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ABSTRACT

Facing the trend of increasing population, how to increase maize grain yield is a very important issue to ensure
food security. In this study, 28 nationally approved maize hybrids were evaluated across 24 different climatic con-
ditions for two consecutive years (2018–2019). The purpose of this study was to select high-yield with stable gen-
otypes and identify important agronomic traits for maize breeding program improvement. The results of this
study showed that the genotype � environment interaction effects of the 12 evaluated agronomic traits was highly
significant (P < 0.001). We introduced a novel multi-trait genotype-ideotype distance index (MGIDI) to select
genotypes based on multiple agronomic traits. The selection process exhibited by this method is unique and easy
to understand, so the MGIDI index will have more and more important applications in future multi-environment
trials (METs) research. The genotypes selected by the MGIDI index were G22, G10, G12 and G1 as the high yield-
ing and stable genotypes. The parents of these selected genotypes have the ability to play a greater role as the basic
germplasm in the breeding process. A new form of genotype (G) main effects and genotype (G) -by-environment
(E) interaction (GGE) technician, genotype�yield�trait (GYT) biplot, based on multiple traits for genotypes selec-
tion was also applied in this study. The GYT biplot ranked genotypes by combining grain yield with other eval-
uated agronomic traits, and displayed the distribution of their traits, namely strengths and weaknesses.
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1 Introduction

Maize (Zea mays L.) is one of the most important food crops in the world, and it is also an important
source of industrial raw materials and feed [1]. Since total maize production surpassed rice for the first
time in 2012, maize had firmly occupied the position of China’s largest food crop [2]. Under the vast
environmental conditions in China, breeders regard obtaining high-yield and stable hybrids as their
primary goal. For this reason, scientific researchers must carry out multi-environment trials (METs)
before the hybrids participate in national and provincial trials [3]. METs is an experimental system that
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evaluates specific genotypes under a series of different types of environmental conditions, which may be
spatially separated (e.g., locations), time separated (different identification years), or a combination of
space and time separation, our purpose was to evaluate the genotypes for specific environments and then
make a recommended choice or an evaluation description of mega-environments [4]. METs requires the
same experimental design in each environment (e.g., completely randomized block design with three
replicates), the same genotypes (e.g., number and name of the genotypes), and the same agronomic
practices (e.g., chemical spraying and weeding control) [5]. In this way, METs can effectively identify
genotypes with small temporal variability or consistent trait performance among different environments [6].

In order to breed hybrids with wide adaptability and high stability, it is necessary to (1) systematically
evaluate various germplasm resources and selected inbred lines in terms of yield, resistance, quality, etc., (2)
obtain adaptation in different ecological regions, and basic data of adaptability, high yielding and stability in
different ecological regions, and (3) comprehensively evaluate and screen out genotypes with excellent
agronomic characteristics. Studies have shown that the performance of genotypic agronomic traits is not
always stable and consistent in all environments. This is due to the existence of genotype by environment
interaction effects (GEI), coupled with environment and genotype effects. Together, they constitute the
influencing factors of phenotypic traits [7,8]. The environment (E) represents special natural conditions,
such as rainfall, soil type, temperature, humidity, pests and diseases, etc., which lead to differences in the
expression of genotypes. The phenotype expression changes of evaluated genotypes under different
environmental conditions are called genotype (G) by environment (E) interaction (GEI) effects [9]. Due
to the existence of GEI, it has caused confusion and reduced the efficiency of selection by breeders. It is
very important to screen promising genotypes in different environments. GEI is one of the challenges
faced by breeders. Therefore, from the perspective of plant breeding, improving crop genotypes requires a
deep understanding and effective use [10].

