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Abstract: Predicting the mechanical properties of additively manufactured parts is often a 

tedious process, requiring the integration of multiple stand-alone and expensive 

simulations. Furthermore, as properties are highly location-dependent due to repeated 

heating and cooling cycles, the properties prediction models must be run for multiple 

locations before the part-level performance can be analyzed for certification, compounding 

the computational expense. This work has proposed a rapid prediction framework that 

replaces the physics-based mechanistic models with Gaussian process metamodels, a type 

of machine learning model for statistical inference with limited data. The metamodels can 

predict the varying properties within an entire part in a fraction of the time while providing 

uncertainty quantification. The framework was demonstrated with the prediction of the 

tensile yield strength of Ferrium® PH48S maraging stainless steel fabricated by additive 

manufacturing. Impressive agreement was found between the metamodels and the 

mechanistic models, and the computation was dramatically decreased from hours of 

physics-based simulations to less than a second with metamodels. This method can be 

extended to predict various materials properties in different alloy systems whose process-

structure-property-performance interrelationships are linked by mechanistic models. It is 

powerful for rapidly identifying the spatial properties of a part with compositional and 

processing parameter variations, and can support part certification by providing a fast 

interface between materials models and part-level thermal and performance simulations. 
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1 Introduction 

For more than 20 years, additive manufacturing (AM) has been used to fabricate prototypes 
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and models, but only in recent years has it become one of the advanced manufacturing 

techniques for mission-critical metallic parts. With computer-aided design tools and high-

precision machines, the AM techniques, which build the parts layer-by-layer, provide 

unique capabilities for complex geometries that are difficult to create using other 

manufacturing processes. 

Yet despite recent rapid advances in AM technology, its widespread adoption and 

commercialization are still hindered, as critical applications, such as those in aerospace, 

automobile, defense, etc. require a high degree of quality, performance, reliability, and 

repeatability [Bae, Diggs and Ramachandran (2018)]. The lack of standards and protocols 

for materials and equipment, as well as low testing efficiency, make complete quality 

assurance/quality control (QA/QC) one of the biggest constraints of product development 

for AM [Hessman (2015); Bae, Diggs and Ramachandran (2018)]. Due to compositional 

and processing variations, the conventional experiments required to certify an industrial 

product for commercialization are repetitive, cost- and time-consuming. Therefore, virtual 

certification methods are crucial to reducing the cost and amount of labor. In particular, 

robust numerical methods that rapidly predict the spatially-varying properties of the parts 

are highly sought to accelerate the evaluation of repeatability and consistency build-to-

build and machine-to-machine. 

Load-bearing parts, for instance, are keys for critical applications. Assuring that the 

mechanical properties of the AM parts are equivalent or superior to their wrought 

counterparts is a topmost challenge for the adoption of AM technology. It urges the 

development of robust predicting tools to feedback the mechanical properties rapidly with 

respect to different AM thermal histories and post-AM heat treatment steps. Currently, 

stand-alone simulators that model AM thermal histories and microstructure evolutions only 

exist in research environments. Most simulators require highly-educated operators as well 

as expensive licenses and special running environments. More importantly, these 

simulations are extremely time-consuming, taking minutes to hours to ensure high 

accuracy, and not practical for certification with massive amounts of calculations. To 

ensure efficient QA/QC, it is necessary to develop a predicting tool that features: 1) 

accuracy and speed to perform large quantities of predictions in minutes or less; 2) 

seamless integration of the models that link the processing-structure-property-performance 

(PSPP) interrelations of the materials; 3) simple and economical operation that sets low 

barriers for the skills needed to access the tool. 

Metamodels, also known as surrogate models, have grown in popularity as data-driven 

techniques to replace expensive computer simulations and experiments. Their ability to 

learn the relationship between sets of inputs and outputs have been well studied [Simpson, 

Poplinski, Koch et al. (2001); Jin, Chen and Simpson (2001)], and advantageously applied 

to metamodel-based design analysis and optimization of complex engineering systems 

[Zhu, Zhang and Chen (2009); Tao, Shintani, Bostanabad et al. (2017)]. Additionally, 

metamodels have been used to successfully bridge multiple length-scales to design 

materials systems [Bessaa, Bostanabad, Liu et al. (2017); Bostanabad, Liang, Gao et al. 

(2018); Hansoge, Huang, Sinko et al. (2018); Xu, Li, Brinson et al. (2016)]. 

In this work, a multi-response Gaussian process (GP) metamodeling method capable of 

predicting many locations simultaneously for nonlinear, high-dimensional datasets 
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[Bostanabad, Kearney, Tao et al. (2017)] was chosen to replace the time-consuming 

microstructure evolution simulations of the AM process and subsequent heat-treating steps. 

In general, GP metamodels are machine learning models that provide effective statistical 

inference even when data is limited. Besides modeling highly nonlinear behavior, GP 

metamodels quantify the epistemic uncertainty of the predictions (due to lack of data or 

incomplete knowledge of the physics). The Gaussian assumption is a common one for 

spatial random processes, and used here to capture the prediction uncertainty based on the 

distance between the prediction site and the collected data, i.e. regions in the model input 

space with more training data points have less uncertainty. GP models can also be 

efficiently updated via Bayesian calibration and bias correction techniques when given 

experimental data. Although this work does not cover uncertainty quantification, robust 

design or calibration, such features are highly desirable in AM since the complex physics 

are not yet fully understood and considerable variations exist between builds and machines. 

In support of AM QA/QC, this work adopts AM Ferrium® PH48S maraging stainless steel 

and the prediction of its tensile yield strength in the service condition (heat-treated 

following AM processing) to illustrate the feasibility of GP metamodels as a replacement 

for complex physics-based mechanistic models and tools. This framework is proposed for 

AM techniques with a high-power heat source (such as laser and e-beam) such that the 

materials experience rapid melting and solidification during AM. The PSPP 

interrelationships are first identified with conventional mechanistic models using the 

system design approach. Next, a chained method involving intermediate oxide evolution, 

η precipitation strengthening and solid solution strengthening metamodels is presented to 

rapidly predict the total tensile yield strength. The metamodels are validated using both 

cross-validation and an independent dataset. Finally, the prediction accuracy and time 

consumption of mechanistic and metamodeling methods are compared and discussed. 

