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ABSTRACT

Real-life data introduce noise, uncertainty, and imprecision to statistical projects; it is advantageous to consider
strategies to overcome these information expressions and processing problems. Neutrosophic (indeterminate)
numbers can flexibly and conveniently represent the hybrid information of the partial determinacy and partial
indeterminacy in an indeterminate setting, while a fuzzy multiset is a vital mathematical tool in the expression and
processing of multi-valued fuzzy information with different and/or same fuzzy values. If neutrosophic numbers
are introduced into fuzzy sequences in a fuzzy multiset, the introduced neutrosophic number sequences can
be constructed as the neutrosophic number multiset or indeterminate fuzzy multiset. Motivated based on the
idea, this study first proposes an indeterminate fuzzy multiset, where each element in a universe set can be
repeated more than once with the different and/or identical indeterminate membership values. Then, we propose
the parameterized correlation coefficients of indeterminate fuzzy multisets based on the de-neutrosophication of
transforming indeterminate fuzzy multisets into the parameterized fuzzy multisets by a parameter (the param-
eterized de-neutrosophication method). Since indeterminate decision-making issues need to be handled by an
indeterminate decision-making method, a group decision-making method using the weighted parameterized
correlation coefficients of indeterminate fuzzymultisets is developed along with decision makers’ different decision
risks (small, moderate, and large risks) so as to handle multicriteria group decision-making problems in indeter-
minate fuzzy multiset setting. Finally, the developed group decision-making approach is used in an example on a
selection problem of slope design schemes for an open-pit mine to demonstrate its usability and flexibility in the
indeterminate group decision-making problem with indeterminate fuzzy multisets.
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1 Introduction

Fuzzy sets (FSs) and fuzzy multisets (FMs) are vital mathematical tools in the expression
and processing of fuzzy information since there are uncertainty and vagueness in many real-life
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problems. In the fuzzy theory, the FS presented by Zadeh [1] is depicted by a degree of member-
ship, which usually contains almost one occurrence of each element in FS. Since then, fuzzy sets
have wildly applied in various areas [2–9]. As an extension of FS, Yager [10] and Miyamoto [11]
proposed the concept of fuzzy bag/FM, where each element in a universe set can be repeated
more than once with the different and/or identical membership values. Then, FMs have been
used for various applications in many areas [12–15]. Recently, El-Azab et al. [16] proposed a
correlation coefficient of FMs as the extension of a correlation coefficient of FSs [17] and gave
its application in the setting of FMs. Further, Das [18] put forward weighted fuzzy soft multiset
(WFSM) and introduced an adjustable approach to the WFSMs-based decision-making method in
uncertain environment. Furthermore, an interval-valued fuzzy multiset (IvFM) [19] was presented
as the extension of FMs, where each element in a universe set can be repeated more than
once with the different and/or identical membership values. In the hesitant fuzzy environment,
then, a hesitant fuzzy set (HFS) and an interval-valued hesitant fuzzy set (IvHFS) [20] were
represented by a group of different fuzzy values, but they cannot reflect the same fuzzy values
in a group of hesitant fuzzy values. Under indeterminate and inconsistent environments, the
neutrosophic multisets with the same or different neutrosophic components were proposed based
on truth, falsity and indeterminacy membership functions and used for the applications in physical
processes [21,22].

Due to the vagueness and indeterminacy of human cognition/judgments in complicated real
problems, the human judgment may contain the hybrid information of the partial determinacy and
partial indeterminacy. However, FMs and fuzzy soft multisets cannot represent the indeterminate
fuzzy sequences, while a neutrosophic/indeterminate number (NN/IN) [23–25] is composed of its
determinate term d and its indeterminate term uI with indeterminacy I ∈ [inf I , sup I ] and
denoted as z= d+ uI for d, u ∈ �. In indeterminate problems, since NN can be considered as a
changeable interval number/value regarding a changeable range/value of I ∈ [inf I , sup I ], it can
flexibly and conveniently describe the hybrid information of the partial determinacy and partial
indeterminacy, and also easily indicate a family of interval numbers (zi = [di + uiinf I , di +
uisup I ] for i = 1, 2, . . ., q) depending on a group of specified indeterminate ranges of I ∈
[inf I , sup I ], which shows its highlighting advantage in the indeterminate information expression.
Therefore, NNs have been wildly used in many areas, such as rock mechanics [26,27], decision
making [28], fault diagnosis [29], and linear and nonlinear programming [30,31].

