of distance
measurements achieved the classification accuracy of 98.40%. Yasar et al. [53] also utilized SVM,
K-NN as classifiers. Their experimental results showed that SVM was superior to KNN.

The classification effect of a single classifier and multi-mode classification can be compared,
and the multi-mode classification effect is better than that of a single classifier. Xu et al. [54]
used 43 combination features to distinguish four types of pneumonia, including non-severe, severe,
healthy and viral pneumonia, and completed diagnosis by three classification methods, namely
k-nearest neighbor, random forest, and support vector machine. Mohammed et al. [55] also com-
pared five classification methods, including SVM, linear kernel and radial basis function, K-NN,
decision tree, and CNNs. The results showed that CNNs completed good performance, among
which ResNet50 achieved the optimal classification accuracy of 98.80%. Secondly, compared with
the traditional classification methods, the SVM method achieved a classification accuracy of
95.00%. Abraham et al. [56] used a Bayesian classifier to classify COVID-19. In their experiments,
several pre-trained networks were applied to extract features from chest X-ray images, and then the
images were classified by combining correlation-based feature selection and a Bayesian classifier.

Besides these traditional classifiers, most novel classification methods were proposed by
researchers. Pokkuluri et al. [57] proposed a hybrid nonlinear cellular automata classifier and
compared it with traditional methods, such as long-short term memory (LSTM), Adaboost, SVM,
regression, etc. An extreme learning machine (ELM) has a strong anti-overfitting ability and can
be used as a kernel-based support vector machine with the structure of neural networks. The
hybrid nonlinear cellular automata classifier had reported an accuracy of 78.80%. The proposed
classifier can also predict the rate at which this virus spreads, transmission within the boundary.
Albadr et al. [58] used an Optimized Genetic Algorithm-Extreme Learning Machine for diagno-
sis. Their experimental result showed that the Optimized Genetic Algorithm-Extreme Learning
Machine achieved 100.00% accuracy with fast computation time. Moreover, El-Kenawy et al. [59]
proposed a voting classifier based on particle swarm optimization algorithm, which aggregated the
prediction results of different classifiers to select the category with the highest voter turnout.

Medical image segmentation plays a critical role in the training of the models. Extra areas
are removed from the lung image so that only infected parts of the lung can be treated effec-
tively [60]. In image segmentation, the selection of the best threshold value is very important to
the filtering process [61]. However, the threshold value varies from image to image. Therefore,
Shankar et al. [62] applied the Gaussian Filtering method to preprocess medical images. Gaussian
Filtering is a common method to improve image quality by smoothing images in medical image
classification [46]. Elaziz et al. [63] proposed a hybrid approach that combines the features of
the marine predator algorithm and the moth-flame optimization. The hybrid approach performed
better in image segmentation. Tiwari et al. [64] proposed an image segmentation approach based
on the marine predator algorithm. In their research, they conducted X-ray segmentation exper-
iments with this approach and found that the approach achieved good performance. El-bana
et al. [65] used multi-modal learning to fine-tune the InceptionV3 architecture and proposed
pulmonary nodule detection to improve the segmentation accuracy of lung infections in CT scans.
Furthermore, the contrast limited adaptive histogram equalization method was used for enhancing
small details, textures and local contrast of the images. Their experimental results demonstrated an
increase of approximately 2.5% and 4.5% for the dice coefficient and mean intersection-over-union,
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respectively, while achieving 60% reduction in computational time, compared to the recent litera-
ture. Wang et al. [66] proposed a new noise reduction algorithm. This algorithm was the extension
of the dice-loss algorithm and the mean-absolute error loss algorithm. In addition, they built a
novel COVID-19 Pneumonia Lesion segmentation network to deal with the lesions with various
scales and appearances. Their experiments indicated that the proposed network achieved higher
performance than state-of-the-art image segmentation networks. The literature with classification
is as Table 4.

Table 4: The literature with classification

Authors Dataset Techniques Results

Tabrizchi
et al. [50]

CT Naive Bayes SVM The results showed that SVM outperformed other
classifiers with an accuracy of 99.00%.

Turkoglu [51] X-ray SVM, AlexNet Their method achieved a classification accuracy of
99.18.

Arslan [52] Genomic
sequencs

K-NN The results showed that the distance measurement
achieved a classification accuracy of 98.40%.

Yasar
et al. [53]

CT SVM, K-NN Their experimental results showed that SVM was
superior to KNN.

Xu et al. [54] CT K-NN, random forest,
SVM

The multi-mode classification effect is better than
that of a single classifier.

Mohammed
et al. [55]

X-ray SVM, linear kernel and
radial basis function,
K-NN, decision tree

Compared with the traditional classification
methods, the SVM method achieved the best
classification accuracy of 95.00%.

Abraham
et al. [56]

X-ray Bayesian, several
pre-trained networks

Their experiments proved the effectiveness of
pre-trained multi-CNN over single CNN in the
detection of COVID-19.

Pokkuluri
et al. [57]

Cell Hybrid nonlinear cellular
automata classifier,
LSTM, Adaboost, SVM,
regression, ELM

The hybrid nonlinear cellular automata classifier
had reported an accuracy of 78.80%. The
proposed classifier can also predict the rate at
which this virus spreads, transmission within the
boundary.

Albadr
et al. [58]

X-ray Optimized Genetic
Algorithm-Extreme
Learning Machine

Their experimental result showed that the
Optimized Genetic Algorithm-Extreme Learning
Machine achieved 100.00% accuracy with fast
computation time.

El-Kenawy
et al. [59]

CT Voting classifier, particle
swarm optimization
algorithm

The proposed classifier aggregated the prediction
results of different classifiers to select the category
with the highest voter turnout.

Elaziz
et al. [63]

CT A hybrid approach,
marine predators
algorithm, moth-flame
optimization

The hybrid approach performed better in image
segmentation

(Continued)
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Table 4 (Continued)

Authors Dataset Techniques Results

Tiwari
et al. [64]

X-ray An image segmentation
approach based on marine
predator algorithm

Their results showed that the suggested hybrid
pattern functions better when compared to the
remaining algorithms for a system of
measurements.

El-bana
et al. [65]

CT Multi-modal learning,
contrast limited adaptive
histogram equalization

Their experimental results demonstrated an
increase of approximately 2.5% and 4.5% for the
dice coefficient and mean intersection-over-union,
respectively, while achieving a 60% reduction in
computational time, compared to the recent
literature.

Wang
et al. [66]

CT Mean-absolute error loss
algorithm, dice-loss
algorithm, Pneumonia
Lesion segmentation
network

Their experiments indicated that the proposed
network achieved higher performance than
state-of-the-art image segmentation networks

3 Diagnosis Techniques Based on Deep Neural Networks in COVID-19

3.1 COVID-19 Diagnosis Based on Transfer Learning
In many studies, deep learning models have shown superior performance to classical machine

learning models [67]. But, deep learning models have some drawbacks. For example, they need a
large number of labeled images for training that is costly and time-consuming. Transfer learning
just makes up for this shortcoming [68]; this is a technique that reuses pre-trained models for
a new related problem with fewer data and low complexity [69]. Mohammadi et al. [31] utilized
four pre-trained networks to construct models, including VGG16, VGG19, MobileNet, as well
as InceptionResNetV2, and compared their classification performance. These models were trained
and tested in the X-rays dataset, and the results showed that the MobileNet provided the highest
classification accuracy.

Ardakani et al. [70] compared ten well-known convolutional neural networks, includ-
ing AlexNet, VGG16, VGG19, SqueezeNet, GoogleNet, MobileNetV2, ResNet18, ResNet50,
ResNet101 and Xception. In their experiments, ResNet101 and Xception worked well. ResNet101
and Xception had the same area under the curve (AUC) of 99.40%, and Xception performed
better than ResNet101 in specificity, but ResNet101 achieved a higher sensitivity. Chowdhury
et al. [71] also trained networks using transfer learning (TL) and compared the performance
of networks with and without data augment. These deep learning networks were MobileNetv2,
SqueezeNet, ResNet18, InceptionV3, ResNet101, CheXNet, VGG19, and DenseNet201. These
data augment methods were rotation and translation. The dataset consisted of 423 COVID-19
chest X-ray images, 1485 pneumonia chest X-ray images, and 1579 healthy chest X-ray images. The
results showed that DenseNet201 performed better than other networks while with data augmen-
tation, and CheXNet achieved the highest AUC and sensitivity when without data augment. Narin
et al. [72] proposed an end-to-end structure, which did not require manual feature extraction,
selection, and classification. Five pre-trained networks were trained, namely ResNet50, ResNet101,
ResNet152, InceptionV3, and InceptionResNetV2. Through their experiments, it was clear that
ResNet50 performed better than other networks. Ismael et al. [73] collected 180 COVID-19 chest
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X-ray images and 200 healthy chest X-ray images to train CNN. This CNN training process
consisted of three parts: deep feature extraction, fine-tuning of pre-trained convolutional neural
networks, and end-to-end training of CNN, as Fig. 3.

COVID-19 images Normal images

Feature extraction Fine-tuning
End-to-end 

training of CNN

NormalCOVID-19

Figure 3: Illustration of the proposed methodology for COVID-19 detection

Five pre-trained deep networks were used for feature extraction, including ResNet18,
ResNet50, ResNet101, VGG16, and VGG19. SVM with quadratic, linear, cubic, and Gaussian
kernel functions were used for classification. The results showed that the classification performance
of the SVM with cubic kernel function was better than other kernel functions.