The need for scientific modeling of GEI in the breeding process has led to the development of genotypes
stability analysis. In order to better understand GEI, researchers have proposed various statistical analysis
methods, Analysis of variance (ANOVA) analysis proposed from the beginning of the research, Yates
et al. proposed the theory of joint regression analysis, which was widely promoted by Finlay et al. and
Eberhardt et al. [11–14]. The stability variance proposed by Shukla and the yield stability parameter
studied by Kang and the additive main effects and multiplicative interaction (AMMI) model proposed by
Gauch et al. [15–17]. Among these statistical analyses, the AMMI model is undoubtedly one of the most
widely used and most easily accepted methods, which combines analysis of variance and principal
component analysis (PCA) to perform analysis with fixed effects in the METs analysis. In agricultural
practice, people are often concerned about the grain yield trials, which has many genotypes tested in
multiple environments, generally with 2–4 replications. Although grain yield is the most important
characteristics of the crop itself, other agronomic traits are also common, such as plant height, ear height,
ear length, and so on. If multiple agronomic traits are involved in METs, the AMMI model will analyze
them one by one, not all of them [18]. Compared with its advantages, the AMMI model also has its own
shortcomings. The AMMI model is a linear bilinear model, and future METs research will gradually
reduce the dependence on the AMMI model, and more will rely on the linear mixed-effect model
(LMM). This is because of the genotype estimates obtained through the best linear unbiased prediction
(BLUP) is more accurate than the fixed effects model [19]. Olivoto et al. [20] combined the AMMI
model with the BLUP method to provide two statistical analysis factors, WAASB (weighted average of
absolute scores) and WAASBY (weighted average of WAASB and response variables), to evaluate
genotypes based on the mean performance and stability (MPE) with different weights. If genotype
selection is combined with grain yield and other agronomic traits, it may be more efficient, but how to
accurately and effectively identify multiple traits has become a challenge for plant breeders. In view of
this, Olivoto recently proposed a new strategy that shows how plant breeders can use the novel multi-trait
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genotype-ideotype distance index (MGIDI) to select genotypes in future breeding programs [21]. At the
beginning of this century, Yan established a technique called “GGE biplot”, which is a form of mapping
to show the main role of genotype (G) plus the genotype by environment interaction (GE) effect. The
GGE biplot has an easy-to-identify graphic display to select high-yielding and stable genotypes, and can
also distinguish the mega-environments, which is widely recognized by plant breeders [22]. The genotype
by yield�trait (GYT) biplot method is a new analysis approach for multi-traits evaluation in recent years.
This method used GGE biplot analysis to verify the evaluated genotypes and can also determine the
strengths and weaknesses of each genotype [23].

The Huang-huai-hai plain is the largest region of summer maize planting in China, accounting for
about one-third of the national maize output. The average maize yield in this area is still relatively low,
mainly due to the farming system, abnormal weather conditions, pests and diseases, etc. The proportion
of maize in China’s economic development is unmatched by other crops. How to improve the grain
yield and quality of maize hybrids to meet the increasing living requirements of the people has always
been the direction of the efforts of maize scientists in China [24]. Therefore, the purposes of this
research were to: (i) verify the potential of the MGIDI index in future research using the real data
across 24 environments in 2018–2019; (ii) present the genotype stability evaluation system for
weighting the different agronomic traits and stability; (iii) evaluate the genotypes with multiple traits
through genotype by yield�trait (GYT) biplot and selection indexes (SI); (iv) compare the genotypes
ranking with the previously recognized parameter indicators, and analyze the evaluated traits using the
Spearman’s correlation matrix.

2 Materials and Methods

2.1 Plant Materials and Field Evaluation
In this study, a total of 28 promising maize genotypes were planted in 24 locations across 6 provinces

with three replications based on a randomized complete block design (RCBD) for two consecutive years
(2018–2019). The description of the hybrids and locations used in this study are shown in Tab. 1. The
row length and width of each plot were 6.7 meters and 3 meters respectively; the row spacing was
0.6 meters, with a final seedling population density of 75,000 plants/ha. During the experiment, all the
agronomic practices, such as irrigation, fertilization application, chemical control of weeds and pesticides,
were carried out at an appropriate time.

2.2 Data Collection
The 12 agronomic traits measured in this study were collected from the middle three rows of each plot.

