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Abstract: Quantum network coding is used to solve the congestion problem
in quantum communication, which will promote the transmission efficiency
of quantum information and the total throughput of quantum network. We
propose a novel controlled quantumnetwork coding without information loss.
The effective transmission of quantum states on the butterfly network requires
the consent form a third-party controller Charlie. Firstly, two pairs of three-
particle non-maximum entangled states are pre-shared between senders and
controller. By adding auxiliary particles and local operations, the senders can
predict whether a certain quantum state can be successfully transmitted within
the butterfly network based on the Z- { |0〉 , |1〉} basis. Secondly, when trans-
mission fails upon prediction, the quantum state will not be lost, and it will still
be held by the sender. Subsequently, the controller Charlie re-prepares another
three-particle non-maximum entangled state to start a new round. When the
predicted transmission is successful, the quantum state can be transmitted
successfully within the butterfly network. If the receiver wants to receive the
effective quantum state, the quantummeasurements from Charlie are needed.
Thirdly, when the transmission fails, Charlie does not need to integrate the
X - { |+〉 , |−〉} basis to measure its own particles, by which quantum resources
are saved. Charlie not only controls the effective transmission of quantum
states, but also the usage of classical and quantum channels. Finally, the
implementation of the quantum circuits, as well as a flow chart and safety
analysis of our scheme, is proposed.
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1 Introduction

In 2000, classic network coding was first proposed by Ahlswede et al. [1], which improved
the transmission efficiency of classic information by coding at bottleneck nodes in the network.
In 2007, Hayashi et al. [2] considered the features and advantages of classical network coding,
and proposed the idea of quantum network coding for the first time. However, because the exact
replication of an unknown quantum state is impossible in quantum mechanics [3,4], only approx-
imate transmissions between quantum states can be realized on the butterfly network without
auxiliary entanglements. The scheme has been applied to solve congestion problems in quantum
information transmissions by unitary operations on the bottleneck nodes, and has been proved
to improve the transmission efficiency of quantum information. Since quantum approximation
clone machines were used [4], the fidelity of the quantum states received by the receiver could not
reach 1. Based on Hayashi’s scheme, a controllable quantum network coding based on a single
controller was proposed by Shang et al. [5], which realized decoding control in the receiver in
a conventional quantum network coding. However, because Shang’s scheme employed quantum
approximation cloning, the fidelity of the received quantum states still could not reach 1. Later,
Kobayashi et al. proved that quantum network coding with a fidelity of 1 can be achieved with
assistance from auxiliary resources [6–8]. Since then, perfect and cross transmission of quantum
states on quantum networks has become a research interest for many researchers. By definition,
perfect transmission means that the fidelity of the quantum states received by the receiver is 1.

In 2007, Hayashi [9] realized perfect and cross transmission of quantum states by pre-sharing
two pairs of entangled states among senders on the butterfly network. By adding auxiliary
resources and combining with classical network coding, quantum states were transmitted in the
scheme with a fidelity of 1. In 2012, another quantum network coding scheme based on quantum
repeaters [10–12] was proposed by Satoh et al. [13]. In this scheme, each node in the butterfly
network was regarded as a quantum repeater, and every two adjacent quantum repeaters shared an
EPR pair. With local operations and classical communications, entanglement between the receiver
and the sender was created. After that, quantum teleportation [14,15] was applied to realize perfect
and cross transmission of quantum states within the butterfly network. Schemes [9,13] used the
maximally-entangled states as the auxiliary resources to realize perfect and cross transmission of
quantum states on the butterfly network. However, it is difficult to prepare such states in practice,
and non-maximum entangled states are more feasible, which was employed by Ma et al. [16] to
develop a probabilistic quantum network coding. Moreover, they have been applied by Shang
et al. [17] to propose another quantum network coding based on universal quantum repeater
networks.

In addition, Satoh et al. [18] continued to use entanglement swap and graph states [19] to
achieve perfect and cross transmission of quantum states. Subsequently, Li et al. [20] extended
the conclusion from [13] to quantum multi-unicast networks, which solved the quantum 3-pair
communications problem. Besides, Li et al. also proposed a solution to the problem of quantum
k-pair communications in 2018. At present, research on quantum network coding has become a
hot spot with more and more schemes being proposed [21–27].