2 Rapid prediction methodology 

Before presenting the PH48S example, a general overview of the techniques used to fit, 

validate and analyze the GP metamodels is described in this section. 

2.1 Optimal design of experiments 

Prior to fitting the metamodel, a training dataset must be generated. To efficiently cover the 

model input space, Design of Experiments (DOE) can be utilized to select the points at which 

the mechanistic models are evaluated to obtain the desired output(s), or response(s). This 

work employs the optimal Latin hypercube sampling (OLHS) method, which uses a fast 

global search algorithm to maximize the uniformity of samples over the input space while 

minimizing the number of samples necessary [Jin, Chen and Sudjianto (2005)]. 

For a DOE with n samples, the generated set of d-dimensional inputs is denoted as 𝐗 =
[𝐱1, 𝐱2, … , 𝐱𝑛]𝑇 , where 𝐱𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑]𝑇 , 𝑖 ∈ 1,2, … , 𝑛, and the outputs from the 

mechanistic models as 𝐲 = [𝐲1, 𝐲2, … , 𝐲𝑛]𝑇. The training dataset is then (𝐗, 𝐲). In order to 

build a well-fitted metamodel, it is generally recommended to design a dataset with size 

𝑛 ≥ 10𝑑. Here, 𝑛 = 20𝑑 samples are sufficient to ensure the metamodels’ accuracies. 
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2.2 Gaussian process modeling 

In this work, the metamodels are built using the GP modeling method, which can smoothly 

capture highly nonlinear input-output relationships over a continuous space without 

needing as much data as other machine learning methods, especially when paired with 

OLHS. This stochastic technique assumes that the d-dimensional inputs are normally 

distributed random variables, and defines the GP as a collection of these variables such that 

any linear combination of them has a multivariate Gaussian distribution. In other words, 

the model response, y, also has a Gaussian distribution, implying that the mean and 

confidence interval of the mean prediction, i.e. prediction interval (PI), can be obtained. 

More specifically, the response can be characterized by its mean and covariance matrix as 

𝑦(𝐗)~GP(𝑚(𝐗), 𝚺). The ability to quantify the prediction uncertainty due to noise or lack 

of data is an advantage of GP models over many metamodeling techniques. 

A GP model is formulated as the sum of a linear regression model and a stochastic process: 

y(𝐗) = ∑ 𝛽𝑗𝑓𝑗(𝐗)

𝑝

𝑗=1

+ 𝑍(𝐗) = 𝐟𝑇(𝐗)𝛃 + 𝑍(𝐗),                                                                         (1) 

where 𝑓𝑗(𝐗) and 𝛽𝑗 are basis functions and their unknown coefficients [Rasmussen (2004)]. 

The stochastic part, 𝑍(𝐗), can be taken as the error or “lack of fit” in the model from 

insufficient data. It has a zero-mean Gaussian distribution with a covariance function 

𝑐(𝐱, 𝐱′) = 𝜎2(𝑅(𝐱, 𝐱′)) , where 𝜎2  is an unknown variance and 𝑅(𝐱, 𝐱′)  is a spatial 

correlation function (SCF). As is common, the Gaussian SCF is used so that 

𝑅𝑖𝑗 = 𝑅(𝐱𝑖 , 𝐱𝑗) = exp {− ∑ 𝜃𝑘(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

𝑑

𝑘=1

} ,   𝑖, 𝑗 ∈ {1,2, … , 𝑛},                                     (2) 

where 𝛉 = [𝜃1, 𝜃2, … , 𝜃𝑑] are “roughness” hyperparameters. 

Therefore, 𝑚(𝐗) = 𝐟𝑇(𝐗)𝛃 and Σ𝑖𝑗 = 𝑐𝑖𝑗 = 𝜎2𝑅𝑖𝑗. Since the metamodels in this work are 

used for interpolation, not extrapolation, it is reasonable to assume a constant prior mean and 

set 𝐟(𝐗) = 1 (and 𝑝 = 1) without danger of reverting to the mean [Staum (2009)]. 

In order to fit the model, the optimal values of the hyperparameters, 𝛃, 𝛉, 𝜎2, can be found 

using maximum likelihood estimation (MLE), which maximizes the probability, or 

“likelihood”, of obtaining a prediction that is the same as the observed training response. 

This can be accomplished by recasting the optimization problem as the minimization of 

the negative log-likelihood function as follows: 

[𝛃̂, 𝛉̂, 𝜎2̂] = argmin
𝛃,𝛉,𝜎2

1

2
ln|𝐑| +

𝑛

2
ln(𝜎2) +

(𝐲 − 𝟏𝑛×1𝛃)𝑇𝐑−1(𝐲 − 𝟏𝑛×1𝛃)

2𝜎2
,                   (3)  

where 𝐑 is an 𝑛 × 𝑛 matrix with elements calculated using Eq. (2). The problem can be 

simplified by formulating 𝛃 and 𝜎2 as functions of 𝛉 so that the minimization is only with 

respect to the latter. 

Recall that in GP models, the variables are assumed to be normally distributed. Thus, once 

the optimal hyperparameters are fitted, both the mean predictions and their associated 

uncertainties due to lack of data can be found. The mean prediction at a new point, 𝐱0, can 

be made using the closed-form equation for the Best Linear Unbiased Predictor of Eq. (1), 
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𝑦̂(𝐱0) = 1 ∙ 𝛃̂ + 𝐫𝑇(𝐱0)𝐑−1(𝐲 − 𝟏𝑛×1𝛃̂),   (4) 

where 𝐫(𝐱0) is a vector of size 𝑛 × 1 such that 𝑟𝑖(𝐱0) = 𝑅(𝐱0, 𝐱𝑖), 𝑖 = 1, … , 𝑛. 