Grain yield (GY, t/ha) was manually harvested from the middle three rows, adjusting the moisture to 14% and
converting the unit to tons per hectare; growth period (GP, d), investigating the number of days from
emergence to maturity in each plot; grain moisture content (GMC, %), measured from each plant at each
plot; plant height (PH, cm), measured from the base of the root to the top of the tassel; ear height (EH,
cm), measured from the base of the root to the stalk of the ear; ear length (EL, cm), measured from the
line up 10 ears, and dividing the data obtained by 10; ear diameter (ED, cm), determined by arranging
10 ears vertically, and dividing the data obtained by 10; ear row (ER), counting the total number of rows
in each ear; bare tip length (BTL, cm), measured from the top part with no grains (if any) to the part with
grains; grain weight per ear (GWE, g), 100-seed weight (HSW, g), lodging rate (LR, %).
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Table 1: Description of the genotypes and environments used in the study

Genotypes

Code Name Code Name Code Name Code Name

G1 Xundan29 G8 Weike960 G15 Yudan606 G22 Hengyu7182

G2 Nongda108 G9 Nongda372 G16 Huanong138 G23 Hengyu1587

G3 Xundan20 G10 Heng9 G17 Mengyu908 G24 Nonghua816

G4 Yufeng303 G11 Yudan606 G18 Baoyu168 G25 Heng110

G5 Denghai618 G12 Qiule218 G19 NK971 G26 Hengyu1182

G6 Denghai685 G13 Zhongdan856 G20 Yuyu30 G27 Zhongdi175

G7 Huayu168 G14 Dongke301 G21 Liyu86 G28 Zhengdan958

Environments

Code Location Province Year Latitude Longitude Altitude
(m)

Annual
average
temperature (°C)

GC2018
GC2019

Gaocheng Hebei 2018–2019 38.07 N 114.97 E 52 12.7

HD2018
HD2019

Handan Hebei 2018–2019 36.49 N 114.54 E 55 13.5

SZ2018
SZ2019

Shenzhou Hebei 2018–2019 37.89 N 115.71 E 25 13.4

SX2018
SX2019

Suixi Anhui 2018–2019 33.79 N 116.73 E 26 15.2

JS2018
JS2019

Jieshou Anhui 2018–2019 32.96 N 115.35 E 35 14.7

YC2018
YC2019

Yuncheng Shanxi 2018–2019 34.86 N 110.90 E 408 13.8

LZ2018
LZ2019

Laizhou Shandong 2018–2019 37.10 N 120.02 E 18 12.8

JN2018
JN2019

Jinan Shandong 2018–2019 36.41 N 116.78 E 58 14.8

DZ2018
DZ2019

Dezhou Shandong 2018–2019 37.27 N 116.32 E 23 12.6

NY2018
NY2019

Nanyang Henan 2018–2019 32.87 N 115.52 E 85 15.5

AY2018
AY2019

Anyang Henan 2018–2019 35.88 N 114.47 E 46 14.1

ZZ2018
ZZ2019

Zhengzhou Henan 2018–2019 34.45 N 113.67 E 62 14.3
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2.3 Statistical Analysis
2.3.1 AMMI Model

For situations where complex GEI structures are observed, AMMI analysis can be used to obtain a more
accurate estimate of Yger, and the formula is as follows:

Yger ¼ lþ ag þ be þ
X
n

�ncgnden þ qge þ eger

where Yger represents the yield of genotype g in environment e for replicate r; μ represents the grand mean,
αg and βe represent the genotypes and environments deviation from μ, respectively; λn represent the singular
value of principal component axis (PCA) n; γgn and δen are the eigenvector values of genotype g and
environment e of axis n, respectively; ρge represents the residual of AMMImodel; and εger represents the error [25].