When non-maximum entangled states are used as a quantum channel, the quantum states will
be transmitted with a certain probability. If transmission fails, the quantum states will be lost.
Therefore, the preservation of quantum states during transmission has become an urgent problem.
In 2015, Roa et al. [28] proposed probabilistic quantum teleportation without information loss, in
which the non-maximum entangled states are pre-shared between the sender and the receiver. By
adding auxiliary particles and local operations [29], the transmission of quantum states can be



CMC, 2021, vol.69, no.3 3969

realized without information loss, and the quantum states will remain at the sender if transmission
fails. As long as the entangled resources are sufficient, the transmission of quantum states can
be tried repeatedly until success. Such idea is adopted into this work, in which the advantages
of classical network coding are combined to create a controlled quantum network coding scheme
that could achieve perfect and cross transmission of quantum states without information loss.

Since coupling between the quantum states and the surrounding environment is inevitable
in practice [30], it is of more practical significance to use non-maximum entangled states as
the auxiliary resources to achieve perfect transmission of quantum states [31]. However, under
such circumstances, the successful transmission of quantum states on the butterfly network is
not guaranteed [16,17]. If the transmission fails, the quantum states will be lost, resulting in
invalid communication and waste of channel resources. Here in this paper, we consider pre-sharing
two pairs of three-particle non-maximum entangled states between the senders and the controller
Charlie on the butterfly network. Our scheme combines quantum teleportation with classical
network coding to solve the bottleneck problem of quantum state transmission. Under Charlie’s
control, perfect and cross transmission of the quantum states can be achieved. Particularly, the
senders can predict whether the quantum states can be successfully transmitted over the butterfly
network with the help of auxiliary particles. When transmission fails, the quantum states will not
be lost, and they will remain at the sender to be used for the next transmission. Moreover, both
classical and quantum channels are not occupied if transmission fails. In this scheme, Charlie
controls not only whether the receiver can receive the quantum states, but also the usage of
classical and quantum channels over the butterfly network. Therefore, our scheme improves the
utilization efficiency of both channels.

In the following sections, the paper content is organized as below. Some preliminary def-
initions and equations involved in our scheme will be given in Section 2. In Section 3, the
implementation procedure of our controlled quantum network coding without information loss
will be discussed in detail. In addition, the implementation of the quantum circuit implementation,
as well as the flow chart and safety analysis for our scheme will be demonstrated in this section
as well, which could be of great reference value for future researches. Finally, our conclusions will
be stated in Section 4.

2 Preliminaries

2.1 Three-Particle Non-Maximum Entangled State
In our scheme, we will use a three-particle non-maximum entangled state as quantum channel.

|Φ〉ABC = α |000〉ABC +β |111〉ABC (1)

where α, β are positive real numbers and α ≤ β. It satisfies the normalization condition α2+β2 =
1, and particles A, B and C belong to different parties.

2.2 Local Operations
Some single-particle gate operations and two-particle local operations [29] are applied. The

single-particle gate operations are:

σx =
[
0 1
1 0

]
, σz =

[
1 0
0 −1

]
, H =

⎡
⎢⎢⎢⎣

1√
2

1√
2

1√
2

− 1√
2

⎤
⎥⎥⎥⎦ (2)
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The influences from the single-particle gates on the quantum states are:

σx |0〉 = |1〉 , σx |1〉 = |0〉 , σz |0〉 = |0〉 , σz |1〉 =− |1〉 , H |0〉 = |0〉+ |1〉√
2

, H |1〉 = |0〉− |1〉√
2

. (3)

The two-particle local operations are:

Cij = |0〉i 〈0| i⊗ Ij + |1〉i 〈1| i⊗ σ (j)x (4)

This operation is called a controlled NOT gate, in which particle i is a control qubit and
particle j is a target qubit.

In our scheme, a controlled unitary operation is applied to ensure that quantum states are
not lost.

C
Uj
ij = |0〉i 〈0| i⊗ Ij + |1〉 〈1| ⊗Uj (5)

Here,

Uj =

⎡
⎢⎢⎢⎢⎣
α

β

√
1− α2

β2√
1− α2

β2
−α
β

⎤
⎥⎥⎥⎥⎦ (6)

2.3 Controlled Quantum Teleportation
In our scheme, controlled quantum teleportation [32–34] is introduced into quantum network

coding. Its realization can be described as follows.