Additionally, the uncertainty of each prediction point can be easily quantified using the 

mean squared error (MSE):  

MSE[𝑦̂(𝐱0)] = 𝜎2̂[𝑟(𝐱0, 𝐱0) − 𝐫𝑇(𝐱0)𝐑−1𝐫(𝐱0) + 𝐖𝑇(𝟏𝑛×1
𝑇 𝐑−1𝟏𝑛×1)−1𝐖],  (5) 

where 𝐖 = 1 − 𝟏𝑛×1𝐑−1𝐫(𝐱0). 

Finally, the PI of the mean prediction can be obtained based on 

𝑦̂(𝐱0) ± 𝑧√MSE[𝑦̂(𝐱0)],   (6)  

where z is the z-score of the standard normal distribution. For a 95% PI, z=1.96. 

The concept of mean predictors and of using PI to quantify uncertainty due to lack of data 

is shown in Fig. 1 with a toy 1-dimensional example. In Fig. 1(b), the 95% PI is small-

nearly coincident with the mean prediction-whereas in Fig. 1(a), which is missing one data 

point at x=1.2, the PI is much wider. 

 
(a)                                                                  (b) 

Figure 1: Gaussian process models for a 1-dimensional toy example with training datasets 

(a) missing a sample at x=1.2, and (b) including the x=1.2 sample 

Details of the mathematics behind GP models and hyperparameter learning methods can be 

readily found in several sources, including [Martin and Simpson (2005); Rasmussen (2006)]. 

This work uses an enhanced GP modeling technique that can predict multiple responses 

(q-dimensional y) and is robust for large, high-dimensional and noisy datasets [Bostanabad, 

Kearney, Tao et al. (2018)]. An adaptive nugget parameter is utilized to smoothly model 

nonlinear behavior and represent the variance of noise. Like most GP models, the noise 

variance is assumed to be constant. This technique has been successfully applied to 

hierarchical woven fiber composites [Bostanabad, Liang, Gao et al. (2018)] and 

multidisciplinary vehicle suspension design [Tao, Shintani, Bostanabad et al. (2017)]. 

2.3 GP model validation 

To validate the GP metamodels, Leave-One-Out Cross-Validation (LOO-CV) is adopted, 

where the error metric, here the Mean Absolute Error (MAE), is evaluated by leaving one 
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training point out of the model fitting and repeating until all data points have been left out 

once. The LOO-CV error for each model is the average of these individual errors. While 

this would generally require the model to be fitted n times for a training dataset of size n, 

a closed-form equation for the MAE can be derived for GP models by using the leave-one-

out predicted mean [Rasmussen (2006)]: 

𝜇𝑖(𝐱𝑖) = 𝑦𝑖 − 𝐫𝑇(𝐱0, 𝐱~𝑖)𝐑(𝐱~𝑖)−1(𝐲~𝑖 − 𝟏𝑛×1𝛃̂),  (7) 

where ~i indicates that sample point i has been removed. 

The definition of the LOO-CV MAE is then 

MAE =
1

𝑛
∑|𝑦𝑖 − 𝜇𝑖|

𝑛

𝑖=1

=
1

𝑛
∑|𝐫𝑇(𝐱0, 𝐱~𝑖)𝐑(𝐱~𝑖)−1(𝐲~𝑖 − 𝟏𝑛×1𝛃̂)|

𝑛

𝑖=1

.                             (8) 

Thus, using Eq. (8), the GP model need only be fitted (i.e. the hyperparameters optimized) 

once using the complete set of training data to calculate the LOO-CV error. 

This work further validates the metamodels by comparing the predictions to those of the 

conventional mechanistic models. A separate OLHS validation dataset that is independent 

of the training set and not used for fitting the models is used. 

2.4 Sobol statistical sensitivity analysis 

With validated metamodels, Sobol statistical sensitivity analysis (SSA), also known as 

variance-based or global sensitivity analysis, can efficiently be used to study how 

uncertainties in the inputs contribute to variations in the output, i.e. how strongly each 

model input affects the response. In this method, the variance of the model output, 𝑦 =
𝑔(𝐱) , is decomposed into functions of individual inputs and their interactions, then 

estimated via Monte Carlo integration, for which hundreds of thousands of model 

evaluations may be required [Sobol (2001); Saltelli, Annoni, Azzini et al. (2010)]. With 

fast predictions, the GP metamodels are therefore advantageous for SSA. 

The decomposition is as follows: 

Var(𝑌) = ∑ 𝑉𝑖

𝑑

𝑖=1

+ ∑ 𝑉𝑖𝑗

𝑑

𝑖=1,𝑗<𝑖

+ ⋯ + 𝑉12…𝑑,                                                                              (9) 

where d is the number of inputs, 𝑉𝑖 is the variance when varying 𝑥𝑖 only, 𝑉𝑖𝑗 is the variance 

when varying 𝑥𝑖  and 𝑥𝑗 , and so on. Note that the variances with respect to multiple 

variables can be seen as the variance due to the interaction of those variables. 

The Sobol indices, which include the main, interaction and total indices, are found using 

the decomposed variances. The main sensitivity index (MSI) measures the effect of xi alone 

and is calculated by 

𝑆𝑖 =
𝑉𝑖

Var(𝑌)
.                                                                                                                                  (10) 

The total sensitivity index (TSI), or the effect of xi as well as all of its interactions with any 

combination of the other variables, is 
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𝑆𝑇𝑖 =
𝐸𝐱~𝑖

[Var(𝑌|𝐱~𝑖)]

Var(𝑌)
=

𝑉𝑖 + ∑ 𝑉𝑖𝑗
𝑑
𝑗=1,𝑗≠𝑖 + ⋯ + 𝑉12…𝑑

Var(𝑌)
,                                               (11)  

where ~i means all variables except 𝑥𝑖, and 𝐸[∙] is the expectation. 