Murugan et al. [74] proposed a new framework based on an ELM classifier. In their experi-
ments, ResNet50 was used as an image preprocessing network, which would ignore some details
in the processing of small-size images, thus reducing the diagnostic accuracy. Marques et al. [75]
proposed a CNN based on EfficientNet. EfficientNet can extend the baseline ConvNet to any
target resource constraint while maintaining the model efficiency for transmitting learning datasets.
In general, the EfficientNet model offers more accuracy and efficiency than existing CNN models
such as AlexNet, ImageNet, GoogleNet, and MobileNetV2 [76]. EfficientNet includes models
ranging from B0 to B7, each with different parameters. The author used EfficientNetB4 with 19 M
parameters. The results were that the proposed CNN achieved 99.62% accuracy in binary classifi-
cation. Tammina [77] built a novel network called CovidSORT. This network was developed by the
TL with six pre-trained networks (InceptionV3, VGG16, VGG19, ResNet50, DenseNet121, and
MobileNetV2). The novel network achieved an accuracy of 96.83% based on the majority voting
method of these models. Sun et al. [78] proposed a model based on adaptive feature selection
guided deep forest. Adaptive feature selection guided deep forest is a method of obtaining a high-
level representation of specific positional features from CT images. Each layer of the deep forest
was composed of N independent random forests and a feature selection unit, among them, each
random forest produced a probability distribution vector of COVID-19 and community acquired
pneumonia (CAP). Then, they concatenated the N probability distribution vectors with the input
feature vector, and calculated the feature importance for each feature within the input feature
vector to reduce the redundancy of the features. The feature importance cx for x-th feature is as
follows:
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cx = 1
N

N∑
n=1

cx,n (1)

where cx,n is the feature importance for x-th feature in n-th random forest. Then average the
x-th feature of all random forests. They discarded the features with low feature importance by
a specific ratio based on the calculated feature importance. They collected 2522 CT scan images,
including 1495 COVID-19 images and 1027 CAP images. First, they used VB-Net [79] to divide
these images into infected regions and normal fields. Then, adaptive feature selection guided deep
forest was adopted to learn the features from COVID-19 patients’ images. Finally, a diagnostic
prediction value is generated at the last layer of the model. In the last layer, each forest would
produce a probability distribution p for the identification of COVID-19. For each subject, they
used the following equation to ensemble the predicted value for COVID-19,

p(l= c)= 1
N

N∑
n=1

p(l= c|n) (2)

where p(l= c|n) is the probability of subject belongs to category c (i.e., COVID-19 or CAP) that
was provided by the n-th forest in the last layer. They evaluated the model in accuracy, sensitivity,
specificity, AUC, precision as well as F1-score, and the results were 91.79%, 93.05%, 89.95%,
96.35%, 93.10%, and 93.07%, respectively, but the model is only made available for COVID-19
and CAP images. Horry et al. [30] adopted VGG19 as the backbone architecture and collected
CT, X-ray as well as LUS from several agencies. An image preprocessing stage was utilized to
normalize these images and reduce unwanted signal noise such as non-lung area visible in X-rays,
and thereby reducing the impact of sampling bias on their experiments. The results were that
LUS provided superior detection accuracy compared with X-rays and CT scans. The experimental
results showed that most deep learning networks were difficult to train well under the condition
of limited data and provided poor consistency across the three imaging modes.

Do et al. [80] used five architectures as the model backbones, including VGG16, VGG19,
InceptionV3, InceptionResNetV2, and Xception. The results indicated that the VGG16-based
model performed best with an accuracy of 97.00%, and these performances of the Xception-
based model and InceptionV3-based model were slightly lower. Chaudhary et al. [81] decomposed
the chest X-ray images into subband images via the Fourier-Bessel series expansion-based dyadic
decomposition method. These subband images were then fed as input to ResNet50, a pre-trained
network that was trained on ImageNet. Their experimental results indicated that the proposed
method increased classification accuracy, and the ResNet50 performed better with a classification
accuracy of 98.66%. Karar et al. [82] proposed a cascaded deep learning classifier. First, they
used a series of binary classifiers to simplify the complex multi-label classification of X-ray
images, then fine-tuned VGG and ResNet by stochastic gradient descent optimizer. 306 chest
X-ray images were collected, including bacterial pneumonia, COVID-19, viral pneumonia, and
healthy chest X-ray images. In the preprocessing step, perceptual adaptation of the image was
applied to improve the quality of images. Their experiments indicated that the performance of the
cascaded deep learning classifier was superior to other multi-label classifiers for COVID-19 and
pneumonia in previous studies. Sixteen pre-trained networks were trained through transfer learn-
ing [83], including SqueezeNet, GoogLeNet, InceptionV3, DenseNet201, MobileNetV2, ResNet18,
ResNet50, ResNet101, Xception, InceptionResNetV2, ShuffleNet, NasNetMobile, NasNetLarge,
AlexNet, VGG16, and VGG19. In their experiments, CT images were used. Among these, 80%
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of the images were used for training and the rest for testing. The results showed that the
DenseNet201 was the deepest, and it achieved the best performance in accuracy, sensitivity, and
F1 score. Polat et al. [84] used TL to retrain three networks, including ResNet, DenseNet and
VGG. And, the class activation mapping (CAM) method was applied to create the activation
map that highlights key areas of the radiographs to improve causality and comprehensibility.
The experimental results showed that the final model optimized by DenseNet161 structure had
the best performance and achieved the classification accuracy of 97.10%. A distant domain
transfer learning diagnosis method was proposed by Niu et al. [85], which consisted of two
parts: the U-Net segmentation model and the distance feature fusion classification model. Distant
domain transfer learning is a newly introduced transfer learning method that differs from the
traditional TL method in that it mainly solves the negative transfer problem caused by the loose
relationship between the source domain and the target domain [86]. The proposed algorithm
achieved 96.00% classification accuracy, which was 13% higher classification accuracy than “non-
transfer” algorithms, and 8% higher than existing transfer and distant transfer algorithms. Do [87]
proposed a bundled transfer learning to detect COVID-19 cases from pneumonia and healthy
patients. Features extracted from each pre-trained model were collected and used to train new
layers. Ibrahim et al. [88] used the pre-trained AlexNet to classify X-rays and performed binary
classification and multi-classification for COVID-19 pneumonia, non-COVID-19 viral pneumonia,
bacterial pneumonia, and healthy patients. For X-rays for classifying COVID-19 pneumonia and
non-COVID-19 pneumonia, the accuracy of the network was 99.62%, and the accuracy of the
multi-classification was 93.42%. Dastider et al. [89] used the pre-trained ResNet152V2 as the
backbone architecture of the ResCovNet. The dataset consisted of 7400 chest X-ray images,
including COVID-19, viral pneumonia, bacterial pneumonia, mycoplasma pneumonia and healthy
chest X-ray images. They used Otsu’s thresholding to enhance the characteristics of the classifica-
tion network on the preprocessing stage, and used ReLU function as the activation function and
softmax function as the prediction function. Later, the model obtained 88.00% accuracy in multi-
classification. Canayaz [90] proposed MH-COVIDNet, which applied four pre-trained networks
(AlexNet, VGG19, GoogleNet, and ResNet) to complete feature extraction tasks. The binary
particle swarm optimization algorithm and the binary gray wolf optimization were adopted to
select the best potential features. The overall accuracy of this network was 99.38%.

Above all, these studies are only made available for classifying COVID-19 from other pneumo-
nia patients or healthy cases, but cannot distinguish the stage of the COVID-19. Yu et al. [91] used
the TL method to diagnose the stage of COVID-19 cases. Taking the advantages of pre-trained
deep neural networks, InceptionV3, ResNet50, ResNet101, and DenseNet201 were exploited to
extract the features from CT scans. A total of 729 2D axial plan slices with 246 severe cases
and 483 non-severe cases were employed. Then, these features were fed to classifiers, and clas-
sifiers include linear discriminant, cubic SVM, linear SVM, K-NN, and Adaboost decision tree.
The experimental results demonstrated that the DenseNet201 with cubic SVM achieved the best
performance in COVID-19 severity screening. The DenseNet201 with cubic SVM achieved the
highest severity classification accuracy of 95.20% and 95.34% for tenfold cross-validation and
leave-one-out, respectively. The literature with transfer learning is as Table 5.



36 CMES, 2022, vol.130, no.1

Table 5: Literature with transfer learning

Authors Dataset Techniques Results

Mohammadi
et al. [31]

X-ray VGG19, MobileNet,
VGG16,
InceptionResNetV2

MobileNet provided the highest classification
accuracy.

Ardakani
et al. [70]

CT SqueezeNet, AlexNet,
VGG16, VGG19,
Xception, GoogleNet,
MobileNetV2, ResNet18,
ResNet50, ResNet101

ResNet101 and Xception had the same AUC of
99.40%, and Xception performed better than
ResNet101 in specificity, but ResNet101 had a
high sensitivity.

Chowdhury
et al. [71]

X-ray MobileNetv2, VGG19,
stochastic gradient
descent, momentum
optimizer, SqueezeNet,
ResNet18, InceptionV3,
ResNet101, CheXNet,
DenseNet201

DenseNet201 performed better than other
models while the model was trained with data
augment and CheXNet achieved high AUC and
sensitivity when without data augment.

Narin
et al. [72]

X-ray ResNet50, ResNet101,
InceptionResNetv2,
ResNet152, InceptionV3

ResNet50 performed better than the other
networks and achieved a classification accuary
of 99.70%.

Ismael
et al. [73]

X-ray ResNet18, VGG19,
VGG16, ResNet50,
ResNet101, support vector
machine, quadratic kernel
functions, linear kernel
functions, cubic kernel
functions, Gaussian kernel
functions

The support vector machine method with cubic
kernel function outperformed with all other
kernel functions in classification.

Murugan
et al. [74]

X-ray Extreme learning machine,
ResNet50

ResNet50 would ignore some details in the
processing of small-size images and achieved an
accuracy of 94.07%.

Marques
et al. [75]

X-ray EfficientNetB4, CNN The proposed CNN based on EfficientNetB4
achieved 99.62% accuracy in the binary
classification.

Tammina [77] X-ray VGG19, VGG16,
InceptionV3, ResNet50,
DenseNet121,
MobileNetV2, majority
voting method

The proposed model achieved an accuracy of
96.83% based on the majority voting method.