Since FMs, HFSs, IvFMs, and IvHFSs cannot express indeterminate fuzzy sequences by the
indeterminate membership values in group decision making (GDM) problems with indeterminate
information, various measure algorithms of FMs, HFSs, IvFMs, and IvHFSs cannot also deal
with such GDM problems with the indeterminate fuzzy sequences and indeterminate decision
risks of decision makers because indeterminate decision-making problems need to be solved by
an indeterminate decision making method. If NNs/INs are introduced into fuzzy sequences in
FMs and IvFMs, we can produce indeterminate/NN fuzzy sequences from the different and/or
identical indeterminate membership values with some indeterminate ranges and construct an inde-
terminate fuzzy multiset (IFM) so as to present the parameterized correlation coefficients (PCCs)
of IFMs by a parameterized de-neutrosophication method of IFM for handling indeterminate
GDM problems with decision makers’ different decision risks. Motivated by these new ideas, this
study proposes IFM, where each element in a universe set can be repeated more than once with
the different and/or identical indeterminate membership values, and then introduces two PCCs
of IFMs based on the de-neutrosophication of transforming IFMs into the parameterized fuzzy
multisets (PFMs) by a parameter λ∈ [0, 1] (i.e., the parameterized de-neutrosophication method)
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and their GDM approach with decision makers’ different decision risks (small, moderate and large
risks for λ= 0, 0.5, 1) to solve indeterminate GDM problems in IFM setting.

However, main contributions of this study are summarized as follows:

(1) The proposed IFM contains various families of FMs, HFSs, IvFMs, and IvHFSs depend-
ing on the indeterminate ranges and values of I and provides an expression form of the
different and/or identical indeterminate membership values that HFS and IvHFS cannot
express.

(2) The proposed two PCCs of IFMs based on the parameterized de-neutrosophication
method can provide effective mathematical models for solving indeterminate decision-
making problems because the correlation coefficient of FMs cannot deal with indeterminate
decision-making issues.

(3) The developed GDM method based on the two PCCs can solve indeterminate GDM
problems, such as the selecting problem of slope design schemes (SDSs) for an open pit
mine with decision makers’ different decision risks in the actual indeterminate application
and show its highlighting advantages of the practicability and flexibility in IFM setting.

This paper is composed of the following parts. Section 2 introduces preliminaries of FMs.
Section 3 proposes IFM and two PCCs of IFMs based on the de-neutrosophication of transform-
ing IFMs into PFMs by a parameter λ ∈ [0, 1]. Section 4 develops a GDM method using PCCs of
IFMs along with decision makers’ different decision risks (small, moderate and large risks for λ=
0, 0.5, 1) in IFM setting. In Section 5, the developed GDM method is used in a GDM example
on a selection problem of SDSs for an open pit mine with decision makers’ different decision
risks to demonstrate the usability and flexibility of the developed GDM method in IFM setting.
Conclusions and further research are contained in Section 6.

2 Preliminaries of FMs

In FM/fuzzy bag presented by Yager [10], each element yj in a universe set Y =
{y1, y2, . . ., ys} can be repeated more than once with the different and/or identical membership
values. Then, a FM B is denoted as B= {〈yj,bB (yj)〉 |yj ∈Y}, where bB(yj) is the non-increasing
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with the weight vector η = (η1, η2, . . ., ηs) regarding the importance of b1j and b2j. Based on
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the correlation coefficient of FMs [16], the weighted correlation coefficient of FMs B1 and B2 is
introduced as follows:
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are the weighted informational energy of B1 and B2,

respectively.

Based on the properties of the correlation coefficient between FMs [16], the weighted
correlation coefficient Nw(B1, B2) should imply the following properties:

(i) Nw(B1, B2) = Nw(B2, B1);

(ii) Nw(B1, B2) = 1 iff B1 =B2;

(iii) Nw(B1, B2) ∈ [0, 1].