The sum of all interaction effects of 𝑥𝑖 with the other variables can be found simply by the 

difference between its TSI and MSI. Finally, the input variables with larger indices can be 

interpreted as having larger influences on the output. The MSI can be utilized for this 

purpose, though it may be misleading if strong interactions exist. 

3 Predictive models of PH48S tensile yield strength 

To demonstrate the advantages of the data-driven rapid prediction methods above, the 

spatially-varying tensile yield strength of PH48S is taken as an example. Based on the 

PSPP paradigm, physics-based models and a framework to accelerate the prediction are 

presented in this section. 

3.1 The material system 

A material can be regarded as a system of aggregates in a hierarchy of characteristic lengths 

and times. The hierarchical materials structures are closely related to the history of 

processing and directly influence the properties and performance [Olson (1997); Xiong and 

Olson (2016)]. To predict the mechanical properties of the materials with high confidence, 

it is critical to identify the contributing microstructural features that are of different length 

scales and to figure out the evolution of those features in response to the multi-step thermal 

processing, i.e. the PSPP interrelationships. These high-fidelity physics-based mechanistic 

models will lay the foundations for accurate metamodels. 

Ferrium® PH48S maraging stainless steel (“PH48S” for short), whose nominal composition 

is listed in Tab. 1, possesses superior strength by precipitating finely-dispersed rod-shaped 

η-Ni3(Ti,Al) particles during the aging process. Due to its excellent solidification behavior, 

it is a desirable candidate for AM processing. (For more information about the alloy, please 

refer to https://www.questek.com/ferrium-ph48s.html.) 

Table 1: Nominal composition of Ferrium® PH48S maraging stainless steel 

Element Fe Cr Ni Co Mo Ti Al 

wt.% Bal. 
10.9-

11.3 
8.6-9.0 7.2-7.6 1.5-1.7 0.58-0.62 0.40-0.45 

The PSPP relationships in the AM PH48S system is outlined by the system design chart in 

Fig. 2. Key processing steps and their process parameters are linked to hierarchical 

microstructures, which in turn affect the properties that determine the overall performance. 

This work focuses on the strength subsystem of PH48S. 

https://www.questek.com/ferrium-ph48s.html
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Figure 2: System design chart for AM PH48S. (Colored lines indicate the key PSPP 

relationships in PH48S when predicting the strength. Different colors represent different 

strength contributors that form after specific processing steps.) 

AM-fabricated PH48S parts exhibit hierarchical solidification microstructures, such as 

segregated cellular/dendritic structures, columnar grain structure and fine oxide inclusions 

[Yan, Xiong, Faierson et al. (2018)], due to cycles of rapid melting/solidification. To achieve 

the best mechanical performance, a series of heat-treating steps are performed following the 

AM processing, including high-temperature homogenization and low-temperature aging, as 

indicated in Fig. 2. Homogenization aims to make the composition uniform throughout the 

whole part to ensure no heterogeneity in material performance. During homogenization, 

microsegregation and residual stress are eliminated, and grains become equiaxed through 

partial recrystallization pinned by sub-micron oxide inclusions (corundum oxide phase in 

PH48S). The following aging step enables the precipitation of fine η-Ni3(Ti,Al) particles, 

which can significantly strengthen the material. As indicated by the colored lines in Fig. 2, 

the strength of the material is primarily determined by the strengthening effects contributed 

by η-Ni3(Ti,Al) precipitates (blue), solute elements in the matrix (green), primary grain 

boundaries (pink) and oxide particles (red).  

To obtain a good evaluation of the tensile yield strength, it is crucial to predict these key 

microstructures with regard to the related thermal histories during processing: 1) 

distribution (diameter and volume fraction) of η-Ni3(Ti,Al) precipitates that form during 

aging, as they contribute most to the strength through dispersion strengthening; 2) 

distribution of corundum oxide inclusions that form during the rapid solidification of AM, 

as they can slightly strengthen the material through dispersion strengthening, and can 

determine the recrystallized grain size that contributes to the strength by grain boundary 
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strengthening; 3) effect of alloying elements on the matrix strength.  

3.2 Physics-based microstructure and property models 

A chart that illustrates the flow of predicting the tensile yield strength of PH48S with 

mechanistic processing-structure and structure-property models is shown in Fig. 3. With 

alloy composition, oxygen content and cooling rate during AM as the inputs, the oxide 

distribution and the matrix composition can be first obtained by a precipitation simulation. 

Oxide particles can directly strengthen the material, and can also determine the 

recrystallized grain size which then determines the grain boundary strengthening, a 

contributor to the total strength. With the composition of the homogenized matrix and the 

aging conditions, the distribution of η-Ni3(Ti,Al) precipitates and the composition of the 

BCC-Fe matrix can be calculated through an isothermal precipitation simulation, and the 

corresponding strengthening effects can be predicted. The total tensile yield strength is the 

superposition of all the strengthening effects. Details of the processing-structure and 

structure-property mechanistic models are introduced in the following sections. 