Alice, Bob and the controller Charlie share a three-particle non-maximum entangled state
|Φ〉ABC . Particle A belongs to the sender Alice, particle B belongs to the receiver Bob, and particle
C belongs to the controller Charlie. Now Alice wants to transmit an unknown quantum state
|ψ〉a to Bob. The combined state of |Φ〉ABC and |ψ〉a is:

|ψ〉a |Φ〉ABC= 1
2

[ |Ψ+〉
aA (a |00〉+ b |11〉)BC + |Ψ−〉

aA (a |00〉− b |11〉)BC
+ |Φ+〉

aA (b |00〉+ a |11〉)BC + |Φ−〉
aA (b |00〉− a |11〉) BC]

(7)

where |Ψ±〉 = α |00〉 ± β |11〉, |Φ±〉 = α |10〉 ± β |01〉. We use a two-particle basis
{ |Ψ±〉

, |Φ±〉}
to

measure particles aA. The following equations illustrate the four states measured by
{ |Ψ±〉

, |Φ±〉}
with an equal probability.

|ϒ1〉BC = a |00〉BC + b |11〉BC
|ϒ2〉BC = a |00〉BC − b |11〉BC
|ϒ3〉BC = b |00〉BC + a |11〉BC
|ϒ4〉BC = b |00〉BC − a |11〉BC

(8)

After that, Charlie integrates the X - {|+〉, |−〉} basis to measure particle C. The Charlie
needs to tell Bob the measurement results, so that Bob can recover the unknown quantum state
transmitted by Alice. For example, if the measurement result from Alice is |Ψ+〉

aA, the quantum
state |ϒ1〉BC is subsequently obtained, and Charlie measures particle C. When the measurement
result from Charlie is |+〉C , Bob executes an identity operator I to particle B based on |Ψ+〉

aA
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and |+〉C to obtain the quantum state |ψ〉B. When the measurement result from Charlie is |−〉C ,
Bob executes an Pauli operator σz to particle B based on |Ψ+〉

aA and |−〉C to obtain the quantum
state |ψ〉B.

Therefore, in order to receive the unknown quantum state transmitted by Alice, measurement
results from Alice and Charlie are both needed for Bob to realize satisfactory quantum state
recovery.

3 Our Work

In this section, we propose a controlled quantum network coding scheme without information
loss. Our scheme will be discussed based on the measurement results from auxiliary particles. In
addition, the flow chart and safety analysis of our scheme will also be given.

3.1 Controlled Quantum Network Coding without Loss of Information
In our scheme, a third-party controller Charlie is added. As is shown in Fig. 1, the capacity

of the bidirectional classical channel is 1 bit, and the dotted line represents a quantum channel
with a capacity of 1 qubit, while the solid line stands for a classical channel with a capacity
of 2 bit. Effective transmission of quantum states between the sender and the receiver require
consent from Charlie C, so that the receivers can receive quantum states as they originally are. In
our scheme, Charlie not only controls the transmission of quantum states, but also inhibits the
unnecessary transmission of classical and quantum information on the butterfly network. When
transmission fails, the transmitted quantum states will not be lost and still at the sender. The
specific protocol is demonstrated as follows:

Figure 1: Quantum butterfly network based on controller Charlie

In our scheme, the three-particle non-maximum entangled states, which are prepared by
Charlie, are pre-shared between the senders and Charlie on the butterfly network. Two pairs of
three-particle non-maximum entangled states, namely |Φ1〉 = (α |000〉+β |111〉)s1,1s2,1c1 and |Φ2〉 =
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(γ |000〉+ δ |111〉)s1,2s2,2c2 , are necessary for transmission of quantum states. After preparation of

the entangled states, Charlie sends them to the senders of S1 and S2 through the quantum
channels of Q (C,S1) and Q (C,S2), respectively. The particles of s1,1, s1,2 are owned by S1, the
particles of s2,1, s2,2 are owned by S2, and the particles of c1,c2 are owned by Charlie. Both
S1 and S2 prepare arbitrary quantum states to be transmitted, which are |ψ1〉s1 = (a1 |0〉+ b1 |1〉)s1
and |ψ2〉s2 = (a2 |0〉+ b2 |1〉)s2, respectively. Specifically, a1, a2, b1 and b2 are complex numbers

and satisfy the normalization condition |a1|2 + |b1|2 = 1, |a2|2 + |b2|2 = 1. Our scheme contains
four stages, namely local operations, encoding, transmission and decoding.