Sun
et al. [78]

CT Adaptive feature selection
guided deep forest

The model based on adaptive feature selection
guided deep forest obtained a high-level
representation of specific positional features
from CT images.

(Continued)
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Table 5 (Continued)

Authors Dataset Techniques Results

Horry
et al. [30]

CT, X-ray,
LUS

VGG19 LUS provided superior detection accuracy
compared with X-ray and CT scans.

Hussain
et al. [49]

X-ray XGB-L, XGB-Tree,
classification and
regression tree, k-nearest
neighbor, Naive Bayes,
gray level co-occurrence
matrix, morphological
feature-extracting method,
texture feature,
morphological feature

Texture features and morphological features
improved the classification accuracy. The
proposed model achieved the binary
classification accuracy of 100.00% and the
multi-class classification accuracy of 97.56%.

Do
et al. [80]

X-ray VGG16, Xception,
VGG19, InceptionV3,
InceptionResNetV2

VGG16 performed better than other networks
with the accuracy of 97.00%.

Chaudhary
et al. [81]

X-ray ResNet50, Fourier-Bessel
series expansion-based
dyadic decomposition
method

The Fourier-Bessel series expansion-based
dyadic decomposition method increased the
accuracy, and the ResNet50 performed better
with a classification accuracy of 98.66%.

Karar
et al. [82]

X-ray A cascaded deep learning
classifier, VGG, ResNet,
stochastic gradient
descent, perceptual
adaptation of the image

The proposed cascaded deep learning classifier
achieved a multi-class classification accuracy of
99.90%.

Pham [83] CT Sixteen pre-trained
networks

The DenseNet201 network was the deepest, and
it achieved the best performance in accuracy,
sensitivity, and F1 score.

Polat
et al. [84]

X-ray ResNet, DenseNet, VGG The final model optimized by DenseNet161
structure had the best performance and
achieved the classification accuracy of 97.10%.

Niu
et al. [85]

CT Distant domain transfer
learning

Distant domain transfer learning achieved
96.00% classification accuracy, which was 13%
higher classification accuracy than
“non-transfer” algorithms, and 8% higher than
existing transfer and distant transfer
algorithms.

Do [87] CT, X-ray Bundled transfer learning Bundled transfer learning achieved features
extracted from each pre-trained model were
collected and used to train new layers.

Ibrahim
et al. [88]

X-ray AlexNet For X-rays for classifying COVID-19
pneumonia and non-COVID-19 pneumonia,
the accuracy of the AlexNet model was 99.62%,
and the accuracy of the multi-classification was
93.42%.

(Continued)
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Table 5 (Continued)

Authors Dataset Techniques Results

Dastider
et al. [89]

X-ray ResCovNet,
ResNet152V2, softmax,
rectified linear unit

The ResCovNet obtained 88.00% accuracy in
the multi-classification.

Canayaz [90] X-ray Binary particle swarm
optimization, binary gray
wolf optimization,
AlexNet, VGG19,
GoogleNet, ResNet

The overall accuracy of the proposed network
was 99.38%.

Yu
et al. [91]

CT InceptionV3, ResNet50,
DenseNet201, ResNet101,
cubic support vector
machine, support vector
machine, k-nearest
neighbor, linear
discriminant, adaboost
decision tree

The DenseNet201 with cubic SVM achieved the
highest severity classification accuracy of
95.20% and 95.34% for tenfold cross-validation
and leave-one-out, respectively.

3.2 COVID-19 Diagnosis Based on Convolutional Neural Networks Training from Scratch
CNNs play an important role in clinical diagnosis. In the diagnosis of COVID-19, CNNs

training from scratch have been favored by medical researchers. Wang et al. [92] introduced a
new network—Covid-Net, which is an opening source for the general public. The Covid-Net
combined lightweight projection-expansion-projection-extension with selective long-range connec-
tivity. These methods enhanced representational ability while maintaining reduced calculation
complexity. Leveraging a large number of long-range connections in densely connected deep neural
networks would lead to increased computational complexity. Therefore, long-range connections
were adopted in a sparing manner, and four convolution layers were leveraged as central hubs
of long-connected much later layers in the network. Covid-Net was said to be the first open-
source network design to detect COVID-19 from X-rays, which encouraged repeatability. Waheed
et al. [93] designed CovidGAN to generate more images, which was based on an auxiliary classifier
generative adversarial network (ACGAN). The ACGAN is as Fig. 4.

ACGAN used the class label c and noise z to each produced sample, and then the generator
G leveraged them to produce Xfake = G(c,z) images. Later, a distribution of both class labels
and sources was given by the discriminator D. They utilized ACGAN transforms to predict a
particular image’s class labels and allowed the generation of high-quality images while learning
a representation independent of the class labels. Then they built the CovidGAN, which was a
complete architecture with a generator and a discriminator. The structure map of CovidGAN is
as Fig. 5.
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Figure 5: CovidGAN structure map

CovidGAN utilized two loss functions, with binary-CrossEntropy in the first layer and sparse-
categorical-CrossEntropy in the second layer. The dataset, 1124 chest X-ray images, were obtained
from three publicly accessible datasets. The CovidGAN produced more composite images, which
improved the classification accuracy to 95.00%. While without these composite images, the accu-
racy was only 85.00%. A novel CNN namely CoroDet, was proposed by Hussain et al. [94],
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which achieved 99.10% and 91.20% classification accuracy in the binary classification (COVID-19
and healthy chest images) and the multi-classification (COVID-19, non-COVID bacterial pneu-
monia, non-COVID viral pneumonia, and healthy chest images). They used a flatten layer that
transforms the entire pooled feature map matrix into a single column. Moreover, three activation
functions were used in their network, sigmoid function, ReLU function, and leaky ReLU func-
tion. Singh et al. [95] discussed the multi-objective differential evolution–based CNNs to classify
COVID-19-infected patients from chest CT images. Their research designed a multi-objective
fitness function as:

f (t)= Sn+Sm (3)

here, Sn defines the sensitivity, and Sm defines the specificity parameters. And the sensitivity is
evaluated by confusion matrix and estimated as:

Sn= Tm
Tm+Fn

(4)

here, Tm and define true-positive values and false-negative values, respectively. And Sm defines the
proportion of actual negatives, and it is mathematically evaluated as:

Sm = Tn
Tn+Fm

(5)

here, Tn defines true-negative values and Fm defines false-positive values. In their network, the
ReLU activation function was utilized to learn complex functional mappings among the inputs
and response variables. And the proposed CNN was compared with an ANN. Extensive exper-
imental results revealed that the proposed model outperformed competitive models. Mahmud
et al. [96] built a network based on residual units and shifter units. They applied stacking of
multiple networks to improve the accuracy and used gradient-guided class activation mapping
(Grad-CAM) [97] to locate the infected region of COVID-19 cases. In binary classification,
the network achieved an accuracy of 97.40%. Abbas et al. [98] proposed a new model, called
Decompose, Transfer, and Compose, which could handle any data irregularities (e.g., overlapping
classes) by studying the class boundaries using a class decomposition mechanism. First, the local
features of chest X-ray images were extracted by the pre-trained networks, and the data structure
was simplified via the class decomposition layer of Decompose, Transfer, and Compose. Next,
a gradient descent method was used for optimization. Finally, a class composition layer was
adopted to refine the final classification. The model achieved a classification accuracy of 93.10%.
Using the optimized CNN, the image was tested in less than 5 s with an accuracy of 97.78%.
Ahmed et al. [99] proposed an end-to-end network based on a residual-structure network. The
network consisted of a multilevel preprocessing filter block, a multilevel feature extractor, and a
classification block. And the global average pool was applied to compress the feature space in
the classification block. Since the small number of COVID-19 chest X-ray images in the dataset,
their experiments adopted the weighted classification CrossEntropy as the loss function of the
classification network when dealing with a multi-classification problem. The calculation of the
function is as follows:

L= 1
N

N∑
i=1

wij(yij log(ŷij)) (6)
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wij = 1
Nc

∑Nc
m=1 nm
nj

(7)