 

Figure 3: Flow chart illustrating the prediction of tensile yield strength of PH48S with 

mechanistic processing-structure and structure-property models (numbers ① to ⑨) 

3.2.1 Processing-structure models 

The precipitation of oxide particles during the rapid solidification of AM and of the η 

particles during aging are keys to tensile yield strength prediction. The evolution of 

precipitates represented by the dependency of particle size and number density on time can 

be simulated by the precipitation simulator, PrecipiCalc software. PrecipiCalc adopts the 

numerical LS (Langer-Schwartz)-KW (Kampmann-Wagner) framework in modeling 

precipitation in the multicomponent system. It builds on CALPHAD-based databases 

(thermodynamic and mobility) to capture fundamental mechanistic features of 

multicomponent alloys. The LS model provides an integrated approach to nucleation, 

growth and coarsening, and KW model provides a numerical solution to the LS model [Jou, 



 

 

 

352   Copyright © 2018 Tech Science Press          CMES, vol.117, no.3, pp.343-366, 2018 

Voorhees and Olson (2004); Olson, Jou, Jung et al. (2008)]. Key inputs to the precipitation 

simulation are a temperature-time profile and alloy composition. This simulation typically 

takes the most time out of the whole modeling process, since each time step is calculated 

based on several previously calculated points, and the thermodynamic calculations have to 

be invoked every few time steps to feedback the equilibrium phase relations. Corundum 

oxide phase precipitating in the liquid-Fe phase during solidification is simulated by 

PrcipiCalc with a provided AM cooling rate (model ①). Meanwhile, the evolution of η 

phase in BCC-Fe phase during aging (isothermal) is also simulated by PrecipiCalc (model 

④), which not only outputs the distribution of particles but the matrix composition that is 

used to evaluate the solid solution strengthening by solute elements (Cr, Ni, Co, Mo). 

Due to the pinning effect of oxide particles on recrystallized grain boundaries [Yan, Xiong, 

Faierson et al. (2018)], the recrystallized grain size D can be predicted using the size 

distribution of oxide particles (mean particle radius R and volume fraction F) through the 

Zener-Gladman boundary pinning model [Olson (1987)] (model ②), as in Eq. (12), 

𝐷 =
4

3
(

3

2
−

2

𝑍
)

2𝑅

𝐹
,        (12) 

where the grain size distribution parameter Z is 1.53. 

3.2.2 Structure-property models 

The prediction of the tensile yield strength of alloys has been a prevailing goal of materials 

science, and several mechanistic analytical models have been established to describe 

different strengthening mechanisms with microstructural features. 

The primary contributor to total tensile yield strength is η precipitation strengthening, which 

is achieved by particle-dislocation interactions. When the η particles are fine, dislocations 

can shear through the particles. Coherency strengthening and modulus strengthening are 

major strengthening mechanisms, which can be linearly superpositioned as described in Eq. 

(13) with the η particle distribution (average particle radius r and volume fraction f) simulated 

by PrecipiCalc, 

∆𝜎𝜂𝑠ℎ𝑒𝑎𝑟
 (MPa) = 3.7𝐺𝜀1.5√

𝑓𝑟

𝑏
+ 0.9√𝑓𝑟

𝐺𝑏

2
(

𝛥𝐺1

𝐺
)

1.5
[2𝑏ln (

2𝑟

√𝑓𝑏
)]

−1.5

,        (13) 

where the BCC-Fe shear modulus G is 71 GPa, the misfit strain ε is 0.0148, and the Burgers 

vector b is 0.219 nm. 

When the η particles grow larger and become impenetrable, the passing dislocation then 

loops around the particle, whose strengthening effect can be described by the Orowan 

equation with rod-to-spherical shape correction, as in Eq. (14), 

Δ𝜎𝜂𝑜𝑟𝑜
 (MPa) = 0.15𝐺

𝑏

𝐷𝑟
(𝑓0.5 + 1.84𝑓 + 1.84𝑓1.5)ln (

1.316𝐷𝑟

𝑏
),       (14) 

where 

𝐷𝑟 = (
8

5
𝑟)

1/3
.        (15) 

Competing between the dislocation-shearing and dislocation-looping mechanisms, the 

absolute η strengthening (model ⑥) is given by 
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∆𝜎𝜂 = min(∆𝜎𝜂𝑠ℎ𝑒𝑎𝑟
, Δ𝜎𝜂𝑜𝑟𝑜

).        (16) 

Since oxide particles are typically large (~0.1 μm), strengthening by oxide particles is 

dominated by dislocation looping (model ③), which can be described by the Orowan 

equation with the PrecipiCalc-simulated oxide distribution (mean particle radius R and 

volume fraction F) as the input, as in Eq. (17), 

∆𝜎oxide(MPa) = 𝑀
𝐺𝑏

√𝜋
∙

√𝐹

𝑅
,        (17) 

where the Taylor factor M is 2.8. 

The total precipitation strengthening from η and corundum oxide precipitates (model ⑦) 

is given by 

Δ𝜎𝑝𝑝𝑡 (MPa) = (Δ𝜎𝜂
𝑝 + Δ𝜎oxide

𝑝)
1

𝑝,        (18) 

where the exponent p is 1.71 [Wang, Mulholland, Olson et al. (2013)]. 

The grain boundary (specifically, martensite packet boundary) strengthening effect (model 

⑤) can be represented by the Hall-Petch equation [Wang, Mulholland, Olson et al. (2013)] 

as, 

Δ𝜎𝐻𝑃(MPa) = 𝐾𝐷𝑝
−1/2,        (19) 

where the Hall-Petch constant for martensite packets K is 0.2 MPa m1/2, and Dp is the 

martensite packet size, which is linearly related to the recrystallized austenite grain size 

[Morito, Yoshida, Maki et al. (2006)] as in Eq. (20), 

𝐷𝑝 = 0.3749 × 𝐷 + 2.9033 × 10−6.        (20) 

Another strengthening contribution is solid solution strengthening, determined by the solute 

concentrations in the matrix (model ⑧) which can be expressed by Eq. (21) [Qian (2007)], 

Δ𝜎𝑠𝑠𝑠 (MPa) = 0.95 × 0.0078 × 𝐺 × ∑ 𝑘𝑖𝑐𝑖
2/3

,        (21) 

where ci is the atomic fraction of the element i in the matrix and ki is the strengthening 

coefficient listed in Tab. 2. The matrix composition after aging is obtained from the 

PrecipiCalc simulation of η precipitation. 