Firstly, in local operations, the combined state of the unknown state |ψi〉si and the three-
particle non-maximum entangled state |Φi〉 is expressed as

|Π〉= |ψi〉si |Φi〉
= (ai |0〉+ bi |1〉)si (αi |000〉+βi |111〉)si,isi⊕1,ici

(9)

i ∈ {1, 2} in our entire protocol.

Sender Si applies Csi,isi to its own bipartite system si,isi, and the initial state |Π〉 becomes

|Π1〉=Csi,isi |ψi〉si |Φi〉
= (αiai |0000〉+αibi |1000〉+βiai |1111〉+βibi |0111〉)sisi,isi⊕1,ici

(10)

Sender Si adds an auxiliary particle ei, which is initialized to |0〉ei . Subsequently, Si applies
Csiei on the bipartite system siei, and the quantum state |Π1〉 becomes

|Π2〉=CsieiCsi,isi |ψi〉si |Φi〉 |0〉ei= (αiai |00000〉+αibi |10001〉+βiai |11111〉+βibi |01110〉)sisi,isi⊕1,iciei
(11)

After obtaining |Π2〉, Si applies C
Usi
si,isi on the bipartite system si,isi, and the quantum state

|Π2〉 becomes

|Π3〉=C
Usi
si,isiCsieiCsi,isi |ψi〉si |Φi〉 |0〉ei

= (αiai |00000〉+αibi |10001〉−βiai |11111〉+βibi |01110〉)sisi,isi⊕1,iciei

+
√
β2i −α2i (ai |01111〉+ bi |11110〉)sisi,isi⊕1,iciei

(12)

After that, Si applies Csiei on the bipartite system siei, and the quantum state |Π3〉 becomes

|Π4〉=CsieiC
Usi
si,isiCsieiCsi,isi |ψi〉si |Φi〉 |0〉ei

= (αiai |0000〉+αibi |1000〉−βiai |1111〉+βibi |0111〉)sisi,isi⊕1,ici |0〉ei
+

√
β2i −α2i (ai |0〉+ bi |1〉)si |111〉si,isi⊕1,ici |1〉ei

(13)

Secondly, in the stage of encoding, Si uses the Z- { |0〉 , |1〉} basis to measure the auxiliary
particle ei. When the measurement result is |0〉, it suggest that perfect and cross transmission
of quantum states on the butterfly network is possible, and the following quantum state can be
obtained.

|T00〉 = (αiai |0000〉+αibi |1000〉−βiai |1111〉+βibi |0111〉)sisi,isi⊕1,ici (14)

Subsequently, Si transmits the measurement result to Charlie through the classical channel
C (Si,C). When Charlie receives a transmission request from the senders, it will employ the
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X - { |+〉 , |−〉} basis to measure particle ci, and the measurement results are encoded according to
Tab. 1.

When the measurement result is |+〉ci , the quantum state collapses to |K1〉.
|K1〉 = (αiai |000〉+αibi |100〉−βiai |111〉+βibi |011〉)sisi,isi⊕1,i

(15)

When the measurement result is |+〉ci , the quantum state collapses to |K2〉.
|K2〉 = (αiai |000〉+αibi |100〉+βiai |111〉−βibi |011〉)sisi,isi⊕1,i

(16)

Particularly, Tab. 1 only needs to be held by Charlie and Si, and the receiver Ti does not
need to know. After encoding the measurement results, Charlie sends the classic bit Yi to its
corresponding sender Si⊕1 through the classical channel C (C,Si⊕1). When Si⊕1 receives Yi, a
unitary operation U (Yi) is applied to the particle si⊕1,i according to Tab. 1. Next, Si employs the
Z- { |0〉 , |1〉} basis and the X - { |+〉 , |−〉} basis to measure particles si and si,i, respectively, and the
measurement results are encoded according to Tab. 2.