3 IFMs and Their PCCs

Based on the hybrid concept of FMs [16] and NNs [23–25], this section presents the concept
of IFM, the relations of IFMs, and the de-neutrosophication approach of IFM with a parameter
λ∈ [0, 1], and then proposes two PCCs of IFMs.

Definition 3.1. Set Y = {y1, y2, . . ., ys} as a universe set. An IFM M over Y is presented by
the following mathematical symbol:

Z= {〈yj, zZ (yj, I)〉 |yj ∈Y , I ∈ [inf I , sup I ]
}

(2)

where zZ
(
yj, I
)
is the non-increasing indeterminate membership sequence defined by

(
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j I ⊆ zkZ

(
yj, I
)= dkj +ukj I ⊆ [0, 1]

(k = 1, 2, . . ., qj; j = 1, 2, . . ., s) for I ∈ [inf I , sup I ], dkj , u
k
j ∈ � and yj ∈ Y . In the IFM Z,

each element yj in Y may occur more than once with the different and/or identical indeterminate
membership values.

For instance, Z1 = {〈y1, (0.8+ 2I , 0.7+ I)〉, 〈y2, (0.7+ 2.5I , 0.7+ 2.5I)〉, 〈y3, (0.6+ 1.5I)〉} for I ∈
[–0.1, 0.1] in the universe set Y = {y1, y2, y3} is an IFM.

Especially when qj = 1 (j= 1, 2, . . ., s) in Z, the IFM Z is reduced to the indeterminate FS.
Then, FM/IvFM is a special case of IFM with a specified value I = inf I = sup I or a specified
interval value I = [inf I , sup I ] since IFM contains a family of IFMs/FMs corresponding to a
group of specified indeterminate ranges/values of I .
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For the de-neutrosophication of IFM, a parameter λ∈ [0, 1] can be introduced to transform
IFM into PFM with λ ∈ [0, 1] based on a parameterized de-neutrosophication method.

Definition 3.3. Let Z= z1(I), z2(I), . . ., zs(I) be an IFM, where zj (I)=
(
z1j (I) , z2j (I) , . . . , z

qj
j (I)

)
(j = 1, 2, . . ., s) for I ∈ [inf I , sup I ] are NNFSs, and let λ ∈ [0, 1] be a parameter. Thus, PFM
with λ∈ [0, 1] is defined as Zλ = {z1(λ), z2(λ), . . ., zs(λ)}, where each parameterized NNFS with
λ ∈ [0, 1] is represented as
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Obviously, each zj(λ) (j = 1, 2, . . ., s) changes as the value of λ ∈ [0, 1] changes under a
specifical range of I ∈ [inf I , sup I ]. Thus, PFM with λ indicates a family of FMs corresponding
to a group of values of λ∈ [0, 1], while FM is only a special case of PFM for a specifical value
of λ.

Based on the correlation coefficient of FMs [16], we propose two PCCs between two IFMs
based on PFMs with λ ∈ [0, 1].



346 CMES, 2021, vol.129, no.1

Definition 3.4. Let two IFMs be Z1 = {z11(I), z12(I), . . ., z1s(I)} and Z2 = {z21(I), z22(I), . . .,
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IFMs Z1 and Z2 based on PFMs with λ ∈ [0, 1] is proposed by:
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By applying Eq. (4), the parameterized correlations between Z1 and Z1 and between Z2 and
Z2 are given as follows:

Rλ (Z1,Z1)=
s∑
j=1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
d11j+ u11j inf I +λu11j (sup I − inf I)

]2
+
[
d21j+ u21j inf I +λu21j (sup I − inf I)

]2+
. . .+

[
d
qj
1j + u

qj
1j inf I +λu

qj
1j (sup I − inf I)

]2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(5)

Rλ (Z2,Z2)=
s∑
j=1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
d12j+ u12j inf I +λu12j (sup I − inf I)

]2
+
[
d22j+ u22j inf I +λu22j (sup I − inf I)

]2+
. . .+

[
d
qj
2j + u

qj
2j inf I +λu

qj
2j (sup I − inf I)

]2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6)

which are also named the parameterized informational energy of IFMs Z1 and Z2.