Table 2: Solid solution strengthening coefficient in BCC-Fe (MPa) 

Cr Ni Co Mo 

0.19744 0.67128 0.21366 1.37421 

In maraging steels, the dislocation density is ~1014 m-2 in the as-quenched condition 

[Galindo-Nava, Rainforth and Rivera-Díaz-del-Castillo (2016); Zhu, Yin and Faulkner 

(2011)]. Dislocations recover during aging, and the dislocation density is estimated to drop 

to 0.5×1014 m-2 [Zhu, Yin and Faulkner (2011)]. Dislocation strengthening is then predicted 

using the dislocation density ρ by Eq. (22), 

Δ𝜏𝑑  (MPa) = 𝐺𝑏√𝜌.  (22) 

Finally, assuming it is the linear superposition of all strengthening contributions, the total 

yield strength (model ⑨) is given by Eq. (23), 
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𝜎𝑦 (MPa) = 𝑀(𝜏α-Fe + Δ𝜏𝑑) + Δ𝜎𝑝𝑝𝑡 + Δ𝜎𝑆𝑆𝑆 + Δ𝜎𝐻𝑃,  (23) 

where the Peierls stress of pure BCC-Fe, τα-Fe, is 64 MPa [Wang, Mulholland, Olson et al. 

(2013)]. 

3.3 Rapid prediction framework using GP metamodels 

Since the physics-based simulations are intractably expensive when performing large 

amounts of prediction, this framework substitutes mechanistic models at each processing 

step with GP metamodels, which can then be chained together to predict the end quantity 

of interest. As outlined in blue in Fig. 4, for the PH48S example, the metamodels replace 

the oxide and η precipitation simulations, which are the most time-consuming. In total, 

four metamodels are developed and labelled in Fig. 4: A) oxide precipitation, B) η 

precipitation strengthening, C) solid solution strengthening, and D) tensile yield strength. 

The inputs include the alloy composition as well as the critical processing parameters that 

determine the property-controlling microstructures. By selecting their ranges to reflect 

composition tolerance and processing variations, the metamodels can be harnessed for 

robust optimization under uncertainty. 

For the oxide precipitation metamodel, the inputs are alloy composition, oxygen content 

and the AM thermal history, i.e. the cooling rate during solidification. The alloy 

composition varies spatially in powder AM, but the concentration of each alloying element 

should be within the chemical tolerance listed in Tab. 1. In conventional manufacturing of 

steels, oxygen is a trace element with low concentration (~10 ppm). However, the powder 

feedstock for AM typically contains oxygen with an order of magnitude higher (100~300 

ppm), which enables the formation of great amounts of oxide particles in the AM 

counterparts. Therefore, oxygen content is a key input, ranging within 0.01~0.03 weight % 

(wt.%). Another factor that influences oxide precipitation is the cooling rate during 

solidification. Cooling rate differs from location to location within a part and varies 

between parts when different AM processing parameters are chosen, but it is typically 

ranged between 103~106 K/s. 

For the η precipitation and solid solution strengthening metamodels, besides the alloying 

elements, aging temperature and aging time are chosen as inputs to reflect the thermal 

condition. They are varied around the standard thermal condition (520ºC for 2 h) to 

represent practical furnace temperature variations and holding time inconsistency. A 

detailed specification of metamodel inputs and ranges is listed in Tab. 3. 
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Figure 4: Data-driven framework to replace mechanistic models with GP metamodels 

Table 3: Ranges of the inputs used to train metamodels 

Input (min.-max.) 

log(Cooling Rate 

(K/s)) 

(3-6) 

Aging 

Temperature (oC) 

(513-527) 

Aging Time (s) 

(6600-7800) 

Cr (wt.%) 

(10.9-11.3) 

Ni (wt.%) 

(8.6-9.0) 

Co (wt.%) 

(7.2-7.6) 

Mo (wt.%) 

(1.5-1.7) 

Ti (wt.%) 

(0.58-0.62) 

Al (wt.%) 

(0.40-0.45) 

O (wt.%) 

(0.01-0.03) 

After selecting the inputs and ranges, the sample points of the training dataset are optimized 

using OLHS. For each training sample, the physics-based models are used to calculate the 

oxide distribution, as well as the η precipitation and solid solution strengthening 

contributions. With these outputs, individual GP metamodels are fitted for oxide 

precipitation, η precipitation strengthening and solid solution strengthening (models A, B 

and C in Fig. 4). Using these intermediate metamodels in lieu of the mechanistic models, 

the oxide distribution and strength contributions for each sample of the training dataset are 

predicted, and the total tensile yield strength is calculated using Eq. (23). Thus, the 

contribution metamodels are “chained” together and the final metamodel (model D) is 

fitted (chained method). 

Although it is more straightforward to fit the tensile yield strength metamodel directly from 

mechanistic predictions (direct method), including intermediate contribution metamodels 

in the framework allows separate Bayesian calibration or bias correction, if only specific 

models need to be improved. Calibration against experimental data can also be used to 

combat any uncertainty in the simulations or analytical equations, since those are 

deterministic and assumed here to be free from error. Furthermore, detailed SSA can be 

performed to identify which inputs effect each strengthening contribution rather than the total 

strength. A comparison of the metamodels built with the same input DOE but different ways 

of obtaining the output (direct vs. chained methods) is discussed in Section 4. 
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4 Results and discussions 

4.1 Metamodels 

A training dataset with ten inputs that combine the inputs to oxide precipitation, η 

precipitation strengthening and solid solution strengthening (Tab. 3) and 200 samples was 

generated using OLHS. For each sample, the oxide distribution descriptors, η precipitation 

strengthening and solid solution strengthening were obtained from PrecipiCalc simulations 

and analytical models. As mentioned previously, the tensile yield strength was calculated 

both analytically (direct method) and through the nonlinear superposition of intermediate 

metamodels (chained method). 

While training the metamodels, the LOO-CV MAE for each response was calculated using 

Eq. (8) and is shown in Tab. 4. Overall, the errors are low; the highest (0.0235) belongs to 

the mean radius of the oxide precipitation metamodel. The chained tensile yield strength 

metamodel achieves a better, i.e. lower, MAE than the direct method metamodel. 

