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Abstract: Flavonoids are a class of phytochemical molecules abundant in many plants, fruits, vegetables, and leaves.

Flavonoids possess a series of significant biological activities, including anticancer, antioxidant, antiviral, and anti-

inflammatory properties. They become an important source of dietary supplements and natural health products.

Though many studies confirmed the safety of flavonoids, the potential toxicity of flavonoids is still a remarkable field

of research to be explored. The enthusiasm for flavonoids expressed by the public has sometimes overlooked their

toxicity and also consumed the flavonoids exceeding the body requirements. The current review focused on the

potential toxicity of flavonoids to make the public consume flavonoids with caution. This review summarizes the

current toxicity which has been reported in vivo and in vitro experiments. The toxicity involves carcinogenicity and

mutation, liver and kidney toxicity, and the influence on the thyroid and reproductive function and intestinal flora

disorders. The mechanism of toxicity is fully complicated, and current evidence indicates that natural flavonoid

glycosides act on different targets with different doses in vivo and in vitro experiments. Though most kinds of

flavonoids are considered safe, flavonoids proposed as food supplements need to be assessed their tolerable upper

intake level as there have been reports of toxic flavonoids.

Introduction

Flavonoids are a large number of small molecules abundant in
fruits, vegetables, and legumes. It has been widely known for
centuries that derivatives of plant origin have a broad
spectrum of biological activity (Jin, 2019; Martins et al.,
2019). Evidence provided suggestions that flavonoids play
an important role in chronic disease prevention and viral
diseases treatment through a multi-factorial action involving
the antioxidant, anti-inflammatory, and other biological
activities (Niedzwiecki et al., 2016; Pal and Konkimalla,
2016; Pandey et al., 2017; Volobuff et al., 2019, Istifli et al.,
2020). They have a lot of beneficial effects associated with
some chronic diseases such as cancer, Alzheimer’s disease
(AD), and atherosclerosis (Burke et al., 2018; Liu et al., 2017;
Szczechowiak et al., 2019; Zhang et al., 2019). Flavonoids
have attracted more enthusiasm from scientists and the
public in the development and utilization of natural
medicines for their broad spectrum of biological activity and
low toxicity. Thus, some people widely consume flavonoids,
particularly referred to as plant isoflavones, as dietary
supplements and natural health products exceeding the usual

dietary intake levels (Jucá et al., 2020). In this condition, the
concentration of flavonoids in humans is higher than the
normal amount of that from the consumption provided by
conventional intake. As we all know, compelling data have
shown that the consumption of flavonoids can cause adverse
health effects if the doses consumed exceed the threshold.
Surprisingly, many studies also proved that low doses of these
compounds have the potential for adverse effects. Although
in this condition many biological effects published in a great
number of scientific studies based on in vitro experiments, as
well as animal and human studies declared the safety of the
flavonoids, the potential toxicity found among the safety
evaluation of flavonoids should be paid with caution. Our
aim in this review was to present an overview of the reports
in which the toxic side effects and the possible risk when
exposed to flavonoids. Hence, we thoroughly analyzed many
original articles in the process of our literature search and
found the possible potential toxicity involves carcinogenicity,
liver toxicity, and the influence on the thyroid function and
reproductive system, the intestinal flora disorder, and
neurological abnormalities.

Carcinogenicity
A great number of studies have shown that flavonoids
negatively correlate with cancer (Chang et al., 2018;
Nimptsch et al., 2016). Recent case-control research that
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analyzed 1522 breast cancer patients in Chinese women revealed
that there was an inverse correlation between the risk of breast
cancer and the intake of total flavonoids (Feng et al., 2020).
Phytoestrogens are particularly demonstrated in that they have
the capacity of protecting against breast cancer and other
hormone-related cancers. However, it is interesting to find that
many flavonoids can still induce cell mutation and promote
tumor cell proliferation in in vitro and animal experiments.
Due to the large species of flavonoids, the mechanisms of their
carcinogenesis are still not clear and need further exploration.
It is also notable that some flavonoids such as phytoestrogen
can exert biphasic effects in some tumor cell lines with
different doses (Jodynis-Liebert and Kujawska, 2020).