where yij represents the basic truth value of class j image i with a value range of 0 to 1, and
ŷij ∈ [0, 1] represents the softmax prediction for the image i of class j, wij represents the weight of
the image i of class j, nj represents the number of images of class j, N represents the number of
images in a batch, and Nc represents the total number of classes. They used two common data
sets for training and testing, CheXpert Dataset and COVIDx Dataset. The experimental results
showed that the classification accuracy of the model was 97.48%, and the sensitivity was 96.39%.
Karthik et al. [100] proposed a new CNN architecture, which could learn the unique convolutional
filter pattern for each kind of pneumonia and could automatically learn the features between
infected and healthy chest X-ray images. The architecture consisted of two structures, channel-
shuffled dual-branched CNN and channel-shuffled dual-branched CNN with a distinctive filter
learning paradigm. They used the weighted gradient of the target class filter to identify the filter
set that was most responsive to a particular class. It was reported that the proposed architecture
was the first attempt to learn custom filters in a single convolutional layer, and the proposed CNN
achieved an accuracy of 99.80%. Siddhartha et al. [101] came up with a way called COVIDLite,
which combined the depth-wise separable convolutional neural network with white balance, and
contrast limited adaptive histogram equalization. Among them, the depth-wise separable con-
volutional neural network was applied to classify the images, and it divided the convolution
operation into two independent operations: deep or spatial convolution and sequential point-by-
point convolution [102]. The contrast limited adaptive histogram equalization method was adopted
to enhance the visibility of the X-ray images in the preprocessing step. The depth-wise separable
convolutional neural network trained using sparse cross-entropy was used for image classification
with lesser parameters and significantly lighter in size, i.e., 8.4 MB without quantization. The
way helped doctors shorten the diagnosis time and achieved a good classification performance.
The proposed method achieved higher accuracy of 99.58% for the binary classification, whereas
96.43% for the multi-class classification and out-performed various state-of-the-art methods. Keles
et al. [103] developed two new diagnostic networks named COV19-CNNet and COV19-ResNet.
They collected 910 chest X-ray images, including COVID-19, viral pneumonia, and healthy chest
X-ray images. Experiments showed that COV19-CNNet achieved the multi-classification accuracy
of 94.28% and COV19-ResNet achieved the multi-classification accuracy of 97.61%. Two diag-
nostic COVID-19 architectures were proposed and compared by Aslan et al. [104]. One was an
image segmentation architecture based on ANN. The other was a hybrid architecture based on
bidirectional long-short term memories. The results showed that the classification accuracy of the
first architecture was 98.14%, and the second hybrid structure classification accuracy was 98.70%.
Similarly, Pustokhin et al. [105] proposed a new residual network-based Class Attention Layer
with Bidirectional LSTM. The proposed model involved a series of processes namely bilateral
filtering based preprocessing, residual network-based Class Attention Layer with Bidirectional
LSTM based feature extraction, and softmax based classification. Once the bilateral filtering
technique produces the preprocessed image, residual network-based Class Attention Layer with
Bidirectional LSTM based feature extraction process takes place using three modules, namely
ResNet based feature extraction, Class Attention Learning, and Bidirectional LSTM modules.
Finally, the softmax layer is applied to categorize the feature vectors into corresponding feature
maps. The model achieved a multi-classification accuracy of 94.88% and a sensitivity of 93.28%.
Nour et al. [106] proposed a CNN based on deep feature extraction and Bayesian optimization.
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It was a novel serial network consisting of five convolutional layers. They used SVM, K-NN, and
decision tree methods as classifiers. The dataset included chest X-rays from the public dataset, and
the best classification accuracy of 98.97% was obtained by SVM. Since the variance of a single
CNN classifier is usually too high, which leads to poor generalization in practical application,
Singh et al. [107] built a COVIDScreen network. The COVIDScreen was based on the pruning
learning algorithm, which solved the problem of generalization and complexity based on multiple
CNN learners. And the combination of learners was adopted to improve the inductivity; that is,
four CNN learners and Naive Nayes learners were applied to form meta-learners. In addition,
they used Grad-CAM visualization to integrate the interpretation to build trust in the medical
artificial intelligence system, and the accuracy rate of the model was 98.67%. The literature with
CNNs is as Table 6.

Table 6: Literature with CNNs

Authors Dataset Techniques Results

Wang
et al. [92]

X-ray Lightweight
projection-expansion-
projection-extension,
Covid-Net

Covid-Net was said to be the first open
source network design to detect
COVID-19 from chest X-ray images,
which encouraged repeatability.

Waheed
et al. [93]

X-ray CovidGAN, auxiliary
classifier generative
adversarial network,
rectified linear unit

The CovidGAN produced more
composite images, which improved the
classification accuracy to 95.00%. While
without these composite images, the
accuracy was only 85.00%.

Hussain
et al. [94]

X-ray,
CT

Rectified linear unit The proposed network achieved 99.10%
and 91.20% classification accuracy in
the binary classification (COVID-19
and healthy chest images) and the
multi-classification (COVID-19,
non-COVID bacterial pneumonia,
non-COVID viral pneumonia, and
healthy chest images).

Singh
et al. [95]

CT Multi-objective
differential
evolution–based
CNN, rectified linear
unit, ANN

The multi-objective differential
evolution–based CNN outperformed
the ANN.

Mahmud
et al. [96]

X-ray Residual units, shifter
units, Grad-CAM

The network achieved an accuracy of
97.40% in the binary classification.

(Continued)
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Table 6 (Continued)

Authors Dataset Techniques Results

Abbas
et al. [98]

X-ray A class decomposition
mechanism

The proposed method handled any
data irregularities and achieved a
classification accuracy of 93.10%.

Ahmed
et al. [99]

X-ray Residual-structure
network

The classification accuracy of the
model was 97.48%, and the sensitivity
was 96.39%.

Karthik
et al. [100]

X-ray Channel-shuffled
dual-branched CNN,
distinctive filter
learning

It was reported that the proposed
architecture was the first attempt to
learn custom filters in a single
convolutional layer, and the proposed
CNN achieved an accuracy of 99.80%.

Siddhartha
et al. [101]

X-ray Depth-wise separable
convolutional neural
network, contrast
limited adaptive
histogram
equalization

The proposed method achieved higher
accuracy of 99.58% for the binary
classification, whereas 96.43% for the
multi-class classification and
outperformed various state-of-the-art
methods.

Keles
et al. [103]

X-ray CNN,
COV19-CNNet,
ResNet,
COV19-ResNet

COV19-CNNet achieved the
multi-classification accuracy of 94.28%,
and COV19-ResNet achieved the
multi-classification accuracy of 97.61%.

Aslan
et al. [104]

X-ray,
CT

ANN, bidirectional
long-short term
memories

The classification accuracy of the
ANN-based architecture was 98.14%,
and the hybrid structure based on
bidirectional long-short term memories
classification accuracy was 98.70%.

Pustokhin
et al. [105]

X-ray Long-short term
memory, residual
network

The proposed model achieved a
multi-classification accuracy of 94.88%
and a sensitivity of 93.28%.

Nour
et al. [106]

X-ray CNN, support vector
machine, k-nearest
neighbor, decision tree

The best classification accuracy of
98.97% was obtained by SVM.

Singh
et al. [107]

X-ray pruning learning
algorithm

The proposed model solved the
problem of generalization and model
complexity based on multiple CNN
learners and achieved a classification
accuracy of 98.67%.

3.3 COVID-19 Diagnosis Based on Ensemble Learning
Since many deep learning models work well only under a common assumption: the training

and testing data are drawn from the same feature space and the same distribution. When the
distribution changes, most models need to be rebuilt from scratch via newly collected training
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data. However, in many practical applications, it is expensive or impossible to recollect the needed
training data and rebuild the models [108]. So, ensemble learning (EL) is a significant technique
for enhancing the model classification performance [109]. Wang et al. [110] used two pre-trained
architectures for COVID-19 diagnosis via transfer learning and model integration. The two pre-
trained architectures were ResNet101 and ResNet152. After training, the model achieved 96.1%
classification accuracy on the testing dataset. Rajaraman et al. [111] obtained the optimal model
by iteratively pruned method and combined the prediction results of the optimal pruning model
through different ensemble strategies. Four datasets, PEDIATRIC X-ray dataset [112], RSNA X-
rays dataset [113], TWITTER COVID-19 X-rays dataset, and MONTREAL COVID-19 X-rays
dataset [114], were collected, and 90% of these images were used for training, and 10% of these
images were used for testing. Through their experiments, it could be observed that the combination
of iterative model pruning and ensemble learning could improve the prediction accuracy. Attallah
et al. [115] proposed a novel CAD system based on the fusion of multiple CNNs for detecting
COVID-19. The CAD system employed four types of CNNs, including AlexNet, GoogleNet,
ResNet18, and ShuffleNet. First, they used the end-to-end classification. Then, depth features
were extracted separately from each network, and principal component analysis was applied to
each depth feature set extracted from each network. Afterward, a certain number of principal
components were selected from each depth feature set for fusion. The results showed that the
system could reduce the computational cost of the final model by nearly 32%. Wang et al. [116]
proposed a CAD framework based on two deep learning models: the discrimination-DL and the
localization-DL. The discrimination-DL used the feature pyramid network as the backbone to
compute a convolutional feature map of the input images, and COVID-19 chest X-ray images
would be recognized automatically. Due to the imbalanced dataset, they obtained the multi-
focus function through the class imbalance focus loss function of binary classification to realize
recognition, and the function was calculated as follows:

lloss(p)=−α
1
N

N∑
i=0

(1− pi)γ log(pi) (8)

here, i is the class of X-ray, and pi is the prediction probability of class, i the weighting factor
α is 0.25, the tunable focusing parameter γ is 2, and N is all the number of classes. Then they
combined the multi-focal loss function with the softmax function to get an approximate maximum
function. The approximate maximum function is defined as:

fj(x)= eZj(x)∑K
i=1 e

Zi(x)
(9)

where x is a vector, and the individual Zi(x) values are the elements of the input vector
and can take any real value. The term in the denominator is the normalization term, which
ensures that the sum of the output values of the function will equal 1, thus constituting a
valid probability distribution. Then, the obtained COVID-19 chest X-ray images would be fed
as input data to the localization-DL for automatic detection of the left lung, right lung, or
bipulmonary. The DL-based framework could achieve high diagnostic accuracy compared with
results from radiologists but lacks interpretability. Compared to the radiologists’ discrimination
and localization results, the accuracy of COVID-19 discrimination using the Discrimination-DL
yielded 98.71%, while the accuracy of localization using the Localization-DL was 93.03%. Oliveira
et al. [117] combined ResNet50, EfficientNetB7, MobileNetV2, DenseNet121, and MobileNet to



CMES, 2022, vol.130, no.1 45

build a model. They collected chest X-ray images from COVIDx [118] and then preprocessed
these images with augmentation techniques such as rotation, zoom, vertical, and horizontal. And
the results indicated that the model achieved an accuracy of 92.00% in the multi-classification
(COVID-19, pneumonia, and healthy chest X-ray images) and achieved an accuracy of 93.50%
when distinguishing between COVID-19 chest X-ray images and non-COVID chest X-ray images.
Qjidaa et al. [119] adopted an ensemble classification method for COVID-19 diagnosis. They chose
VGG16, VGG19, DenseNet121, MobileNet, Xception, InceptionV3, and InceptionResNetV2 to
train, and each network produced a prediction. Then, they leveraged the seven pre-trained net-
works’ predictions to make a prediction vector and used the majority voting to come up with
a final prediction. The results indicated that the model with the ensemble learning technique
could improve the classification accuracy, and the proposed classification method achieved the
best performance with an accuracy of 99.00% and a precision of 98.60%. Gupta et al. [120]
proposed an integrated CNN, namely InstaCovNet19, which consisted of MobileNet, Xception,
InceptionV3, ResNet101, and NASNet. In the feature extraction, these pre-trained networks were
used as feature extractors. Since each network had its own unique feature extraction technique,
this integrated method was helpful to improve the classification performance. The results showed
that the classification accuracy of this model was 99.08% in the multi-classification task and the
classification accuracy of 99.53% in the binary classification task. Kechagias-Stamatis et al. [121]
proposed a new structure-fusion deep learning network, which integrated the layers of GoogleNet
and ResNet18. In addition, they evaluated the model in two experiments, binary classification, and
multi-classification. The classification capability of the structure-fusion deep learning network was
evaluated on CT and X-ray datasets with 99.30% and 100.00% classification accuracy, respectively.
The results showed that the structure-fusion deep learning network performed better than both
single networks. The literature with ensemble learning is as Table 7.