Table 1: Controller-Charlie: coding and operation

Measurement result Classic bit (Yi) Unitary operationU (Yi)

|+〉ci 0 I
|−〉ci 1 σz

Table 2: Sender-Receiver: coding & decoding

Measurement result Classic bit (Xi) U (Xi)
(
U (Xi)−1)

|0〉si |+〉si,i 00 I
|1〉si |−〉si,i 01 σx

|0〉si |−〉si,i 10 σz

|1〉si |+〉si,i 11 σxσz

With the help of Tab. 2, Si encodes its measurement results into a classic bit Xi. After mea-
surements with the single-particle bases, Si obtains the measured quantum state U (Xi⊕1) |ψ〉si,i⊕1

,

to which Si applies the unitary operation U (Xi) to find U (X1⊕X2) |ψi⊕1〉si,i⊕1
. Specifically, since

in a quantum system, U (Xi)U (Xi⊕1) |ψi⊕1〉si,i⊕1
= |±1|U (X1⊕X2) |ψi⊕1〉si,i⊕1

, the global phase

can be ignored.

Thirdly, in the transmission stage, Si sends the quantum state U (X1⊕X2) |ψi⊕1〉si,i⊕1
to the

receiver Ti⊕1 via the quantum channel Q (Si,Ti⊕1), and the classic bit Xi to the intermediate
node S0 via the classical channel C (Si,S0). After successful transmission of Xi to S0, an EX-OR
(Exclusive-OR) operation is performed to obtain X1 ⊕ X2, which is then transmitted to another
node T0 via the classic channel C (S0,T0). At T0, X1⊕X2 is copied and transmitted to Ti via the
classic channel C (T0,Ti).
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Finally, in the decoding stage, Ti applies the unitary operation U (X1⊕X2)
−1 to

U (X1⊕X2) |ψi〉si⊕1,i
based on X1 ⊕ X2; that is, U (X1⊕X2)

−1U (X1⊕X2) |ψi〉si⊕1,i
= |ψi〉si⊕1,i

. By

the end of the unitary operation, perfect and cross transmission of the quantum states can be
realized with the help of the controller Charlie on the butterfly network.

Next, we present an implementation of our scheme on a quantum circuit. As is shown in
Fig. 2, Charlie prepares and distributes entangled particles to the senders of S1 and S2. In Fig. 2,
single lines represent quantum channels, and double lines stand for classical channels. In this
implementation, controlled quantum network coding without information loss is realized with the
help of both classical and quantum channels.

Figure 2: Quantum circuit implementation

Specifically, only senders are controlled by the controller Charlie, which is a feature of this
scheme. The receiver only needs to perform unitary operations on the quantum states it received
according to Tab. 2, and storage of Tab. 1 becomes unnecessary for the receiver. If Si sends the
quantum states to Ti without the consent from Charlie, then Ti will not be able to effectively
recover the original quantum states.

3.2 Discussions
In our scheme, the measurement results of the auxiliary particle ei given by Si are sent

to Charlie via the classical channel C (Si,C). When the measurement results of both auxiliary
particles are |0〉, Charlie would control the transmission of quantum states on the butterfly
network to be successful. On the other hand, if both measurement results are |1〉, the quantum
states will not be successfully transmitted, as described in the following:

|T11〉 = (ai |0〉+ bi |1〉)si |111〉si,isi⊕1,ici (17)

However, the quantum states will not be lost. Si will get a quantum state (ai |0〉+ bi |1〉)si
with a probability of β2i −α2i . Besides, Charlie does not need to employ the X - { |+〉 , |−〉} basis to
measure its own particles. In this way, Charlie only needs to re-prepare two pairs of three-particle
non-maximum entangled states for a new cycle until the measurements given by the senders for
both auxiliary particles are |0〉.
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When the measurement given by one party on its own auxiliary particle is |0〉, and that from
the other party is |1〉, only one quantum state can be transmitted successfully on the butterfly
network. We assume that the measurement given by S1 on e1 is |0〉e1 and that given by S2 is
|1〉e1 . At such circumstances, the quantum state will collapse to |T01〉.
|T01〉 = (αiai |0000〉+αibi |1000〉−βiai |1111〉+βibi |0111〉)s1s1,1s2,1c1 ⊗ (ai |0〉+ bi |1〉)s2 |111〉s2,2s1,2c2

(18)

Here, Charlie re-prepares one three-particle non-maximum entangled state, and distributes the
particles to the senders for retransmission of the quantum state. The party who failed in the begin-
ning joins a new round of our scheme until Charlie receives the measurements of its auxiliary
particles given by both senders are |0〉. Subsequently, the Z- { |0〉 , |1〉} basis is employed to measure
the remaining particles. In this way, when transmission fails, the quantum and classical channels
will not be occupied. Additionally, a buffer time T is set in our scheme. If the measurements of
the auxiliary particles remain |1〉 within T for one party, a new round will start.