Previous studies have shown that genistein can promote
the proliferation of estrogen-dependent MCF-7 cells at low
concentrations and is cytostatic at higher concentrations
(Kabała-Dzik et al., 2018; Limer et al., 2006). These findings
were consistent with another animal experiment in which
MCF-7 cells were implanted in ovariectomized mice. The
possible mechanism explored by the authors is probably
that genistein is related to the estrogen receptor pathway in
MCF-7 cells. There is also an animal experiment also
showed daily intake of genistein (250 mg/kg diet) enhanced
an aggressive progression of prostate cancer in transgenic
adenocarcinoma mouse prostate mice, while consumption of
a higher dose of 1000 mg/kg daily did not result in the
inhibitory progression of cancer (El Touny and Banerjee,
2009). The mechanism suggested that it could enhance the
proliferative and metastatic early-stage prostate cancer in an
estrogen-and phosphatidylinositol 3 kinases (PI3K)-
dependent pattern. It was also found that daidzein also
influenced the proliferation of T-47D breast cancer cell lines
in biphasic dose-dependent ways (Murata et al., 2004). At
low concentrations it could have the ability to promote cell
growth and inhibit cell proliferation at a higher
concentration of 157 mM; the underlying mechanism might
be relevant to cell cycle regulatory protein, p53 (Ying et al.,
2002). Quercetin was also reported to promote the cells’
proliferation in a dose-dependent manner. Low
concentrations of quercetin increased the proliferation of
the human breast cancer cell lines, MCF-7 SH and MCF-7
WT (Miodini et al., 1999; Wu et al., 2018). The possible
mechanism in in vitro experiments involves the reactive
metabolites of quercetin oxidation, which influences the
formation of DNA and ER-dependent pathways (Andres et
al., 2018; Rietjens et al., 2005; van der Woude et al., 2005).
Interestingly two previous studies in vivo revealed that
quercetin could promote carcinogenesis in rodents (Singh et
al., 2010; Zhu and Liehr, 1994). The experiment showed
that male hamsters with quercetin daily intake for around 6
months caused an increase in kidney tumor (>5 mm) and
abdominal metastases compared to the control group (Zhu
and Liehr, 1994). The other study reported enhanced cell
proliferation and the tumor latency of mammary glands by
quercetin at a low dose daily intake in female rats for
8 months compared to the control group (Singh et al.,
2010). Although some phytoestrogen is reported to have the
ability to act on the biphasic dose-response ways, many
pieces of evidence suggest flavonoids have the biological
activity of anticancer. Though the experiments mentioned

above revealed that some kind of flavonoids could induce
tumor development with the application of different doses,
there is still lacking the convincing evidence it could act in a
biphasic pattern in the human condition.

Hepatotoxicity and nephrotoxicity
Though many data have also confirmed that flavonoids have
exhibited significant liver-protection and renal-protection
properties in vitro and in vivo (Kandemir et al., 2020; Levin
et al., 2019; Levin et al., 2016; Papackova et al., 2018), few
studies also showed the potential hepatotoxicity and
nephrotoxicity with epigallocatechin gallate (EGCG) intake
(James et al., 2015; Lambert et al., 2010; Levin et al., 2019;
Levin et al., 2016). The underlying mechanism of flavonoids
is not clear but could be proposed that the transitory intake
results in oxidative stress leading to liver and kidney injury
under high-dose conditions. The results indicated that
plasma alanine aminotransferase (ALT) increased and the
survival rate reduced by 85% after a single dose of EGCG
(1500 mg/kg) in male CF-1 mice, moderate to severe
hepatic necrosis was also found following treatment with
EGCG (750 mg/kg) (Lambert et al., 2010). A serial of
experiments has indicated that the underlying mechanisms
of hepatotoxic effects of EGCG are correlated with the
increasing use of green tea dietary supplements, which may
probably cause an inflammatory cascade that leads
eventually to hepato-toxicity (Hu et al., 2018; James et al.,
2018; Wang et al., 2015). Similar results were also observed
in Beagle dogs treated with Polyphenon E, a kind of tea
polyphenol mixture that contained 60% EGCG (Swezey et
al., 2003). There are many case reports relevant to human
hepatotoxicity for the consumption of green tea-containing
products. A randomized, double-blind clinical trial in
Germany demonstrated that two patients in the group
treated with epigallocatechin gallate had to remove from the
experiment because of hepatotoxicity. The doses of more
than 1200 mg intake daily may be used with caution (Levin
et al., 2019). EGCG was overall well tolerated in the other
45 patients, these inconsistent results revealed that genetic
and/or lifestyle factors may play an important role in
susceptibility to EGCG-mediated hepatotoxicity.