Table 7: Literature with ensemble learning

Authors Dataset Techniques Results

Wang
et al. [110]

X-ray ResNet101,
ResNet152

The model integrated by ResNet101
and ResNet152 achieved an accuracy
of 96.10%.

Rajaraman
et al. [111]

X-ray CNN, iteratively
pruned technique

The combination of iterative model
pruning and ensemble learning
achieved the prediction accuracy of
99.01%.

Attallah
et al. [115]

CT Principal component
analysis, AlexNet,
GoogleNet, ResNet18,
ShuffleNet, CAD
system

The novel CAD system reduced the
computational cost of the final
model by nearly 32%.

(Continued)
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Table 7 (Continued)

Authors Dataset Techniques Results

Wang
et al. [116]

X-ray A framework based
on discrimination-DL
and localization-DL

Compared to the radiologists’
discrimination and localization
results, the accuracy of COVID-19
discrimination using the
Discrimination-DL yielded 98.71%,
while the accuracy of localization
using the Localization-DL was
93.03%.

Oliveira
et al. [117]

X-ray EfficientNetB7,
ResNet50,
MobileNetV2,
DenseNet121,
MobileNet

The proposed model achieved an
accuracy of 92.00% in the
classification between COVID-19,
pneumonia, and healthy chest X-ray
images and achieved 93.50%
accuracy when distinguishing
between COVID-19 and
non-COVID.

Qjidaa
et al. [119]

X-ray Ensemble
classification, VGG16,
VGG19,
DenseNet121,
MobileNet, Xception,
InceptionV3,
InceptionResNetV2

The ensemble classification achieved
the best performance with an
accuracy of 99.00% and a precision
of 98.60%.

Gupta
et al. [120]

X-ray NASNet, MobileNet,
ResNet101, Xception,
InceptionV3

The accuracy of the proposed
network was 99.08% in the
multi-classification task and 99.53%
in the binary classification task.

Kechagias-
Stamatis
et al. [121]

X-ray,
CT

GoogleNet, ResNet18,
a structure-fusion
deep learning network

The classification capability of the
structure-fusion deep learning
network was evaluated on CT and
X-ray datasets with 99.30% and
100.00% classification accuracy,
respectively.

3.4 COVID-19 Diagnosis Based on Unsupervised Learning and Semi-Supervised Learning
The COVID-19 outbreak has placed tremendous pressure on radiologists to read these medical

images. Medical practitioners are on the front lines of the epidemic, and studies of their mental
health have shown that a significant number of medical practitioners show symptoms of depres-
sion, anxiety, and insomnia [122]. Although many models based on supervised learning achieved
high classification accuracy, a large number of images with radiologist labels are necessarily needed
in the process of training models. However, in such an outbreak situation, clinicians have very
limited time to perform the tedious manual labels, which may lead to not adequate labeled
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images. Therefore, unsupervised learning and semi-supervised learning are becoming more and
more popular, which do not need a large number of labeled images.

Li et al. [123] proposed a dual-track ranking method to train a model based on the self-
supervised learning method. They extracted features from negative CT images and COVID-19
CT images and calculated the earth mover’s distance between these two kinds of image features
for making “difficulty” and “diversity” soft labels. Through the dual-track ranking method, they
only used half of the negative samples for training, which reduced the training time and achieved
superior classification performance. However, the method is only applicable to binary classification
tasks, which is an area that needs to be improved in the future. Roy et al. [124] raised a novel
network, which derived from spatial transformer networks [125] for the analysis of LUS images.
They solved several limitations in some previous researches. First, they used a spatial transformer
network to learn a semi-supervised learning localization policy and leveraged an ensemble of
multiple state-of-the-art convolutional networks for image segmentation. Second, they predicted
the presence of COVID-19 artifacts and a score connected to the disease severity via ordinal
regression. The results showed that the spatial transformer network could improve positioning
accuracy, and the segmentation network could segment the LUS images from the background
with high accuracy. Wang et al. [126] put forward the DeCoVNet, which is a 3D deep convolu-
tional neural network with semi-supervised learning. The 3D deep convolutional neural network
architecture is as Fig. 6.

CT images

Stem 

+ +

Two 3D residual blocks classifier

probability

3D Conv 3D BN+ReLU 3D Pooling 3D Dropout FC Layer +Softmax

Figure 6: DeCoVNet architecture

The proposed network took a CT volume with its 3D lung mask as input and directly output
the probabilities of COVID-positive and COVID-negative. First, CT volumes were generated by
U-Net. In the first stage, rich local visual information was retained. And in the second stage, 3D
feature maps were generated to generate feature maps via two 3D residual blocks. In the third
stage, the information in the CT volume was extracted, and then the probability was output. The
network was a weakly supervised learning network that only utilized small amounts of images
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with labels for training. Also, Hu et al. [127] proposed a new model with semi-supervised learning.
A multi-view U-Net was used for lung segmentation, and the segmentation network could deduce
the delineation of the lung anatomy of COVID-19, CAP, and nosocomial pneumonia. According
to the infected areas between COVID-19 and CAP cases, they proposed a multi-scale learning
scheme to cope with variations of size and location of the lesions and then applied a spatial
aggregation with a global max pooling operation to obtain categorical scores. Their experiments
utilized representational learning on multiple feature levels and explained which features can be
learned at each level. Calderón Ramírez et al. [128] proposed a semi-supervised deep learning
model based on Mix Match [129], in which they used labeled and unlabeled chest X-ray images.
The labeled images observed Xl = {x1, . . . ,xn} and corresponding labels set was Ml = {m1, . . . ,mn}.
The unlabeled set was Xu= {x1, . . . ,xn}. Then regularized the data and used an unlabeled dataset
SU , and the regularization function was calculated as the following equation:

ξ(S)=
∑

(xi,mi)εSl

ξl(w,xi,mi)+ δ
∑
→
xj

εSu

ξu(w,xj) (10)

where w corresponds to the weights of the model to estimate, ξl and ξu correspond to the labeled
and unlabeled loss terms, and δ corresponds to the unsupervised term weight and controls the
influence of the unlabeled data during training. In their experiments, they combined regularization
and Mix Match for COVID-19 diagnosis. The results showed that when the proportion of unla-
beled data is high, the accuracy of the model was improved by about 15%, which suggested that a
semi-supervised framework could improve the level of performance of COVID-19 detection when
the quantity of high-quality label data was small. King et al. [130] established an unsupervised
network based on self-organizing feature mapping, which could show the influence weight of
the image features in classification. Fang et al. [131] extracted 77 features from the CT lesions.
Then, unsupervised clustering and multiple cross-validations were adopted to select key features
as input to SVM for classification. However, their experiments used CT images from only one
hospital, which reduced generalization. Abdel-Basset et al. [132] proposed an innovative semi-
supervised minority lens segmentation method to segment efficiently from only a small number
of annotated CT scans. They used encoder-decoder architecture to extract high-level information.
The architecture was mainly composed of a feature encoder module, a context enrichment module,
and a feature decoder module. They used the ResNet34 as the encoder backbone for feature
extraction. Then, they used a Smoothing Atrus Convolution block and a multi-scale Pyramid Pool
block to represent the context enrichment module and proposed an adaptive recombination and
a recalculation module that allowed intensive knowledge exchange between paths. The literature
with unsupervised learning and semi-supervised learning is as Table 8.

3.5 COVID-19 Diagnosis Based on Graph Neural Networks
The data used in traditional machine learning is Euclidean data, and the most significant

feature of Euclidean data is regular spatial structure. However, a large number of images are
not following this rule, so that traditional deep learning is not available for this type of data.
In recent years, graph neural networks have been used to solve this problem [133]. Its core is
that each node is connected with its adjacent nodes [134], and the change of the node can cause
the corresponding changes of the adjacent nodes [135]. For example, the risk of infection can
be inferred using temporal and spatial information between people [136]. The GNNs include
several types, such as graph convolutional network (GCN), graph attention network (GAT), graph
autoencoder, graph generative network, and so on.
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Table 8: Literature with unsupervised learning and semi-supervised learning

Authors Dataset Techniques Results

Li et al. [123] CT Self-supervised
learning, dual-track
ranking, earth mover’s
distance

Through the dual-track ranking
method, they only used half of
the negative samples for
training, which reduced the
training time and achieved the
F1 score of 85.40%.

Roy
et al. [124]

LUS Semi-supervised
learning, spatial
transformer network,
ordinal regression

The spatial transformer network
improved the positioning
accuracy effectively.

Wang
et al. [126]

CT Semi-supervised
learning, U-Net

The proposed network only
utilized small amounts of
images with labels for training.

Hu et al. [127] CT Semi-supervised
learning, global max
pooling, multi-view
U-Net

Their experiments utilized
representational learning on
multiple feature levels and
explained which features could
be learned at each level.

Calderón
Ramírez
et al. [128]

X-ray Mix Match,
semi-supervised
learning

The results showed that when
the proportion of unlabeled
data is high, the accuracy of
the proposed model was
improved by about 15%.