3.3 Scheme Flow Chart
In order to demonstrate our scheme more clearly, we hereby give a flow chart in Fig. 3.

By measuring the auxiliary particles, senders can predict whether the quantum states can be
transmitted on the butterfly network in a controlled way. Only the parties with a measurement
result of |1〉, instead of the quantum states, can inform the controller Charlie to re-prepare
three-particle non-maximum entangled states.

3.4 Safety Analysis
Quantum network coding is used to solve the congestion problem in the transmission of

quantum information, as well as to improve the transmission efficiency, increase network through-
put and promote network security. In our scheme, if the sender wants to send a quantum state to
the receiver, it needs the consent from a third party Charlie for effective transmission. Therefore,
with our scheme, an eavesdropper Eve shall not obtain the original quantum information. In
addition, we have not considered inevitable information destruction.

In our scheme, it is Charlie’s responsibility to prepare the three-particle non-maximum entan-
gled states and distribute the auxiliary particles to the senders. Information security in this
procedure is guaranteed by the BB84 protocol [35]. When the measurement results given by both
senders on the auxiliary particles are |0〉, it shows that the quantum states can be transmitted over
the butterfly network under the control of Charlie. In our scheme, Charlie performs measurement
according to the X - { |+〉 , |−〉} basis, and the senders acts upon both the Z- { |0〉 , |1〉} basis and
the X - { |+〉 , |−〉} basis. After encoding, a quantum state U (X1⊕X2) |ψ〉 and its corresponding
classical information are obtained at the sender. If Eve gets U (X1⊕X2) |ψ〉 via the quantum
channel but fails to acquire the classical information X1⊕X2, the quantum state |ψ〉 will not be
obtained. On the other hand, if Eve obtains the classical information X1, X2 and X1 ⊕X2 from
the classical channel without U (X1⊕X2) |ψ〉, information in |ψ〉will still be secure. Moreover,
even if Eve gets U (X1⊕X2) |ψ〉 and X1⊕X2 simultaneously, |ψ〉 will still not be decoded without
the coding table, which has been well communicated between the sender and the receiver before
transmission.
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Figure 3: The flow chart of our scheme

To summarize the analysis above, as long as the coding table, which is not seen during
the transmission, is not leaked, our scheme is secure. Therefore, our scheme ensures sufficient
information security against external eavesdroppers.

4 Conclusions

In the paper, we propose a controlled quantum network coding without information loss by
the employment of three-particle non-maximum entangled states on the butterfly network. In our
scheme, a third party Charlie is necessary as the controller for perfect and cross transmission of
quantum states.

Compared with previous schemes, our scheme is advantageous in several aspects. First of all,
compared with the scheme in [5], our scheme realizes perfect and cross transmission of quantum
states. Secondly, compared with the scheme in [9], non-maximum entangled states are employed



CMC, 2021, vol.69, no.3 3977

to realize controlled quantum network coding without information loss instead of maximum
ones. Specifically, our scheme avoids preparation of the Bell basis and employs single particle
bases to measure particles, which is easier for practical applications. Thirdly, compared with
the scheme in [16], we consider the probability of failed transmission with the non-maximum
entangled states employed as the quantum channel. When the auxiliary particles are measured to
be |1〉, we avoid the re-preparation of quantum states and invalid information transmission on
the butterfly network, which improve the utilization efficiency of the channels. Finally, we give
an implementation of our scheme on the quantum circuit, which is of great reference value for
future studies.

As for the future prospects, we hope that our scheme can be applied in practice. Moreover,
this scheme could be extended to a quantum k-pair butterfly network to achieve perfect, cross
and controlled transmission of k quantum states with further researches. We also hope that our
work can contribute to the development of quantum communication [36–41].