It is previously reported that EGCG caused
nephrotoxicity in vivo experiments, as exhibited by increases
in serum creatinine, the most important biomarker of
nephropathy (Fatima et al., 2016; Fatima et al., 2015;
Rasheed et al., 2017). The underlying mechanism was
probably that high-dose EGCG impairs kidney functions
through the suppression of antioxidant enzymes and heat-
shock protein expressions, which might augment oxidative
stress (Inoue et al., 2011). The recent study indicated that
EGCG (100 mg/kg/day) would result in a deteriorated
oxidative stress condition in streptozotocin-induced diabetic
mice. Histopathological examination also confirmed EGCG
caused renal injury in diabetic mice (Rasheed et al., 2017).
However, whether EGCG-induced nephrotoxicity is dose-
related remains to be determined, some authors suggested
that the administration duration be one of the crucial
factors in the course of EGCG-induced toxicity. Therefore,
though many studies have demonstrated the EGCG has the
biological activity of mitigating or preventing diabetes,
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patients with diabetes are still advised to consume EGCG as
dietary supplements with caution.

Quercetin is another kind of flavonoid that is relevant
to nephrotoxicity. There was an important study
conducted by the US National Toxicology Program (NTP)
about the safety evaluation of quercetin (National
Toxicology Program, 1992). In this study, groups of
50 male and female rats were treated with 0, 1000, 10000,
or 40000 ppm quercetin (>95% pure) in feed for 104
weeks. The results showed chronic nephropathy and
increased incidence of kidney adenomas were observed in
high dose-related male rats. There was no obvious kidney
injury in female rats with quercetin intake. Hard et al.
(2007) re-evaluated the renal histopathology in Fischer 344
rats and confirmed that the similar increase in renal
tumors in mid- and high-dose males rats (Hard et al.,
2007). They also found that nephropathy was already
promoted by the high quercetin dose from the intervention
of 6 months. Based on the above studies in rats, the
question is proposed whether quercetin could aggravate the
underlying renal deleterious processes with a high dose of
quercetin consumption not only in animals but also in
human beings. Though there are no valuable adverse effect
of quercetin on kidney function found in human
intervention studies, we should consider cautious
interpretation when quercetin was consumed by people
with renal failure (Andres et al., 2018)

Thyroid toxicity
The effect of flavonoids on thyroid toxicity involves many
factors, such as the duration of intake and the realistic
exposure conditions. Though many studies in vivo and in
vitro have demonstrated that many kinds of flavonoids can
interfere with thyroid function and metabolism (Baldissarelli
et al., 2016; Bennetau-Pelissero, 2016; Giuliani, 2019; Habza-
Kowalska et al., 2019), the explicit mechanism is much
complicated and needs to be further explored. Although
many flavonoids can interfere with thyroid function,
phytoestrogens are the most concerning substances
influencing thyroid function and metabolism. Many studies
have reported that phytoestrogens and quercetin could have
possible thyroid-disruptive properties.

Soy and soy foods are the most common nutritional
substances of phytoestrogens; they are rich in high protein
content and often act as the production of meat analogs and
milk substitutes for some vegetarians and some kids allergic
to milk. Most researches about thyroid toxicity are
isoflavones of soy components, which have estrogenic
properties highly contained in soybeans (Rizzo and Baroni,
2018). Soy isoflavones are reported to be involved in the
whole process of thyroid hormone metabolism. They can act
as competitive substrates to affect the ionization process and
further change the activity of TPO enzyme and TTR
binding proteins (Hüser et al., 2018; Renko et al., 2015;
Sathyapalan et al., 2011; Šošić-Jurjević et al., 2014). The
iodinated isoflavones were detected in human urine after
consumption with isoflavonoids. Some studies found that
genistein and other related flavones could inhibit the
binding of TTR to T4 and T3. Thus, they may alter the
kinetics and distribution of thyroid hormones in the body.