King
et al. [130]

X-ray Unsupervised
learning,
self-organizing feature
mapping

The model based on
self-organizing feature mapping
showed the influence weight of
the image features in
classification.

Fang
et al. [131]

CT Unsupervised
clustering, multiple
cross-validations,
support vector
machine

Unsupervised clustering and
multiple cross-validations were
used to select key features as
input to an SVM for
classification and diagnosis.

Abdel-Basset
et al. [132]

CT Semi-supervised
minority lens
segmentation method,
Smoothing Atrus
Convolution,
multi-scale Pyramid
Pool

The semi-supervised minority
lens segmentation method
segmented efficiently with only
a small number of annotated
CT scans.

Wang et al. [137] proposed a framework, namely FGCNet, based on CNN and GCN. The
CNN provided the individual image-level representation and the GCN produced the relation-aware
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representation. In addition, they used the Grad-CAM method to provide a visual explanation
about the medical diagnosis and increase the reliability of the framework. Most of the hyperpa-
rameter values in their study were set by trial-and-error method. The stability factor was set as
10−5. The retention probability was set as 0.5. The pooling size was set to 2. The rank threshold
was set to 2. The maximum shift factor was 25, the mean and variance of noise injection were set
to 0 and 0.01, respectively. The number of conv layers and fully connected layers were set as 7 and
2, respectively. The number of cluster centroids was set to 256. The number of neighbors in KNN
was set to 7. The framework was compared with state-of-the-art methods, and the results indicated
that the framework outperformed other methods with high classification accuracy. Sehanobish
et al. [138] proposed a baseline architecture that proved to be better than GAT and GCN.
The architecture was composed of transformers and GAT layers, and it can produce new edges
via unsupervised learning and self-supervised learning. Their experiments indicated the baseline
architecture could provide an explanation about the genes and cells in all phases of the COVID-19
cases. Yu et al. [139] proposed a new model, namely ResGNet-C. In ResGNet-C, two by-products,
named NNet-C and ResNet101-C, were also produced, which showed high classification accuracy
in COVID-19 detection. ResNet101-C could extract more representative features for the rest two
models NNet-C and ResGNet-C. NNet-C, a one-layer neural network, was a simple classifier that
took features extracted by ResNet101-C as input. The ResGNet-C framework is as Fig. 7.

Input

ResNet101-C-FC-128

FC-2

Softmax 

Output 

*

Graph

Graph 
representation

GNN

Figure 7: ResGNet-C framework

Fully connected (FC)-128 was a transitional layer that prevented significant information loss,
which could otherwise happen when inputting the features directly into the final FC-2 layer. In
the graph construction, they assumed an edge when a node falls into the first k nearest neighbors
of another node, based on the Euclidean distance shown in Fig. 8. Instead of iteratively updating
the nodes in the graph, they predefined the number of nodes based on the batch size N, while
updating the edges about the adjacency matrix.
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Figure 8: Graph construction

The model was evaluated on 296 CT scans, and the results showed that the ResGNet-C
achieved a high classification accuracy of 96.62%. They also proposed a network, which was
called CGNet [140]. The network consisted of three parts: feature extraction, graph-based feature
reconstruction, and classification. They used the pre-trained CNNs for feature extraction and then
used the extracted features for feature reconstruction. Finally, they used a single-layer graph neural
network, GNet, as a classifier for classification, and the inputs were nodes in the graph and the
graph representation. The proposed network was tested on a public CT dataset, and the results
showed that the CGNet had a good classification performance and achieved a classification accu-
racy of 99.00%. Shaban et al. [141] proposed a hybrid diagnosis strategy, that is, to construct a
connected graph of features to represent the weight of this feature and the degree of combination
of this feature with other features. The approach could sort selected features by projecting them
onto the proposed patient space and inferred predictions by the ranking of features and the degree
of combination of this feature with neighborhoods. The hybrid diagnosis strategy consisted of
five steps, including fuzzification, normalization, fuzzy rule induction, highly defuzzification, and
inference decision making. Normalization was the multiplication of the output of the fuzzification
step by the rank of the relevant features calculated in the characteristic rank stage as:

μR(x)=μ(x) ∗R(x) (11)

where μ(x) is the degree of membership corresponding to x fuzzy set, R(x) is the rank of the
feature corresponding to x fuzzy set, and μR(x) is the ranking membership degree of the fuzzy set
x. Through the normalization step, the ranked membership values for each fuzzy set is normalized
to obtain a value between 0.0 and 1.0. The normalized membership value for a fuzzy set x,
denotes as μN(x) can be calculated by.

μN(x)= μR(x)
MAX∀ϕ∈setsμR(ϕ)

(12)

where μR(x) is the ranked membership value for the fuzzy set x, and μR(ϕ) is the ranked
membership value for the fuzzy set ϕ. Then, the research leveraged the center of gravity method to
defuzzification. They adopted numerical laboratory tests as the dataset and obtained an accurate
diagnosis result in a shorter waiting time. Their experiments showed that the minimum error value
of the method was 2.342%. The literature with DNNs is as Table 9.
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Table 9: Literature with GNNs

Authors Dataset Techniques Results

Wang
et al. [137]

CT CNN, GCN,
Grad-CAM

The proposed framework
outperformed the
state-of-the-art methods with
high classification accuracy.

Sehanobish
et al. [138]

Single-cell RNA
sequencing data

A baseline
architecture

The baseline architecture
provided an explanation about
the genes and cells in all phases
of the COVID-19 cases.

Yu
et al. [139]

CT ResGNet-C,
ResNet101-C,
NNet-C, GNN

ResGNet-C achieved a high
classification accuracy of
96.62%.

Yu
et al. [140]

CT, X-ray Transfer learning,
GNN, CNN, CGNet

CGNet had a good
classification performance and
achieved a classification
accuracy of 99.00%.

Shaban
et al. [141]

Numerical
laboratory tests

Hybrid diagnose
strategy, feature
connected graph,
patient space

Their experiments showed that
the minimum error value of the
hybrid diagnose strategy was
2.342%.

3.6 COVID-19 Diagnosis Based on Explainable Deep Neural Networks
Although deep learning networks have made great contributions to medical diagnosis, many

networks are black boxes that do not provide credible information [142]. Therefore, explainable
deep neural networks are more and more used by researchers. Explainable deep neural networks
can provide explanations for the obtained results, and they have more credibility in clinical
application.

Angelov et al. [143] proposed an explainable deep neural network for COVID-19 diagnosis.
The proposed xDNN offers a new deep learning architecture that combines reasoning and learning
in a synergy. It was non-iterative and non-parametric, which explained its efficiency in terms of
time and computational resources. The network was composed of a features layer, a density layer,
a typicality layer, a prototypes layer, and a mega clouds layer. In the first layer, they adopted
the pre-trained VGG-VD-16DCNN as the backbone for feature extraction. And the core of the
xDNN was the prototype layer because it could provide an explainable information. The xDNN
performed better in classification and achieved a high classification accuracy. Karim et al. [144]
proposed a novel model, DeepCOVIDExplainer. First, the Perona-Malik filter, histogram equaliza-
tion, and unsharp were adopted to preprocess chest X-ray images. Then Grad-CAM and layer-wise
relevance propagation were utilized to highlight the classification recognition regions. As a result
of their experiments, the framework could recognize the COVID-19 cases with a positive predictive
value of 89.61%. Brunese et al. [145] utilized the pre-trained VGG16 to build an explainable
model. They provided reliability of model predictions via gradient weighted Grad-CAM algorithm.
They collected 6523 chest X-ray images for training and testing, and their experiments showed
that the model performed well in COVID-19 classification, and the average accuracy was equaled
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to 97.00%. Alshazly et al. [146] proposed a new model, CheXNet, which consisted of 121 layers.
The dataset was composed of SARS-CoV-2 CT scans and COVID-19 CT scans. The model
employed five pre-trained architectures based on transfer learning, which were SqueezeNet, Incep-
tion, ResNet, ResNeXt, Xception, ShuffleNet, and DenseNet. The explanation of CheXNet was
reflected in t-distributed stochastic neighboring embedding and Grad-CAM, where they utilized
t-distributed stochastic neighboring embedding to project two dimensions of the learned features
and then presented the infected areas of COVID-19 cases. The CheXNet displayed the infected
localization and provided a better explanation. Ahsan et al. [147] proposed a framework. The
framework could accurately locate the infected area and provided an interpretable connection
between inputs and prediction results by the local interpretable model-agnostic explanations. The
results showed that the framework achieved an accuracy of 82.94% in CT scans and the accuracy
of 93.94% in X-ray images. Panwar et al. [148] proposed an xDNN based on a VGG19. The
use of Grad-CAM increased the visualization and explainability of the xDNN. In addition, two
experiments were conducted with pneumonia vs. COVID-19, and COVID-19 vs. healthy cases.
In all experiments, they used a color visualization method based on grayscale images to clearly
interpret the detected radiological images. The proposed xDNN could detect COVID-19 positive
cases within 2 s. 5G networks are on the rise, and 5G is well-known because of its fast features.
Hossain et al. [149] proposed a model based on 5G network features, namely beyond 5G (B5G).
The model could diagnose COVID-19 and predict the likelihood of infection in their social groups.
The B5G architecture was divided into three layers, a stakeholder layer, an edge layer, and a cloud
layer. The B5G achieved a faster diagnosis speed than the 4G network and made a contribution
to medical diagnosis.