Consequently, the two PCCs of IFMs Z1 and Z2 based on PFMs with λ ∈ [0, 1] are proposed
by
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Regarding the properties of the correlation coefficient of FMs [16], the PCCs Nλ
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2 (Z1,Z2) for λ ∈ [0, 1] also imply the following properties:

(i) Nλ
1 (Z1,Z2)=Nλ

1 (Z2,Z1) and Nλ
2 (Z1,Z2)=Nλ

2 (Z2,Z1);

(ii) Nλ
1 (Z1,Z2)=Nλ

2 (Z1,Z2)= 1 iff Z1 =Z2;

(iii) 0≤Nλ
1 (Z1,Z2) ,Nλ

2 (Z1,Z2)≤ 1.

Proof: Obviously, the properties (i) and (ii) are straightforward. Hence, we only verify the
property (iii).

According to the Cauchy-Schwarz inequality
(∑s

j=1
(
ajbj
))2 ≤∑s

j=1 a
2
j
∑s

j=1 b
2
j , there exists∑s

j=1
(
ajbj
)≤√∑s

j=1 a
2
j

√∑s
j=1 b

2
j . Thus, we can give the following inequality for λ∈ [0, 1]:

s∑
j=1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
d11j+u11j inf I+λu11j (sup I − inf I)

][
d12j+u12j inf I+λu12j (sup I − inf I)

]
+
[
d21j+u21j inf I+λu21j (sup I − inf I)

] [
d22j+u22j inf I+λu22j (sup I − inf I)

]
+

. . .+
[
d
qj
1j+u

qj
1j inf I+λu

qj
1j (sup I − inf I)

] [
d
qj
2j+u

qj
2j inf I+λu

qj
2j (sup I − inf I)

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
≤

√√√√√√√√√√
s∑
j=1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
d11j+u11j inf I+λu11j (sup I − inf I)

]2
+
[
d21j+u21j inf I+λu21j (sup I − inf I)

]2+
. . .+
[
d
qj
1j+u

qj
1j inf I+λu

qj
1j (sup I − inf I)

]2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
×

√√√√√√√√√√
s∑
j=1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
d12j+u12j inf I+λu12j (sup I − inf I)

]2
+
[
d22j+u22j inf I+λu22j (sup I − inf I)

]2+
. . .+
[
d
qj
2j+u

qj
2j inf I+λu

qj
2j (sup I − inf I)

]2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
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Hence, it is obvious that there also exists the following inequality for λ ∈ [0, 1]:

s∑
j=1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
d11j+u11j inf I+λu11j (sup I − inf I)

] [
d12j+u12j inf I+λu12j (sup I − inf I)

]
+
[
d21j+u21j inf I+λu21j (sup I − inf I)

] [
d22j+u22j inf I+λu22j (sup I − inf I)

]
+

. . .+
[
d
qj
1j+u

qj
1j inf I+λu

qj
1j (sup I − inf I)

][
d
qj
2j+u

qj
2j inf I+λu

qj
2j (sup I − inf I)

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
≤

max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s∑
j=1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
d11j+u11j inf I+λu11j (sup I − inf I)

]2
+
[
d21j+u21j inf I+λu21j (sup I − inf I)

]2+
. . .+
[
d
qj
1j+u

qj
1j inf I+λu

qj
1j (sup I − inf I)

]2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
,

s∑
j=1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
d12j+u12j inf I+λu12j (sup I − inf I)

]2
+
[
d22j+u22j inf I+λu22j (sup I − inf I)

]2+
. . .+
[
d
qj
2j+u

qj
2j inf I+λu

qj
2j (sup I − inf I)

]2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Thus, 0≤Nλ
1 (Z1,Z2) ,Nλ

2 (Z1,Z2)≤ 1 can hold according to the above inequalities.

Therefore, this proof is completed.