The most interesting finding is different targets are found in
the different animal models concerning the influence on the
thyroid system. A study in rats reported that the
consumption of a standard soy-based rodent diet reduced
TPO activity in rats by approximately 50% compared to a
soy-free diet (Šošić-Jurjević et al., 2017). Silverstein et al.
(2014) found that ovarian function influenced thyroid
function through the effects of isoflavones in adult female
cynomolgus monkeys (Silverstein et al., 2014). It has been
assumed that altered sexual hormones also have an
influence on the synthesis and stability of serum thyroid
hormone distribution proteins through the regulation of the
hypothalamic-pituitary-thyroid axis.

In human studies, it was found that flavonoids could
intervene with many key processes to affect thyroid function
(D’Adamo and Sahin, 2014; Hüser et al., 2018; Nakamura
et al., 2017; Sathyapalan et al., 2011). Under conditions of
iodine deficiency, the published results supported an
association between an increased risk of developing goiter.
The incidence of autoimmune thyroid disease in children
after early fed with powdered milk containing soybean was
significantly higher than that of the control group, especially
in the iodine deficiency (Andersson et al., 2007).
Importantly, human observational and interventional studies
indicated if the iodine intake is adequate, the consumption
of soy-based foods is unlikely to hurt the thyroid gland
system in healthy humans (Andres and Lampen, 2013). The
data also showed that there were no significant adverse
effects observed in adult subjects after consumption of
abundant soybean protein rich in isoflavone (Tonstad et al.,
2016; Xiao et al., 2014). Another study also reported that
the plasma concentration of free triiodothyronine (FT3)
decreased slightly and did not cause any discomfort to post-
menopausal females after 30 g soy protein powder intake for
8 weeks (Persiani et al., 2016).

Estrogen activity of phytoestrogens
Phytoestrogens have the potential hormone-like activities
because of their diphenolic ring, which makes them have
the ability to bind ER receptors (Smith et al., 2020).
Daidzein and genistein are two predominant types of soy
isoflavones in daily intake. Though daidzein and genistein
with weakly estrogenic activities have been reported to be
approximately 10−2 to 10−3 fold less potent than
endogenous estrogen (Mortensen et al., 2009), excessive or
improper intake may also lead to the disorder of hormone
metabolism and endocrine function (Cederroth et al., 2012;
Hamilton-Reeves et al., 2010). Concerning the safety of soy
isoflavones of hormone-like activities, the later reproductive
health outcomes in infants fed with soy isoflavones and the
potential risk of cancer in adults are the main concepts that
should be taken into consideration.

Soy protein-based infant formula (SBIF) is the only
alternative for infants allergic to cow’s milk-based formula,
diarrhea due to lactose intolerance (Merritt and Jenks,
2004). Infant exposure to soy formula often lasts from birth
to one year of life, an important stage of development that
is particularly sensitive to dietary intake. Several countries
have restricted the consumption of soy protein-based infant
formula because of the concern with the safety of early
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isoflavone exposure in infants and the following reproductive
system development (McCarver et al., 2011). Though many
data showed that the number of isoflavones intake in infants
was much less than that in normal infants, there is still
concern regarding the infants fed with SBIF (Dinsdale and
Ward, 2010). Though several animal experiments data
showed only slight adverse effects in rats with early exposure
to soy isoflavones (Badger et al., 2002; Cederroth et al., 2010;
Kaludjerovic et al., 2012; Klein et al., 2002), only very few
studies have traced the outcome on reproductive health at
adulthood, it is not sure whether SBIF has some correlation
with detrimental effects on reproductive health at adulthood
(Strom et al., 2001; Zhao et al., 2019). Indisputably there are
a lot of considerations that need to be taken into in the
course of analysis of the findings from animal models to
humans. Many animal experiments have demonstrated that
isoflavones have different outcomes on the reproductive
system and sexual development of male and female animals
in adulthood after long-term exposure to soy isoflavone.