Table 4: Summary of metamodels and their accuracies 

Metamodel Response LOO-CV MAE 

Oxide Precipitation 
log(Radius R (m)) 2.35E-02 

Volume fraction F 1.04E-05 

η Precipitation Strengthening ∆𝜎𝜂 (MPa) 3.23E-03 

Solid Solution Strengthening Δ𝜎𝑠𝑠𝑠 (MPa) 1.19E-03 

Tensile Yield Strength 

(chained method) 
𝜎𝑦 (MPa) 

2.75E-03 

Tensile Yield Strength 

(direct method) 
7.76E-03 

Once the metamodels were fitted, response surfaces were plotted to visualize the 

relationship between the inputs and outputs (Figs. 5-7). Since only two inputs can be 

plotted on a single surface, all other inputs were held at the median of their ranges (Tab. 

3). The mean predictions of the two most influential inputs according to SSA (Figs. 11-15) 

were plotted for each metamodel response as gradient-colored (blue-green-yellow) surface 

and 2D contours, with the corresponding colorbar shown to the side. In addition, the upper 

and lower bounds of the 95% PI were plotted as red surfaces. The response surface for the 

direct method tensile yield strength metamodel is not shown, as it is nearly identical to that 

of the chained method metamodel (Fig. 7). 

In all plots, the prediction intervals are close to the mean predictions, indicating very small 

uncertainty and causing the red surfaces of the PI to overlap the gradient-colored surface 

of the mean. The exception is the oxide metamodel, which shows relatively higher 

uncertainty at portions of the model for both responses. The accuracies of the metamodels 

are further studied in the next section. 
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(a)                                                                  (b) 

Figure 5: Response surfaces of the oxide precipitation metamodel for two responses, (a) 

mean radius and (b) volume fraction 

       

(a)                                                                  (b) 

Figure 6: Response surfaces of the (a) η precipitation strengthening and (b) solid solution 

strengthening metamodels 

 

Figure 7: Response surface of the chained tensile yield strength metamodel 
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4.2 Validation of metamodels  

To further test the metamodels and compare them to the mechanistic models, an OLHS 

validation dataset was created with a size that is 20% of the training set (40 samples) and 

consisting of the same ten input variables. These samples were not used to fit the 

metamodels. The mechanistic outputs y was plotted against the metamodel predictions 𝒚̂ 

in Figs. 8-10, and the 𝑅2, a common measure for the “goodness of fit”, was calculated for 

each using 

𝑅2 = 1 − [∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

∑(𝑦𝑖 − 𝜇𝑦)
2

𝑛

𝑖=1

⁄ ],                                                                          (24) 

where 𝜇𝑦 is the mean of the mechanistic outputs, y. A value of 1 for 𝑅2 means a perfect fit. 

 

(a)                                                                  (b) 

Figure 8: Comparison of mechanistic models and oxide metamodel for (a) mean radius 

and (b) volume fraction 

 

(a)                                                                  (b) 

Figure 9: Comparison of mechanistic models and (a) η precipitation strengthening and (b) 

solid solution strengthening metamodels 
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(a)                                                                  (b) 

Figure 10: Comparison of mechanistic models and total tensile yield strength metamodels 

that were trained using the (a) direct method and (b) chained method 

The results show remarkable agreement, with 𝑅2 values above 0.98 for all metamodels. 

Notably, the 𝑅2 of the tensile yield strength metamodel fitted using the chained method is 

slightly better than when fitted via the direct method (Fig. 10), corroborating with their 

respective LOO-CV errors. An inspection of Eq. (12) and Eq. (19) sheds light on why the 

chained method did not magnify the uncertainty of the chained metamodels. While the 

uncertainty of the sum of independent Gaussian processes is additive, the responses of the 

oxide precipitation metamodel are not linearly related to the final tensile yield strength. 

Thus, the uncertainty was not propagated linearly and in fact decreased. This may also 

indicate that chaining intermediate metamodels captured more of the underlying physics 

than directly learning the input-output relationship. 

4.3 Sobol sensitivity analysis 

Using the validated metamodels, SSA was performed using 106 Monte Carlo samples on 

each metamodel, including the intermediate metamodels. The resulting Sobol indices are 

shown in Figs. 11-15, with the inputs of the metamodels ordered from highest to lowest 

TSI values, i.e. from most to least influential. In these figures, cooling rate has been 

shortened to CR in the interest of space. The results for the direct method tensile yield 

strength metamodel are not shown because they are nearly identical to that of the chained 

method metamodel (Fig. 15).  

For all metamodels, there are only small differences between the MSI and TSI, indicating 

that there is little interaction between input variables. Also, there is one dominant input 

variable in each analysis, explaining the almost linear behavior in Figs. 5-7. This may be 

partly due to the small ranges of the alloy composition variables (Tab. 3), which lead to 

those inputs having much weaker influence. 

Fig. 11 and Fig. 12 imply that the size of oxide particles precipitating during solidification 

is primarily determined by the cooling rate, while the volume fraction is controlled by the 

oxygen level in the melt. This means that the oxide distribution is not related to the PH48S 

composition variations (Tab. 3), but is primarily controlled by processing, such as the 
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cooling rate and oxygen uptake in the initial powder feedstock and the melt pool. Fig. 16 

demonstrates the impacts of cooling rate on the size of oxide inclusions by experimentally 

comparing PH48S fabricated by the laser engineered net shaping (LENS®) AM process to 

casting. It is obvious that AM PH48S, which experiences a typical cooling rate within 

103~106 K/sec, exhibits much finer and more dispersed corundum oxide particles than cast 

PH48S with a cooling rate of only 0.05 K/sec, which agrees well with the SSA results. 

 

Figure 11: SSA results for log10(oxide radius (m)) using the oxide precipitation 

metamodel 

 

Figure 12: SSA results for oxide volume fraction using the oxide precipitation metamodel 

The SSA results for η precipitation strengthening metamodel (Fig. 13) show that aging 

temperature/time and Ni/Al/Ti contents determine the strengthening effect by the η phase. 