When we consider the importance of each NNFS zkj (k= 1, 2; j= 1, 2, . . ., s) in Z1 and Z2,
we specify the weight ηj ∈ [0, 1] of zkj with

∑s
j=1 ηj = 1. Thus, the weighted PCCs of IFMs Z1

and Z2 with λ ∈ [0, 1] can be presented by the following formulae:

Nλ
w1 (Z1,Z2)

=

s∑
j=1

ηj

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
d11j + u11j inf I +λu11j (sup I − inf I)

] [
d12j + u12j inf I +λu12j (sup I − inf I)

]
+
[
d21j + u21j inf I + λu21j (sup I − inf I)

][
d22j + u22j inf I + λu22j (sup I − inf I)

]
+

. . .+
[
d
qj
1j + u

qj
1j inf I + λu

qj
1j (sup I − inf I)

][
d
qj
2j + u

qj
2j inf I + λu

qj
2j (sup I − inf I)

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

√√√√√√√√√√√√√

s∑
j=1

ηj

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
d11j + u11j inf I + λu11j (sup I − inf I)

]2
+
[
d21j + u21j inf I +λu21j (sup I − inf I)

]2+
. . .+

[
d
qj
1j + u

qj
1j inf I +λu

qj
1j (sup I − inf I)

]2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
×

√√√√√√√√√√√√√

s∑
j=1

ηj

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
d12j + u12j inf I + λu12j (sup I − inf I)

]2
+
[
d22j + u22j inf I + λu22j (sup I − inf I)

]2+
. . .+

[
d
qj
2j + u

qj
2j inf I + λu

qj
2j (sup I − inf I)

]2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(9)

Nλ
w2 (Z1,Z2)

=

s∑
j=1

ηj

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
d11j + u11j inf I + λu11j (sup I − inf I)

][
d12j + u12j inf I + λu12j (sup I − inf I)

]
+
[
d21j + u21j inf I + λu21j (sup I − inf I)

] [
d22j + u22j inf I + λu22j (sup I − inf I)

]
+

. . .+
[
d
qj
1j + u

qj
1j inf I + λu

qj
1j (sup I − inf I)

][
d
qj
2j + u

qj
2j inf I + λu

qj
2j (sup I − inf I)

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

s∑
j=1

ηj

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
d11j + u11j inf I + λu11j (sup I − inf I)

]2
+
[
d21j + u21j inf I + λu21j (sup I − inf I)

]2+
. . .+

[
d
qj
1j + u

qj
1j inf I + λu

qj
1j (sup I − inf I)

]2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
,
s∑
j=1

ηj

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
d12j + u12j inf I +λu12j (sup I − inf I)

]2
+
[
d22j + u22j inf I + λu22j (sup I − inf I)

]2+
. . .+

[
d
qj
2j + u

qj
2j inf I + λu

qj
2j (sup I − inf I)

]2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)
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Similarly, the weighted PCCs Nλ
w1 (Z1,Z2) and Nλ

w2 (Z1,Z2) with λ ∈ [0, 1] also imply the
following properties:

(i) Nλ
w1 (Z1,Z2)=Nλ

w1 (Z2,Z1) and Nλ
w2 (Z1,Z2)=Nλ

w2 (Z2,Z1);

(ii) Nλ
w1 (Z1,Z2)=Nλ

w2 (Z1,Z2)= 1 iff Z1 =Z2;

(iii) 0≤Nλ
w1 (Z1,Z2) ,Nλ

w2 (Z1,Z2)≤ 1.

By the similar proof way regarding the properties of the two PCCs, we can easily verify the
above properties (i)–(iii).

4 GDM Approach Based on the Weighted PCCs in IFM Setting

Corresponding to the weighted PCCs of IFMs, we develop a GDM approach with decision
makers’ different decision risks in IFM setting.

Regarding multicriteria GDM problems in indeterminate setting, suppose experts/designers
preliminarily specify a set of p potential alternatives G= {g1, g2, . . ., gp}, which is evaluated by a
set of s criteria C = {c1, c2, . . ., cs}. The weight vector of C is given as η = (η1, η2, . . ., ηs) to con-
sider the importance of different criteria. Then, a group of q decision makers is invited to give the
satisfactory assessments of an alternative gi (i= 1, 2, . . ., p) over criteria cj (j= 1, 2, . . ., s), which

are expressed by the NNFSs zij (I)=
(
z1ij (I) , z

2
ij (I) , . . . , z

q
j (I)
)
=
(
d1ij+ u1ijI ,d

2
ij+ u2ijI , . . . ,d

q
ij+ uqijI

)
,

(i= 1, 2, . . ., p; j= 1, 2, . . ., s) for zkij (I)= dkij+ukijI ⊆ [0, 1] and I ∈ [inf I , sup I ]. Thus, all NNFSs

are constructed as their decision matrix Z= (zij (I))p×s in IFM setting.