Funding Statement: This work is supported by NSFC (Grant Nos. 92046001, 61571024, 61671087,
61962009, 61971021), the Aeronautical Science Foundation of China (2018ZC51016), the Funda-
mental Research Funds for the Central Universities (Grant No. 2019XD-A02), the Open Foun-
dation of Guizhou Provincial Key Laboratory of Public Big Data (Grant Nos. 2018BDKFJJ018,
2019BDKFJJ010, 2019BDKFJJ014), the Open Research Project of the State Key Laboratory of
Media Convergence and Communication, Communication University of China, China (Grant No.
SKLMCC2020KF006). Huawei Technologies Co. Ltd (Grant No. YBN2020085019), the Scientific
Research Foundation of North China University of Technology.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] R. Ahlswede, N. Cai, S. R. Li and R. W. Yeung, “Network information flow,” IEEE Transactions on

Information Theory, vol. 46, no. 4, pp. 1204–1216, 2000.
[2] M. Hayashi, K. Iwama and H. Nishimura, “Quantum network coding,” in Proc. STACS, Berlin,

Heidelberg, Springer, pp. 610–621, 2007.
[3] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, vol. 299, no. 5886,

pp. 802–803, 1982.
[4] V. Buzek and M. Hillery, “Quantum copying: Beyond the no-cloning theorem,” Physical Review A, vol.

54, no. 3, pp. 1844–1852, 1996.
[5] T. Shang, X. J. Zhao, C. Wang and J. W. Liu, “Controlled quantum network coding scheme based on

single controller,” Acta Electronica Sinica, vol. 42, no. 10, pp. 1913–1917, 2014.
[6] H. Kobayashi, F. L. Gall, H. Nishimura and M. Rotteler, “General scheme for perfect quantum

network coding with free classical communication,” in Proc. ICALP, Lecture Note in Computer Science,
Rhodes, Greece, Berlin, Heidelberg: Springer, vol. 5555, pp. 622–633, 2009.

[7] H. Kobayashi, F. Le Gall, H. Nishimura and M. Rotteler, “Perfect quantum network communication
protocol based on classical network coding,” in IEEE Int. Symp. on Information Theory, Austin, TX,
USA, IEEE, pp. 2686–2690, 2010.

[8] H. Kobayashi, F. Le Gall, H. Nishimura and M. Rotteler, “Constructing quantum network coding
schemes from classical nonlinear protocols,” in IEEE Int. Symp. on Information Theory Proceedings, St.
Petersburg, Russia, IEEE, pp. 109–113, 2011.

[9] M. Hayashi, “Prior entanglement between senders enables perfect quantum network coding with
modification,” Physical Review A, vol. 76, no. 4, pp. 40301, 2007.



3978 CMC, 2021, vol.69, no.3

[10] L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. V. Meter et al., “Quantum repeater with encoding,”
Physical Review A, vol. 79, no. 3, pp. 32325, 2009.

[11] T. J. Wang, S. Y. Song and G. L. Long, “Quantum repeater based on spatial entanglement of photons
and quantum-dot spins in optical microcavities,” Physical Review A, vol. 85, no. 6, pp. 62311, 2012.

[12] Z. D. Li, R. Zhang, X. F. Yin, Y. Hu and Y. Q. Fang, “Experimental quantum repeater without
quantum memory,” Nature Photonics, vol. 13, no. 9, pp. 644–648, 2019.

[13] T. Satoh, F. Le Gall and H. Imai, “Quantum network coding for quantum repeaters,” Physical Review
A, vol. 86, no. 3, pp. 32331, 2012.

[14] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres et al., “Teleporting an unknown quantum
state via dual classical and Einstein-Podolsky-Rosen channels,” Physical Review Letters, vol. 70, no. 13,
pp. 1895, 1993.

[15] D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter et al., “Experimental quantum
teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, 1997.

[16] S. Y. Ma, X. B. Chen, M. X. Luo, X. X. Niu and Y. X. Yang, “Probabilistic quantum network coding
of M-qudit states over the butterfly network,” Optics Communications, vol. 283, no. 3, pp. 497–501,
2010.

[17] T. Shang, J. Li, Z. Pei and J. W. Liu, “Quantum network coding for general repeater networks,”
Quantum Information Processing, vol. 14, no. 9, pp. 3533–3552, 2015.

[18] T. Satoh, K. Ishizaki, S. Nagayama and R. V. Meter, “Analysis of quantum network coding for realistic
repeater networks,” Physical Review A, vol. 93, no. 3, pp. 32302, 2016.

[19] T. Matsuo, T. Satoh, S. Nagayama and R. V. Meter, “Analysis of measurement-based quantum network
coding over repeater networks under noisy conditions,” Physical Review A, vol. 97, no. 6, pp. 62328,
2018.

[20] D. D. Li, F. Gao, S. J. Qin and Q. Y. Wen, “Perfect quantum multiple-unicast network coding
protocol,” Quantum Information Processing, vol. 17, no. 1, pp. 13, 2018.