2.3.2 The Best Linear Unbiased Prediction (BLUP) Model for Multi-Environment Trials (METs)
The simplest and most well-known linear model with interactions used to analyze the data of multi-

environment trials, and the formula is as follows:

yijk ¼ lþ ai þ sj þ asij þ cjk þ eijk

where yijk is the agronomic trait observed in the kth block of the ith genotype in the jth environment; μ
represents the grand mean; αi and τj are the effect of the ith genotype and jth environment, respectively;
ατij is the interaction effect of the ith genotype with the jth environment; γjk is the effect of the kth block
within the jth environment; εijk is the random error [26].

2.3.3 Combining of AMMI Model and BLUP Method
In order to better combine the functions of AMMI model and BLUP techniques, we adopted the

genotype stability evaluation system proposed by Olivoto et al. [4]. The stability index of each genotype
in METs called WAASB index was calculated by the following formula:

WAASBi ¼
Pp

k¼1 jIPCAik � EPk jPp
k¼1 EPk

where WAASBi is the weighted average of absolute scores of the ith genotype; IPCAik is the score of the ith
genotype in the kth interaction principal component axis (IPCA). In the usage of the traditional AMMI
model, singular value decomposition (SVD) is used to decompose the matrix with additive model
residuals into k IPCAs, and scores are obtained by the SVD of the GEI effects obtained in the linear
mixed effects model, and EPk is the amount of the variance explained by the kth IPCA. Genotypes with a
lower WAASB value are considered to be more stable genotypes; on the contrary, a genotype with a
higher WAASB value is generally considered to be unstable [20]. By using the WAASBY index while
performing mean performance and stability (MPE), it allows weighting between the mean performance Y
and stability index (WAASB), as shown below:

WAASBYi ¼ ðrYi � hY Þ þ ðrWi � hsÞ
hY þ hs

where WAASBYi is the superiority index with different weights between mean performance and stability for
the ith genotype; θY and θs are the weights for mean performance and stability, respectively; rYi and rWi are
the recalculated values of the rth genotype for mean performance and WAASB, respectively, as shown
below:

rYi ¼ 100� 0

Ymax � Ymin
� ðYi � YmaxÞ þ 100
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rWg ¼ 0� 100

Wmax �Wmin
� ðWi �WmaxÞ þ 0

where Yi and Wg are the mean performance and WAASB values of the ith genotype, respectively [25].

2.3.4 The Calculation of Multi-Trait Stability Index (MTSI)
The only difference from the multi-trait genotype-ideotype distance index (MGIDI) is that the Fgp

matrix affected by factor analysis (FA) in MTSI contains WAASBY values, and its calculation formula is
as follows:

MTSIi ¼
Xf
j¼1

Fij � Fj

� �2" #0:5

In the formula, MTSIi represents the multi-trait stability index of the ith genotype, Fij represents the jth
score for the ith genotype, and Fj represents the jth score of the ideal genotype. MTSI is used for genotype
evaluation and selection based on mean performance and stability (MPE). The genotype with the lowest
MTSI value is closer to ideology, and its MPE is high for all the analyzed traits [27].

2.3.5 Smith-Hazel Index
The classic multi-trait stability evaluation method Smith-Hazel (SH) index calculation formula is

as follows:

b ¼ P�1Gw

Among them, b and w represent the vectors of index coefficient and economic weight, respectively; P
and G represent the phenotype and genetic covariance matrix, respectively [28,29].

2.3.6 Multi-Trait Index Based on Factor Analysis and Genotype-Ideotype Distance (FAI-BLUP Index)
After determining the ideotype, estimate the distance between the ideotype and each genotype, and then

convert it into a spatial probability, so that the genotypes can be ranked. The calculation formula of FAI-
BLUP index is as follows:

Pij ¼
1

dijPi¼n; j¼m
i¼1; j¼1

1

dij

where Pij represents the probability that the ith genotype (i = 1, 2,…, n) is similar to the jth genotype (j = 1, 2,
…, m); dij represents the genotype-ideotype distance from the ith genotype to the jth ideotype according to
the standardized average Euclidean distance [30].

2.3.7 The Multi-Trait Genotype-Ideotype Distance Index (MGIDI)
According to the multi-trait genotype-ideological distance index (MGIDI) proposed by Olivoto et al.