The research on female animals mainly focused on
mammary gland development, sexual maturation, and
endocrine function. Some studies have suggested that early
exposure be likely to enhance the differentiation of the
mammary gland and further reduce the potential cancer risk
(Blei et al., 2015; Kakehashi et al., 2012; Santos et al., 2016).
Some data shows that female rats treatment with genistein
resulted in fewer terminal end buds and advanced
development and ductal elongation which was related to the
lower mammary cancer risk (Blei et al., 2015; Rimoldi et al.,
2007). The mechanism by which genistein influences
mammary gland maturation and development needs to be
further explored. The other reproductive organ worthy of
attention is the uterus that is also sensitive to early
isoflavone exposure. Neonatal mice treated with genistein
had greater uterine gland number and increased uterine
weight and epithelial cell height (Jefferson et al., 2002;
Jefferson et al., 2009). Another experiment data also showed
there is a higher incidence of absence in the uterine corpora
lutea in female mice after intervention with genistein
(Jefferson et al., 2011). While some data showed that
daidzein did not cause any abnormity in the uterus,
suggesting that daidzein may not have a measurable
estrogenic effect on the mouse uterus, implying that
daidzein may not have a similar estrogenic effect on the
mouse uterus (Jarić et al., 2018; Zhang et al., 2018). The
most important factor in the animal study is serum levels of
soy isoflavone exposure in the neonatal mouse model
resemble those of human infants, which attracts people’s
attention to ovarian development in adults. The studies on
the male animal model mainly have involved male sexual
maturation of the reproductive system and fertility
(Cederroth et al., 2010; Robertson et al., 2002; Ronis et al.,
2018; Yatkin et al., 2007). An influential study was that twin
marmoset monkeys which evoke many European countries’
attention and reduce the daily dosage of SBIF (Sharpe et al.,
2002). In this study, one twin was fed with SBIF from the
beginning of day four or five of life. The serum testosterone
of marmoset treated with SBIF had consistently reduced
compared with its twin-fed cow milk formula. What is
notable was that the dose of monkey’s daily intake was

about 1.6–3.5 mg isoflavones/kg body weight, which is less
than half the exposure level of a human infant SBIF intake.
While the consequent study demonstrated normal fertility
and progression of puberty in the same subject group and
feeding protocol (Tan et al., 2006). Some people still
concern about whether there is a relation between the
declining sperm count occurring among men and soy
isoflavone exposure (Mumford et al., 2015). Two meta-
analyses confirmed that neither soy nor isoflavone intake
affects total or bioavailable circulating testosterone
concentrations in men (Hamilton-Reeves et al., 2010; Reed
et al., 2020). Based on the data gathered from animal and
human studies, there seem to draw such conclusions that no
obvious effect on sexual maturity in males. The experiment
data showed that exposure did not affect preputial
separation, fertility, sperm count, and testosterone levels
with high oral doses of soy isoflavone treatment (Cederroth
et al., 2010; West et al., 2005).

Currently, there is still a debate regarding whether the
physiological impact of soy isoflavone consumption
influences infants (Reed et al., 2020; Zou et al., 2020).
Though several published studies and case reports
describing feminizing effects, including reduced testosterone
levels in men, recently, a meta-analysis including 41 studies
showed that either soy or isoflavone intake affects male
reproductive hormones (Reed et al., 2020). A longitudinal
prospective study is needed to show that the timing of
exposure may modulate effects of later health, and it will be
of great importance to further take the influence on
reproductive outcomes at later stages of development into
consideration.

Affecting gut microbiota, and neurobehavioral disorders
Recent studies reported that consumption of some kinds of
flavonoids, especially genistein and daidzein influenced the
gut microbial flora (Matthies et al., 2012; Vázquez et al.,
2017; Wyns et al., 2010). There are still many differences in
experiments between the animal model and human beings;
the data showed that there were close correlations between
diet-responsive intestinal metabolites and gut microbes in
soy-fed neonatal pigs (Piccolo et al., 2017). In this study, the
author suggested that bacteria species diversity and a greater
percentage of cyanobacteria within the duodenum of sow-
fed pigs are related to dietary intake. Another study also
showed that a soy formula diet affected the intestinal
epithelial lining, microbial populations, and intestinal
epithelial barrier as well as anti-inflammatory markers
(Yeruva et al., 2016). The studies in human beings also
demonstrated that phytoestrogen consumption or exposure
might also influence the gut microbe composition
(Yoshikata et al., 2018; Iino et al., 2019; Smith-Brown et al.,
2016; Wu et al., 2016). The study showed that soy intake
dosage was associated with the number of equol-generating
bacteria within the intestine among Asian populations
(Yoshikata et al., 2018). Another study found that the gut
microbial flora was surprisingly quite similar between the
vegans consuming a soy-rich diet and the omnivores groups
(Wu et al., 2016). Though daidzein and genistein of plasma
metabolome were predictably elevated in vegans relative to
omnivores, equal concentrations did not differ between the
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two groups of individuals. These findings suggest that a vegan
or soy-rich diet perhaps alters gut bacteria-derived
metabolism but not necessarily the gut microbiota themselves.