[21] G. Xu, X. B. Chen, J. Li, C. Wang and Y. X. Yang, “Network coding for quantum cooperative
multicast,” Quantum Information Processing, vol. 14, no. 11, pp. 4297–4322, 2015.

[22] J. Li, X. B. Chen, G. Xu and Y. X. Yang, “Perfect quantum network coding independent of classical
network solutions,” IEEE Communication Letters, vol. 19, no. 2, pp. 115–118, 2014.

[23] Z. Li, G. Xu, X. B. Chen and Y. X. Yang, “Secure quantum network coding based on quantum
homomorphic message authentication,” Quantum Information Processing, vol. 18, no. 1, pp. 14, 2019.

[24] X. B. Chen, Y. L. Wang, G. Xu and Y. X. Yang, “Quantum network communication with a novel
discrete-time quantum walk,” IEEE Access, vol. 7, pp. 13634–13642, 2019.

[25] P. Pathumsoot, T. Matsuo, T. Satoh, M. Hajdušek, S. Suwanna et al., “Modeling of measurement-based
quantum network coding on a superconducting quantum processor,” Physical Review A, vol. 101, no.
5, pp. 52301, 2020.

[26] H. Lu, Z. D. Li, X. F. Yin, R. Zhang, X. X. Fang et al., “Experimental quantum network coding,”
npj Quantum Information, vol. 5, no. 1, pp. 89, 2019.

[27] T. Shang, R. Liu, J. Liu and Y. Hou, “Continuous-variable quantum network coding based on quantum
discord,” Computers, Materials & Continua, vol. 64, no. 3, pp. 1629–1645, 2020.

[28] L. Roa and C. Groiseau, “Probabilistic teleportation without loss of information,” Physical Review A,
vol. 91, no. 1, pp. 12344, 2015.

[29] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge:
Cambridge University Press, pp. 171–200, 2000.

[30] Z. G. Qu, S. Y. Wu, W. J. Liu and X. J. Wang, “Analysis and improvement of steganography protocol
based on bell states in noise environment,” Computers,Materials &Continua, vol. 59, no. 2, pp. 607–624,
2019.

[31] W. L. Li, C. F. Li and G. C. Guo, “Probabilistic teleportation and entanglement matching,” Physical
Review A, vol. 61, no. 3, pp. 34301, 2000.



CMC, 2021, vol.69, no.3 3979

[32] T. Gao, F. L. Yan and Z. X. Wang, “Controlled quantum teleportation and secure direct communica-
tion,” Chinese Physics, vol. 14, no. 5, pp. 893–897, 2005.

[33] C. P. Yang, S. H. Chu and S. Y. Han, “Efficient many-party controlled teleportation of multiqubit
quantum information via entanglement,” Physical Review A, vol. 70, no. 2, pp. 22329, 2004.

[34] Z. G. Qu, S. Y. Chen and X. J. Wang, “A secure controlled quantum image steganography algorithm,”
Quantum Information Processing, vol. 19, no. 380, pp. 1–25, 2020.

[35] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,”
in Proc. of IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179,
1984.

[36] N. Gisin and R. Thew, “Quantum communication,” Nature Photon, vol. 1, no. 3, pp. 165–171, 2007.
[37] S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel and R. Ursin, “An entanglement-based

wavelength-multiplexed quantum communication network,” Nature, vol. 564, no. 7735, pp. 225–228,
2018.

[38] Z. Dou, G. Xu, X. B. Chen and K. Yuan, “Rational non-hierarchical quantum state sharing protocol,”
Computers, Materials & Continua, vol. 58, no. 2, pp. 335–347, 2019.

[39] X. B. Chen, Y. R. Sun, G. Xu and Y. X. Yang, “Quantum homomorphic encryption scheme with
flexible number of evaluator based on (k, n)-threshold quantum state sharing,” Information Sciences,
vol. 501, no. 1, pp. 172–181, 2019.

[40] G. Xu, K. Xiao, Z. P. Li, X. X. Niu and M. Ryan, “Controlled secure direct communication protocol
via the three-qubit partially entangled set of states,” Computers, Materials & Continua, vol. 58, no. 3,
pp. 809–827, 2019.

[41] S. Pirandola, “End-to-end capacities of a quantum communication network,” Communications Physics,
vol. 2, no. 51, pp. 1023, 2019.