Since CT scan images are time-consuming for analysis, Wu et al. [150] proposed a Joint Clas-
sification and Segmentation system, which could be used for real-time and interpretable diagnosis.
They increased the interpretability of the system by the activating mapping method and used
image blending techniques to help the classifier focus on the lesion area in the COVID-19 cases
to reduce the probability of overfitting. Their experimental results showed that the sensitivity of
the Joint Classification and Segmentation system on the test set was 95.00%. Khincha et al. [151]
proposed visual interpretation and textual interpretation. They used the COVIDx dataset to train
and test. The learning rate used was 10−4 and the model was trained for 500 epochs. Their
experimental results showed that text representation was more relevant to diagnosis. An explicable
risk prediction system based on Additive Trees was built by Casiraghi et al. [152]. The system
could support physicians in the early COVID-19 risk assessment through a set of simple and
human-interpretable decision rules. Multiple imputation techniques, random forest-based tech-
niques, and maximum likelihood estimation methods were applied to process and analyze the
missing data in their experiments. The comparison results showed that the maximum likelihood
estimation produced some noise estimation during processing, and the technique based on random
forest yielded better performance. In addition, the prediction performance of the explicable risk
prediction system was compared with that of the generalized linear model, and the results showed
that the proposed system was effective and robust. Jin et al. [153] established an interpretable
diagnosis system, which consisted of five parts, a segmentation network, a slice diagnosis network,
a slice location network, a visualization network, and an image phenotypic analysis network. The
last two networks were mainly utilized to provide an explicable region through Grad-CAM. The
interpretable system provided effective help for doctors’ work, and the system was tested on two
public datasets with AUC of 92.99% and 93.25%, respectively. Born et al. [154] used LUS to
diagnose COVID-19 and collected 202 videos from different hospitals and medical facilities. They
presented a VGG16-based model and used VGG-CAM to spatiotemporal localization of lung
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biomarkers. The model was tested on an independent dataset and achieved a sensitivity of 80.60%
and a specificity of 96.20%. The literature with xDNNs is as Table 10.

Table 10: Literature with xDNNs

Authors Dataset Techniques Results

Angelov
et al. [143]

CT xDNN,
VGG-VD-16DCNN

The xDNN provided a highly
interpretable result.

Karim
et al. [144]

X-ray Perona-Malik filter,
histogram
equalization,
Grad-CAM

The framework could recognize
the COVID-19 cases with a
positive predictive value of
89.61%.

Brunese
et al. [145]

X-ray VGG16, Grad-CAM The model based on the
VGG16 achieved the average
accuracy of 97.00% in
COVID-19 diagnosis and
provided reliability predictions
via the gradient weighted
Grad-CAM algorithm.

Alshazly
et al. [146]

CT CheXNet,
t-distributed
stochastic neighboring
embedding, Xception,
DenseNet,
SqueezeNet,
Inception, ResNet,
ResNeXt, ShuffleNet,
Grad-CAM

The CheXNet displayed the
infected localization and
provided a better explanation.

Ahsan
et al. [147]

CT, X-ray NasNetMobile, local
interpretable
model-agnostic
explanations

The proposed framework
achieved an accuracy of 82.94%
in CT scans and the accuracy
of 93.94% in X-ray images.

Panwar
et al. [148]

CT, X-ray VGG19, Grad-CAM The proposed xDNN increased
the explainability via
Grad-CAM and detected
COVID-19 positive cases within
2 s.

Hossain
et al. [149]

CT, X-ray B5G, 5G network The B5G could diagnose the
COVID-19 and predict the
likelihood of infection in their
social groups.

(Continued)
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Table 10 (Continued)

Authors Dataset Techniques Results

Wu
et al. [150]

CT Joint Classification
and Segmentation
system, the activating
mapping method

The Joint Classification and
Segmentation system could be
used for real-time and achieved
a sensitivity of 95.00%.

Khincha
et al. [151]

X-ray Visual interpretation,
textual interpretation

The textual interpretation was
more relevant to diagnosis.

Casiraghi
et al. [152]

X-ray Explicable risk
prediction system,
multiple imputation
techniques, random
forest-based
technique, maximum
likelihood estimation

The explicable risk prediction
system could support physicians
in the early COVID-19 risk
assessment through a set of
simple and human-interpretable
decision rules.

Jin
et al. [153]

CT Grad-CAM, an
interpretable system

The interpretable system was
tested on two public datasets
with AUC of 92.99% and
93.25%, respectively.

Born
et al. [154]

LUS A VGG-16-based
model, VGG-CAM

The VGG16-based model was
tested on an independent
dataset and achieved a
sensitivity of 80.60% and a
specificity of 96.20%.

3.7 Others
In addition to the above methods, there are some models based on capsule networks or

recurrent neural networks (RNNs), as well as new algorithms that are applied to optimize the
existing networks. Recurrent neural networks are usually utilized to process time-series data to
make predictions about what will happen in the future [155]. One of these structural functions
is memory, linking contextual relationships [156]. So, by keeping an eye on the patient’s progress,
RNNs can predict the severity of the patient and make predictions about the future progress of
the patient’s disease, which allows doctors to better diagnose the diseases [157].

The capsule neural network is a kind of neural network that constructs and abstracts subgrids
from the neural network. Each capsule focuses on several independent tasks while maintain-
ing the spatial characteristics of the image. In addition, capsule neural networks can complete
network training with very little training data, which is incomparable to the traditional neural
network [158]. Toraman et al. [159] came up with a new model based on a capsule network.
CNNs use scalar activation functions, while capsule networks use vector activation functions. The
accuracy of the proposed model for binary class and multi-class was 97.24% and 84.22%, respec-
tively. CNNs cannot capture the spatial relationship between image instances. However, capsule
networks can capture the spatial relationship, and capsule networks require smaller datasets as
well as fewer parameters. Heidarian et al. [41] proposed a novel framework that consisted of
a 2D Capsule Network. This framework was initialized by a stack of four convolutional layers
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along with a batch-normalization and one max pooling layer. The last convolutional layer was
then used to feed the subsequent Capsule Layers to extract deeper and smaller feature maps. Two
more capsule layers were subsequently added to the framework, where the amplitude of the last
one represents the probability of the input image belonging to each target class. In the next step,
they aggregated slice-level features extracted by intermediate layers of the described network to
move on to the patient-level domain. In their regard, the capsule layer before the last one was
used as the representative feature map of the slices. Their framework could be applied for feature
extraction of CT images, and it did not need complex image labeling processes. The proposed
framework achieved a classification accuracy of 90.80%.

CNN typically performs better with larger datasets than with smaller ones; however, most
datasets contain only a few COVID-19 samples, so to solve the dataset imbalance problem,
Sakib et al. [160] proposed an adaptive data augmentation algorithm, being referred to as data
augmentation of radiograph images. The algorithm worked by synthesizing many chest X-ray
images from a generative adversarial network model, which used two competing neural networks
to create new virtual data instances that could be transmitted as real data. The data enhancement
method improved the classification accuracy of COVID-19 from 54.55% to 93.94%. Oh et al. [161]
built a patch-based network with a relatively small number of trainable parameters for COVID-19
diagnosis and obtained the final classification result through voting of multiple patch positions
on inference results. They designed a segmentation network based on FC-DenseNet103, to extract
lung and heart contours from chest radiography images. The CrossEntropy loss was used as the
objective function in semantic segmentation, and the calculation formula is as follows:

L(i)=−
∑
s

∑
j

λsω(yj = s) log(pi(xj)) (13)

where ω(yj = s) represents the indicator function, pi(xj) is the softmax function of the j th pixel
in the X-ray image x, s represents the category, λs represents the weight of the category, and
yj denotes the corresponding ground-truth label. The model obtained good classification results
by analyzing the potential imaging biomarkers in X-rays. With the same dataset, the proposed
method showed an overall accuracy of 91.90% which was comparable to that of 92.40% for
COVID-Net. Furthermore, the proposed method provided significantly improved sensitivity to
COVID-19 cases compared to the COVID-Net. In addition, it was also remarkable that the
proposed method used only about 10% number of the parameters (11.6 M) compared to that
of COVID-Net (116.6 M). Bridge et al. [29] proposed an activation function for the highly
imbalanced dataset. The function was named as generalized extreme value activation function,
which was based on generalized extreme value distribution in extreme value theory. The proposed
activation function could be added to any CNN model, and their research chose InceptionV3 as
the training model because it has high generalizability. The generalized extreme value distribution
cumulative distribution function is given by.

F(x|ε,μ,σ)=
⎧⎨
⎩
exp

(− exp
(x−μ

σ

))
, if ε = 0

exp
(
−

(
1+ ε

(x−μ
σ

)− 1
ε

))
, if ε �= 0

(14)

The generalized extreme value function is based on three extreme value distributions, when
ε = 0, the function becomes the Gumbel distribution, when ε > 0, the generalized extreme value
distribution becomes the Frechet distribution, and when ε < 0, the generalized extreme value dis-
tribution becomes the Weibull distribution. Moreover, the research compared differences between
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generalized extreme value function and traditional sigmoid function. And sigmoid function was
given by:

σ(x)= 1
1+ exp(−x) (15)

where x is the input data, σ(x) ∈ (0, 1) represents the classification result. The function is more
suitable for binary classification. They did three experiments: COVID-19 vs. healthy cases, COVID-
19 vs. pneumonia vs. health, and COVID-19 vs. no-COVID-19. The results showed that there was
no difference in performance between the sigmoid function and the proposed generalized extreme
value activation function when the data was balanced, or the imbalance ratio was 1:10 and 1:25.
But at the ratio of 1:50, the proposed generalized extreme value function performed better than
the sigmoid function in terms of AUC and sensitivity. Rasheed et al. [162] used two classifiers
for COVID-19 diagnosis, including logistic regression and CNN. In order to reduce the overfitting
problem, they used a GAN to expand the dataset. In addition, a dimensionality reduction square
based on principal component analysis was applied to improve the classification accuracy. Both
CNN and logistic regression showed encouraging results for COVID-19 patient identification. The
logistic regression and CNN models showed 95.20%–97.60% overall accuracy without principal
component analysis and 97.60%–100.00% with principal component analysis for positive cases
identification, respectively.