[21], it ranks genotypes based on multiple traits. The entire calculation process of MGIDI was divided
into the following four steps. First, using the following formula to rescale value for the jth agronomic
trait on the ith genotype (rXij):

rXij ¼
gnj � unj

g0j � u0j
� ðhij � g0jÞ þ gnj
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where ηnj and φnj represent the new maximum and minimum values of the jth agronomic trait after rescaling,
respectively; η0j and φ0j represent the original maximum and minimum values of the jth agronomic trait,
respectively; θij represent the original value of the ith genotype in the jth agronomic trait. Choose the
values for ηnj and φnj according to the following criteria: when you want to obtain a trait with positive
gain, you should use φnj = 0 and ηnj = 100; on the contrary, when you want to obtain a trait with negative
gain, φnj = 100 and ηnj = 0 should be used. In this study, the agronomic traits GY, EL, ED, ER, GWE and
HSW belong to positive desired gains, and the agronomic traits GP, GMC, PH, EH, BTL and LR belong
to negative desired gains.

In the second step, the problem of dimensionality reduction of data and relational structure was solved
by performing factor analysis (FA). The calculation of factor analysis relies on the following formula:

F ¼ ZðATR�1ÞT
where F represents the factorial scores with the matrix of g� f; Z represents the rescaled means for the g� p
matrix; A represents the canonical loadings for the p � f matrix, and R represents the correlation matrix of
P × P between agronomic traits. In addition, g, f and p represent the number of genotypes, the retained factors
and the evaluated agronomic traits, respectively. In the third step of MGIDI calculation, the [1� p] vector was
regarded as an ideotype matrix. In the fourth and last step, the following formula was used to calculate the
Euclidean distance between the genotype score and the ideal genotype as the MDIGI index:

MGIDI ¼
Xf
j¼1

½ðcij � cjÞ2�0:5

In the formula, γij represents the scores of the ith genotype in the jth factor (i = 1, 2,…, t; j = 1, 2,…, f),
where t and f represent the number of genotypes and factors, respectively, and γj represents the jth scores for
the ideotype. The genotypes with the lower MGIDI values are closer to the ideal genotype than other
genotypes and exhibits all the desired values for the measured agronomic traits.

MTSI takes advantage of the weight between average performance and stability, and therefore selects
genotypes that are both stable and have a high-performance. If the weights of all traits in the MTSI are
completely assigned to the average performance, then the MTSI will become the MGIDI index. It should
be noted that MGIDI is used to rank genotypes based on multiple traits, but does not consider the
stability of genotypes.

2.3.8 Genotype by Yield � Trait (GYT) Biplot
The GYT biplot used the theory proposed by Yan et al. [23]. For the GYT biplot analysis, the agronomic

trait grain yield was taken as the basic variable (yield). Based on the standardized GYT, the superiority index
(SI) that integrates all yield-traits was calculated [31].

2.3.9 Relationship Between Stability Measures for Grain Yield
In this section, indexes WAAS and WAASY (consider a fixed-effect model), and compare the indicators

WAASB andWAASBY (considering the mixed-effect model) with the following 13 AMMI-derived stability
indexes in terms of genotype ranking, namely: (1) Absolute values of the first and principal component axis,
respectively, PC1 and PC2; (2) AMMI stability value, ASV [5]; (3) Sums of the absolute value of the IPCA
scores, SIPC; (4) Average of the squared eigenvector values, EV; (5) Absolute values of the relative
contributions of the IPCAs to the interaction, ZA; (6) Harmonic mean of the relative performance of the
genotypic values, HMRPGV; (7) Coefficient of variation, CV; (8) Adjusted coefficient of variation, ACV;
(9) Power law residuals, POLAR; (10) Annichiarrico’s genotypic confidence index for all, favorable and
unfavorable environments, respectively, Wi_g, Wi_f and Wi_u; (11) Wricke’s ecovalence, Ecoval; (12)
Deviations from the joint-regression analysis, Sij; (13) The ssi are the simultaneous selection indexes
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using AMMI-derived stability indexes. Calculate the ranking of genotypes based on the concept of each
indicator. Principal component analysis (PCA) was computed to explore the relationships between the
research indicators; then, it will be displayed in the form of a loading biplot.