It is also being recognized that the gut microbiome can
affect the host’s neurobehavioral state, which has been
hypothesized to be related to the microbiome-gut-brain axis
(Alò et al., 2019; Marshall et al., 2019; Kolatorova et al.,
2018; Rosenfeld, 2015). The first solid evidence relevant to
gut microbiota disturbances with neurobehavioral disorders
is related to germ-free (GF) mice that lack a resident gut
microbiome (Sudo et al., 2004). GF mice are more anxious,
less exploratory, and show cognitive and social deficits.
These findings suggest that there is, probably, a crosstalk
between the gut microbiota and brain with bacteria. A study
revealed that early exposure to GEN could also cause
behavioral abnormalities such as increased defensive
behaviors and decreased aggressive behaviors in male
C57BL/6 mice (Wisniewski et al., 2005). Another study
demonstrated that the male offspring of the CD1 mice had
significant changes in anxiety and aggressive behaviors in
adults after the mice’s daily exposure of dams to genistein
(100 μg/g of body weight) during late pregnancy and early
lactation (Rodriguez-Gomez et al., 2014). Westmark
reported that there may be a potential linkage between
feeding infant soy formula and subsequent risk for autistic
behaviors in autistic children (Westmark, 2013). Additional
data from this cohort revealed that febrile seizures in
autistic boys and girls might be related to soy-based
formulas (Westmark, 2014). The current study emphasizes
the correlation analysis between gut metabolite changes
produced by the bioactive forms of the flavonoids and
behavioral responses. The underlying mechanism of the
microbiome-gut-brain axis is still unclear and needs to be
further explored.

Conclusions and Recommendations

We reviewed the available evidence on the potential toxicity of
flavonoids. In the study of the relationship between flavonoids
and human health, there are still many contradictions among
cell culture, animal models, human experiments, and
epidemiological investigation. Flavonoids extracts are often
used in cell culture or animal models, while foods with
abundant flavonoids such as soybean are often used in
human experiments. Due to the complexity of the food
composition and its decomposition into other metabolites in
the digestive system, the observed results are likely to have
the effect of other ingredients. We know the results were
also influenced by many factors, such as the design of the
experiment, the selection of subjects, and the effect of
observation cases. Especially inhuman experiments, many
factors are difficult to control. Therefore, there are still great
limitations in inferring the possible consequences of the
human body from the results of human cell culture and
animal experiments. Also, the dosage of flavonoids observed
in cell culture is dose-dependent, and it is difficult to
evaluate the proper concentration in the human body.
Combined with the limitations of animal experiments and
the limited epidemiological data, it is difficult to conclude
the toxic effect of flavonoids on human health. Although

many pieces of research have been done, the data in this
field about the toxicity is still insufficient. A large number of
long-term human studies are still needed to thoroughly
demonstrate its clinical effects and to detect its effects on
estrogen target tissues, such as the breast and endometrium.
At present, the consumption of soybean food and isoflavone
supplements is increasing, so it is necessary to study the
potential toxicity of these substances. However, there has
been little evidence that SBIF and other factors have effects
on the reproductive function of infants and young children
in adulthood. This delay may prevent researchers from
exploring the potential toxicity of SBIF. Considering the
above reasons and animal experimental data, it is necessary
to study the effect of SBIF on the growth and development
of infants and later. Besides, it is necessary to further study
the effects of SBIF on animals of different genders, and the
reasonable standard dose of soy isoflavone as food and drug
intake to the human body in different ages and regions.
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