Researchers have proposed many hyperparameter optimization algorithms because the selec-
tion of hyperparameters plays a crucial role in classification. For instance, Ezzat et al. [163]
proposed an optimization algorithm called the gravitational search algorithm and built a new
network was based on the DenseNet121 network. The gravitational search algorithm could deter-
mine the optimal hyperparameters for network architecture training. The results showed that their
network achieved a classification accuracy of 98.38%. Ucar et al. [164] proposed COVIDiagnosis-
Net. The COVIDiagnosis-Net was a SqueezeNet, which used fewer parameters and consumed
less time in training, and it obtained an optimal hyperparameter by Bayesian optimization. The
proposed network achieved a multi-classification accuracy of 98.30% and a binary classification
of 100.00%.

Zhang et al. [165] replaced average and maximum pooling with random pooling, and the
conv layer was combined with the batch normalization layer, and the leaky layer was combined
with the full connection layer to get the full connection block. Their experimental results showed
that random pooling had a better performance than average and maximum pooling, and their
network achieved the classification accuracy of 93.64% in the COVID-19 and healthy chest X-ray
images classification. A hybrid 2D and 3D network was proposed by Zhang et al. [166], and the
name of the network was Dual spatial and channel Attention Bidirectional ConvLSTM Net. In
addition, U-Net was applied to process in-plane context and LSTM was leveraged to integrate
cross-plan context. Their network showed an excellent performance in the image segmentation
and the AUC of the proposed network for disease progression prediction reached 93.00%. Javor
et al. [167] developed a new deep learning method derived machine learning model with the same
architecture and hyperparameters as the original model to identify the image sources, and the
model evaluated a possible bias from recognition of the various images sources. The original
model was ResNet50. The proposed model was tested on an independent dataset with an accuracy
of 95.60%. Victor et al. [168] compared the performance between CNN and ResNet. The results
showed that a good learning effect could be obtained by training ResNet from scratch without
the aid of transfer learning. Amyar et al. [169] proposed an automatic COVID-19 classification
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and segmentation tool based on multi-task learning to identify COVID-19 lesion segments from
the chest CT images. The proposed tool was evaluated using a dataset of 1369 patients. The
results showed that the area under the receiver operating characteristic curve of classification was
higher than 97.00%. Goel et al. [170] proposed a new architecture that was composed of optimized
feature extraction and classification components. The Grey Wolf Optimizer algorithm was used to
optimize the hyperparameters for training the CNN layers. The proposed model was tested and
compared with different classification strategies utilizing an openly accessible dataset of COVID-
19, pneumonia, and healthy chest images. The presented optimized CNN model provided accuracy,
sensitivity, specificity, precision, and F1 score values of 97.78%, 97.75%, 96.25%, 92.88%, and
95.25%, respectively, which were better than those of state-of-the-art models. The literature with
other optimizations is as Table 11.

Table 11: Literature with other optimizations

Authors Dataset Techniques Results

Toraman
et al. [159]

X-ray Capsule network The accuracy of the proposed
model for binary class and
multi-class reached 97.24% and
84.22%, respectively.

Heidarian
et al. [41]

CT Capsule network
framework

The proposed capsule network
framework achieved a
classification accuracy of
90.80%.

Sakib
et al. [160]

X-ray Data augmentation of
radiograph images,
GAN

The data augmentation of
radiograph images improved the
classification accuracy of
COVID-19, from 54.55% to
93.94%.

Oh
et al. [161]

X-ray A patch-based model The proposed model obtained a
classification accuracy of
91.90% by analyzing the
potential imaging biomarkers in
chest X-rays.

Bridge
et al. [29]

X-ray Generalized extreme
value activation
function, cumulative
distribution function,
inceptionV3, sigmoid
function

At the data ratio of 1:50, the
proposed generalized extreme
value function performed better
than the sigmoid function in
terms of AUC and sensitivity.

(Continued)
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Table 11 (Continued)

Authors Dataset Techniques Results

Rasheed
et al. [162]

X-ray Logistic regression,
GAN, CNN

The logistic regression and
CNN models showed
95.20%–97.60% overall accuracy
without principal component
analysis and 97.60%–100.00%
with principal component
analysis for positive cases
identification, respectively.

Ezzat
et al. [163]

X-ray A gravitational search
algorithm,
DenseNet121

The gravitational search
algorithm determined the
optimal hyperparameters for the
network architecture training
and their network achieved a
classification accuracy of
98.38%.

Ucar
et al. [164]

X-ray Bayesian
optimization,
COVIDiagnosis-Net,
squeezeNet
architecture

The COVIDiagnosis-Net
achieved a multi-classification
accuracy of 98.30% and a
binary classification of 100.00%.

Zhang
et al. [165]

CT Random pooling Their experiments achieved the
classification accuracy of
93.64% in the COVID-19 and
healthy chest images
classification.

Zhang
et al. [166]

CT Dual spatial and
channel attention
bidirectional
ConvLSTM Net,
U-Net, long-short
term memory

The Dual spatial and channel
Attention Bidirectional
ConvLSTM Net showed an
excellent performance in the
image segmentation and the
AUC of the proposed network
for disease progression
prediction reached 93.00%.

Javssor
et al. [167]

CT A machine learning
model, ResNet50

The proposed machine learning
model was tested on an
independent dataset with an
accuracy of 95.60%.

Victor
et al. [168]

X-ray Three novel CNNs,
ResNet

ResNet obtained good learning
results without the aid of
transfer learning.

(Continued)
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Table 11 (Continued)

Authors Dataset Techniques Results

Amyar
et al. [169]

CT An automatic
COVID-19
classification and
segmentation tool
based on multi-task
learning

The area under the receiver
operating characteristic curve
for the tool was greater than
97.00%.

Goel
et al. [170]

X-ray Grey Wolf Optimizer
algorithm

The presented optimized CNN
model provided accuracy,
sensitivity, specificity, precision,
and F1 score values of 97.78%,
97.75%, 96.25%, 92.88%, and
95.25%, respectively, which were
better than those of
state-of-the-art models.

4 Limitations and Conclusion

In this paper, the diagnostic methods of COVID-19 are reviewed and summarized. Through
the comparison of diagnostic methods, the following conclusions can be drawn. (i) Transfer
learning and ensemble learning play an important role in medical diagnosis, which can achieve
high classification accuracy on small datasets and save training time. Unsupervised learning is
rarely used, and although it can save time in the process of labeling the dataset, the classification
effect is not very good for COVID-19 diagnosis. (ii) It is also clear from the specific details that CT
scans and X-ray images are the main datasets. In terms of data sets, many experiments are faced
with the problem that it is difficult to collect data sets. This paper summarizes several open data
sets, such as GitHub, CheXpert Dataset, and COVIDx Dataset, and so on, which are only used
to protect privacy. For the problem of unbalanced data set, traditional data enhancement methods
can be used to increase the number of data, such as rotation, translation, etc., new algorithms
can be proposed to enhance the data set. (iii) In the aspect of image preprocessing, because
the data may come from different medical institutions or machines, and the protocols used are
different, so the image imaging methods are also different. After the image preprocessing, it will
be conducive to the next step of feature extraction and can improve the classification effect. The
feature extraction is mainly focused on texture analysis and intensity features, and the traditional
classification method that is the most widely used is SVM. (iv) GNNs and xDNNs are becoming
more and more popular. GNNs can analyze the population infection according to the relationship
between nodes. Through GNN, it can effectively and timely find the transmission group of the
epidemic and carry out quarantine and other measures. xDNNs can provide visual explanatory
information for the classification results, while other networks are like a black box. Using xDNNs
can improve the interpretation of the network. As for the comparison of seven deep learning
methods, this paper summarizes the advantages and disadvantages, as shown in Table 12.
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Table 12: The advantages and disadvantages of the seven methods

Method Advantages Disadvantages

TL TL does not need large data
sets and saves time.

The difference between
the COVID-19 image
and the original training
data set affects the
classification effect.

CNNs training
from scratch

With the CNNs training from
scratch, the training data and
testing data are all COVID-19
images, which are more
targeted.

This method requires a
large number of labeled
COVID-19 datasets and
requires a longer
training time than other
methods.

EL EL can save training time and
improve classification efficiency
by combining the advantages of
various networks.

The correlation between
models will affect the
COVID-19 diagnostic
effect, so the model
selection is very
important.

Unsupervised
learning and
semi-supervised
learning

There is little or no need for
tagged COVID-19 data sets.

COVID-19 images are
very similar to other
pneumonia images, so
the classification effect is
relatively lower.

GNNs GNNs can analyze the
population infection according
to the relationship between
nodes. Through GNN, it can
effectively and timely find the
transmission group of the
COVID-19 and carry out
quarantine and other measures.

There are few examples
of GNN using lung
images to diagnose
COVID-19, most of
which are trained by
moving data from
infected people, which is
difficult to collect.

xDNNs xDNNs can provide visual
explanatory information for the
COVID-19 classification results,
while other networks are like a
black box.

Fewer xDNNs have
been applied to
COVID-19 diagnostics
compared to other
networks.

Others A more targeted solution to a
problem such as COVID-19
data set imbalance or model
overfitting is proposed.

Examples of this
approach are few.

However, labeled COVID-19 images are difficult to capture, resulting in an unbalanced dataset
that reduces the degree of generalization of the model. Thus, future research on COVID-19
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diagnosis can focus on the following aspects. (i) Establishing suitable COVID-19 images bench-
mark databases, which can be consolidated, improved, and allowed to compare various techniques.
(ii) The new technique is based on deep neural networks such as CNNs, RNNs, GNNs, and
xDNNs, which have the potential to improve classification accuracy, and these are propellers to
enhance diagnosis.

In general, this paper summarizes COVID-19 diagnostic methods, including traditional meth-
ods and seven deep learning methods, and proposes solutions to some problems encountered in
their experiments. In addition, seven deep learning methods are represented in tables in this paper.
The classification results realized in each experiment and the advantages and disadvantages of
each method can be seen. In a word, this paper hopes to make contributions to the diagnosis of
COVID-19.
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