This is expected as Ni/Al/Ti are major constituents of the η-Ni3(Ti,Al) phase and aging 

process parameters are key to precipitation evolution. Since aging temperature plays the most 

important role of all, it is critical to control the aging temperature precisely to achieve uniform 

strengthening. Similarly, solid solution strengthening is also affected by aging parameters, 

since the BCC-Fe matrix composition is what remains after the η phase precipitates. As seen 
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in Tab. 2 and Eq. (21), Mo has the highest solid solution strengthening coefficient in BCC-

Fe because its perturbation in concentration affects solid solution strengthening contribution 

the most, which matches with the SSA results in Fig. 14. 

When combining all the strengthening contributions as in Fig. 15, the aging processing 

parameters, especially aging temperature, are the most significant factors to the total yield 

strength, since η precipitation strengthening contributes most to the total yield strength. 

Because cooling rate is another important variable, location-to-location properties within 

an AM PH48S part are well worth investigating as cooling rate may differ greatly at 

different locations within the same AM part. However, due to much less strengthening 

contributed by oxide strengthening and grain boundary strengthening in PH48S compared 

to η precipitation strengthening, the variations and uncertainty in oxide precipitation are 

less significant. 

 

Figure 13: SSA results for η precipitation strengthening metamodel 

 

Figure 14: SSA results for solid solution strengthening metamodel 
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Figure 15: SSA results for total tensile yield strength using the chained metamodel 

   

(a)                                                 (b) 

Figure 16: Oxide inclusions in (a) AM PH48S and (b) cast PH48S with a cooling rate of 

0.05 K/sec 

4.4 Comparison of prediction time 

Since the stand-alone mechanistic models can be integrated and replaced by a single GP 

metamodel, the prediction of tensile yield strength becomes not only easier and more 

accessible, but also considerably faster. The time to individually predict the tensile yield 

strength of the 40 validation samples using the integrated mechanistic models (Fig. 2) 

versus the chained tensile yield strength GP metamodel (Fig. 4) is compared in Fig. 17. All 

calculations were performed on the same computer (Lenovo TD350 server with 32 GB 

memory and two 2.40 GHz Intel® Xeon® processors) to exclude the influences of the 

computer configurations. Although slight variations in computation time exist within each 

group, Fig. 17 clearly shows that the average time consumed for one integrated mechanistic 

simulation (300 s) is dramatically cut down to fraction of a second (0.0025 seconds) by the 

GP model when predicting one location at a time. 

However, a compelling advantage of the GP metamodel is its ability to predict all locations 

simultaneously in one calculation. With just one run on the same computer, the metamodel 

obtained the tensile yield strength of all 40 validation points in 0.006 s, whereas it took 

over 6 h of repetitively invoking the mechanistic models for each point. 
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Figure 17: Comparison of time to predict the tensile yield strength of one location using 

physics-based mechanistic models and GP metamodel (chained method) 

5 Conclusions 

To support the development of virtual QA/QC methods for AM processing, this work has 

proposed a data-driven rapid prediction framework that replaces location-specific physics-

based mechanistic models with GP metamodels that can predict the spatially-varying 

properties within an entire part in a fraction of the time. With the system design approach, 

this work can rapidly identify the PSPP interrelationships within a material system. The 

prediction of the tensile yield strength of AM PH48S was taken as an example mechanical 

property to evaluate the feasibility of constructing a seamless and integrated robust 

prediction tool using GP metamodels. The strength subsystem has been demonstrated to be 

related with hierarchical microstructures (i.e. oxide particles, η precipitates, grain structure 

and solutes in the matrix) that form during different processing steps. GP metamodels for 

oxide precipitation evolution, η precipitation strengthening and solid solution 

strengthening have been developed, validated and utilized for statistical analysis. The result 

of the accuracy comparison between metamodels and mechanistic models was impressive, 

while the computation of tensile yield strength was sped up dramatically from hours of 

physics-based simulations to less than a second with GP metamodels. 

It must be noted that a linear cooling is assumed in this framework in terms of oxide 

precipitation, while in reality AM materials may experience multiple cycles of 

heating/cooling. Although a nonlinear thermal profile could be used as a functional 

metamodel input [Shi and Choi (2011)], it was chosen to simplify the GP modeling by 

using a scalar value. Nonetheless, this is a valid assumption since the oxide particles 

precipitate within a high temperature range that has close to a linear profile during cooling 

due to the high melting point of the oxide ceramic. 

In addition, the almost linear behavior and high accuracy of each metamodel can be 

attributed to the strong dominance of a single variable. This may not be the case for other 

material systems with stronger, more nonlinear interaction between inputs. However, the 

nugget-leveraging GP metamodeling method used in this work has been shown to be 

accurate and efficient even for high dimensions and very nonlinear behavior [Bostanabad, 

Kearney, Tao et al. (2018)]. In addition, the chaining of intermediate GP metamodels 



 

 

 

364   Copyright © 2018 Tech Science Press          CMES, vol.117, no.3, pp.343-366, 2018 

improved the accuracy of tensile yield strength predictions as a result of nonlinear 

uncertainty propagation. While this again may not be the case for all materials, it is an 

appealing result, especially as the intermediate metamodels can be individually studied and 

improved via SSA and Bayesian techniques, respectively. 

This methodology is suitable for the rapid identification of spatially-variant properties 

within a part with compositional and processing parameter variations. The speed and built-

in uncertainty quantification of the GP metamodels is advantageous for guiding the 

sampling of new points and optimization under uncertainty, as well as efficient Bayesian 

calibration and bias correction against experimental data. Furthermore, this method can 

predict properties at all part locations simultaneously in one calculation within seconds, 

allowing a fast interface between part-level thermal and performance simulations. Such 

features are invaluable for AM, a technology that is becoming ever more prevalent but in 

critical need of robust and rapid certification methods. 
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