In multicriteria GDM problems with IFM information, we can develop a GDM approach
using the weighted PCCs of IFMs with decision makers’ different decision risks (the small,
moderate and large risks for λ= 0, 0.5, 1), which is depicted by the decision steps below:

Step 1: The ideal solution/alternative can be specified by:
Z∗ = {z∗1, z∗2, . . . , z∗s }= {(111, 121, . . . , 1q1) , (112, 122, . . . , 1q2) , . . . , (11s , 12s , . . . , 1qs )}.

Step 2: By using Eq. (9) or Eq. (10) with decision makers’ different decision risks (the small,
moderate, and large risks for λ = 0, 0.5, 1), the weighted PCC between Zi (i = 1, 2, . . ., p) and
Z* is yielded by the following formula:

Nλ
w1
(
Zi,Z∗)=

s∑
j=1

ηj

⎧⎪⎪⎨
⎪⎪⎩
d1ij+ u1ij inf I +λu1ij (sup I − inf I)

+d2ij+ u2ij inf I +λu2ij (sup I − inf I)+
. . .+ dqij + uqij inf I +λuqij (sup I − inf I)

⎫⎪⎪⎬
⎪⎪⎭√√√√√√√√√√

s∑
j=1

ηj

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
1
ij+ u1ij inf I +λu1ij (sup I − inf I)

]2
+
[
d2ij+ u2ij inf I +λu2ij (sup I − inf I)

]2+
. . .+

[
dqij + uqij inf I +λuqij (sup I − inf I)

]2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
×
√√√√ s∑

j=1

ηj

{
11j + 12j + . . .+ 1qj

}

(11)
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Or

Nλ
w2

(
Zi,Z∗)=

∑s
j=1 ηj

⎧⎪⎪⎨
⎪⎪⎩
d11j+ u11j inf I +λu11j (sup I − inf I)

+d2ij + u2ij inf I +λu2ij (sup I − inf I)+
. . .+ dq1j+ uq1j inf I +λuq1j (sup I − inf I)

⎫⎪⎪⎬
⎪⎪⎭

∑s
j=1 ηj

{
11j + 12j + . . .+ 1qj

} (12)

Step 3: The alternatives are ranked based on the values of the weighted PCC depending on
the decision makers’ different decision risks, then the best one is chosen.

Step 4: End.

5 GDM Example

Regarding an open pit mine, the design problem of the slopes is one of the major challenges
at mine planning and operation [32]. It requires specialized knowledge of the geology, which
is often complex, vague, and indeterminate/variable in the structural and material properties
of orebodies. Regarding this indeterminate issue, we provide a GDM example on the selection
problem of SDSs for an open pit mine to show the usability and flexibility of the developed GDM
method with different decision risks of decision makers in IFM setting.

A mining company wants to select the best SDS/alternative regarding an open pit mine.
Assume a set of four potential SDSs (alternatives) G = {g1, g2, g3, g4} for the open pit mine
is specified preliminarily by experts/designers. Then, the four alternatives must be satisfactorily
assessed over the three criteria/indices: economy (cost and construction period) (c1), technology
(reliability, effectiveness, construction difficulty, maintenance difficulty, and safety) (c2), and envi-
ronment (c3). Considering the importance of the three criteria, the experts/designers give the
weight vector of the three criteria by η = (0.3, 0.4, 0.3).

In the GDM problem, three experts/decision makers are specified and then their satisfactory
assessments of the four alternatives gi (i = 1, 2, 3, 4) over the three criteria cj (j = 1, 2, 3) are

given by the NNFSs zij (I)=
(
z1ij (I) , z

2
ij (I) , z

3
ij (I)
)
=
(
d1ij+ u1ijI ,d

2
ij+ u2ijI ,d

3
ij+ u3ijI

)
, (i= 1, 2, 3, 4;

j = 1, 2, 3) for zkij (I) = dkij + ukijI ⊆ [0, 1] (k = 1, 2, 3) and I ∈ [0, 1], which are established as the

decision matrix Z= (zij (I))4×3:

Z=

⎡
⎢⎣
Z1
Z2
Z3
Z4

⎤
⎥⎦=

⎡
⎢⎣
〈0.8+ 0.2I , 0.7+ 0.2I , 0.7+ 0.1I〉 〈0.7+ 0.2I , 0.6+ 0.2I , 0.6+ 0.1I〉 〈0.7+ 0.2I , 0.6+ 0.2I , 0.6+ 0.2I〉
〈0.8+ 0.1I , 0.7+ 0.2I , 0.6+ 0.3I〉 〈0.7+ 0.2I , 0.7+ 0.1I , 0.6+ 0.1I〉 〈0.7+ 0.1I , 0.6+ 0.2I , 0.5+ 0.2I〉
〈0.7+ 0.1I , 0.7+ 0.1I , 0.6+ 0.2I〉 〈0.8+ 0.1I , 0.8+ 0.1I , 0.7+ 0.2I〉 〈0.8+ 0.1I , 0.7+ 0.1I , 0.7+ 0.1I〉
〈0.8+ 0.1I , 0.8+ 0.1I , 0.7+ 0.2I〉 〈0.7+ 0.2I , 0.7+ 0.2I , 0.7+ 0.1I〉 〈0.9+ 0.1I , 0.8+ 0.1I , 0.7+ 0.2I〉

⎤
⎥⎦

Thus, the developed GDM approach is utilized for the multicriteria GDM problem with IFMs
for I ∈ [0, 1] and described by the following calculations:

First, the ideal solution/alternative is specified by Z∗ = {z∗1, z∗2, z∗3}= {(1, 1, 1) , (1, 1, 1) , (1, 1, 1)}.
Then, the weighted PCC values between IFMs Zi (i = 1, 2, 3, 4) and Z* are calculated by

Eq. (11) or Eq. (12) along with the decision makers’ small risk for λ= 0, moderate risk for λ=
0.5, large risk for λ= 1 in the indeterminate range of I ∈ [inf I , sup I ] = [0, 1], which are shown
in Tabs. 1 and 2.
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Table 1: Decision results based on Nλ
1(Zi, Z

∗) with decision makers’ three decision risks for λ =
0, 0.5, 1

λ Nλ
1(Zi, Z

∗) Ranking order The best SDS

λ= 0 0.9951, 0.9953, 0.9963, 0.9960 g3 > g4 > g2> g1 g3
λ= 0.5 0.9954, 0.9970, 0.9978, 0.9979 g4 > g3 > g2> g1 g4
λ= 1 0.9950, 0.9966, 0.9983, 0.9986 g4 > g3 > g2> g1 g4

Table 2: Decision results based on Nλ
2(Zi, Z

∗) with decision makers’ three decision risks for λ =
0, 0.5, 1

λ Nλ
2(Zi, Z

∗) Ranking order The best SDS

λ= 0 0.6633, 0.6667, 0.7267, 0.7500 g4 > g3 > g2> g1 g4
λ= 0.5 0.7517, 0.7483, 0.7883, 0.8233 g4 > g3 > g1> g2 g4
λ= 1 0.8400, 0.8300, 0.8500, 0.8967 g4 > g3 > g1> g2 g4

Regarding the decision results based on Nλ
1(Zi, Z*) in Tab. 1, the ranking orders of alter-

natives indicate their difference between the decision makers’ small risk (λ = 0) and the deci-
sion makers’ moderate and large risks (λ = 0.5, 1), then the best SDS is g3 for λ = 0 or
g4 for λ= 0.5, 1. However, the ranking orders based on Nλ

1(Zi, Z*) imply the sensitivity to the
decision makers’ different decision risks.

Regarding the decision results based on Nλ
2(Zi, Z*) in Tab. 2, the ranking orders of alterna-

tives indicate a little difference between the decision makers’ small risk (λ = 0) and the decision
makers’ moderate and large risks (λ = 0.5, 1), then the best SDS is g4 for all decision risks.
However, the ranking orders based on Nλ

2(Zi, Z*) imply a little sensitivity to the decision makers’
different decision risks.

Furthermore, the ranking orders and the best SDSs based on Nλ
1(Zi, Z*) and Nλ

2(Zi, Z*) also
show their difference, which implies the sensitivity between two weighted PCCs. It is obvious that
either the different weighted PCCs or the decision makers’ different decision risks may impact on
the ranking orders of alternatives. Then, the final decision result depends on the weighted PCC
and decision risk selected by decision makers in the specified indeterminate range of I ∈ [inf I ,
sup I ], which demonstrates the usability and flexibility of the proposed GDM method in IFM
setting.

To compare the proposed PCCs of IFMs with the existing correlation coefficient of FMs [16]
in fuzzy decision-making problems, we first indicate the characteristic comparison between IFMs
and the classical FMs from the perspective of their information expression, which is shown in
Tab. 3.

Regarding the comparative results of Tab. 3, IFM is often broader and more versatile than the
classical FM in the information expression and usability, which show the outstanding advantage
of IFM in indeterminate setting.
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Table 3: Characteristic comparison between IFM and the classical FM [16]

Information Expression form Changeability of
membership values

Condition of
limitation

Classical FM [16] Different and/or identical
membership values

No Exact membership
values

IFM Different and/or identical
indeterminate membership
values

Yes No limitation

Especially, the existing correlation coefficient of FMs [16] is only a special case of the
proposed PCC of IFMs when λ only takes a specified value. Obviously, the decision-making
approach based on the correlation coefficient of FMs [16] is also a special case of the developed
GDM method in IFM setting. In their decision making process, the existing decision making
approach cannot contain decision makers’ different decision risks sine FMs cannot contain NNs
(changeable/indeterminate interval values), then it lacks the decision making flexibility in the
indeterminate scenarios, while the developed GDM method can contain decision makers’ different
decision risks for satisfying some suitable indeterminacy by using the decision information of
PFMs in the setting of IFMs and also indicate the flexible decision making advantage with
various indeterminate decision risks in the indeterminate problem. Therefore, the proposed GDM
method can overcome difficult/tricky decision-making problems of the existing FM decision mak-
ing method in indeterminate issues because indeterminate decision-making issues need to be solved
by utilizing an indeterminate decision-making method generally. However, this study proposes the
GDM method by using the weighted PCCs of IFMs to solve such an indeterminate multicriteria
GDM problem with decision makers’ different decision risks (the small, moderate, and large risks
for λ= 0, 0.5, 1) for the first time in IFM setting.

However, the information expression, correlation coefficient and GDM methods of IFMs
proposed in this study are superior to existing methods [16].

6 Conclusion

Regarding the indeterminate multi-values of fuzzy arguments in indeterminate GDM setting,
the proposed IFM in this paper presented a more flexible and useful information expression form
as it addresses the indeterminacy of multi-fuzzy values corresponding to various indeterminate
ranges/values of the indeterminacy I ∈ [inf I , sup I ]. Then, the presented PCCs of IFMs based
on the de-neutrosophication of transforming IFMs into PFMs by a parameter λ∈ [0, 1] provided
effective mathematical models for the flexible GDM method in indeterminate environment. The
developed multicriteria GDM method using the weighted PCCs of IFMs along with decision
makers’ different decision risks (the small, moderate, and large risks for λ = 0, 0.5, 1) provided
an effect and reasonable decision way for handling indeterminate multicriteria GDM problems
in IFM setting. A GDM example of selecting the best SDS for an open pit mine was given in
the environment of IFMs to demonstrate the suitability and flexibility of the developed GDM
method. Then, the decision results indicated the influence of decision makers’ different decision
risks on the ranking order of alternatives and the best one. Therefore, the developed multicriteria
GDM method can reflect its outstanding advantages of decision versatility and flexibility when
dealing with indeterminate GDM problems under various decision risks.
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In future research, this original work will be extended to GDM problems in construction
design schemes, project management, and slope stability evaluation, and analyses under IFM
environment.
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