2.3.10 Statistical Analysis Software
All statistical analysis were performed based on the R version 4.0.3 software with the “metan” version

v1.12.0 package, and the packages used by the principal component analysis with biplot are “FactoMineR”
verson 2.4, “ggplot2” version 3.3.4 and “factoextra” version 1.0.7. The functions including gamem( ), mtsi( ),
mgidi( ), Smith_Hazel( ), fai_blup( ), waas( ), waasb( ), gytb( ) and AMMI_indexes( ) were used in this study [32].

3 Results

3.1 Variance Components of the 12 Agronomic Traits and Factors Description
The genotype had highly significant effects (P < 0.001 and P < 0.01) for the maize agronomic traits GY,

GP, GMC, PH, GWE and LR, and the GEI revealed a highly effect (P < 0.001) for all traits according to the
likelihood ratio (Tab. 2). The environment effect was highly significant for all evaluated traits except for
HSW. The accuracy of genotype selection (AS) for 12 analyzed traits ranged from 0.10 (BTL) to 0.96
(GMC). High values of the coefficient of determination for GEI effects (R2

ge) were observed for GY, GP,
GMC, BTL and GWE, indicating that the GEI variance occupies an important part of the phenotypic
variance component.

3.2 Loadings and Factors Description for MGIDI
According to 71.28% of the total variation of the explained traits, we retained the top 4 main components

(Tab. 3). After layers of accumulation, the average communality was 0.71 (the maximum value was 0.85, the

Table 2: Likelihood ratio test and genetic parameters for 12 agronomic traits of 28 maize tested genotypes

Agronomic
traits

Genetic parameters

LRTg LRTge r̂2p R2
ge h2mg As E/F CVg CVr CVg=CVr

GY 7.58*** 3767*** 2.0 0.93 0.50 0.70 15.01*** 2.91 2.57 1.13

GP 7.09*** 2261*** 4.76 0.87 0.49 0.70 62.78*** 0.40 0.67 0.60

GMC 197*** 3480*** 7.24 0.64 0.92 0.96 251.55*** 5.52 1.55 3.56

PH 5.94** 342*** 114.3 0.43 0.46 0.68 58.42*** 0.55 2.77 0.20

EH 0.107ns 137*** 72.86 0.28 0.09 0.29 1.92*** 0.33 6.26 0.05

EL 2.05ns 184*** 1.70 0.32 0.31 0.56 18.67*** 0.74 5.91 0.12

ED 3.1ns 277*** 0.14 0.40 0.37 0.61 53.63*** 0.90 5.79 0.16

ER 0.431ns 94.7*** 1.34 0.23 0.16 0.40 1.99* 0.44 6.18 0.07

BTL 0ns 3977*** 1.14 0.97 0.01 0.10 5.22*** 0.02 1.24 0.01

GWE 57.1*** 2703*** 33.40 0.80 0.80 0.90 4374.12*** 1.35 0.91 1.49

HSW 0.328ns 124*** 1.93 0.27 0.14 0.37 1.10ns 0.24 3.41 0.07

LR 11.60*** 267*** 1.80 0.38 0.56 0.75 126.55*** 9.28 40.27 0.23
Notes: ***significant at P < 0.001; **significant at P < 0.01; *significant at P < 0.05; ns, nonsignificant. LRTg and LRTge, Likelihood ratio tests for
genotype and genotype by environment interaction (GEI), respectively; r̂2p, phenotypic variance; R

2
ge, the coefficient of determination for GEI effects;

h2mg , heritability of the genotypic mean; As, the accuracy of genotype selection; E/F, the F value for environment effects; CVg and CVr, the genotypic
and variation coefficients of variation, respectively. GY, grain yield; GP, growth period; GMC, grain moisture content; PH, plant height; EH, ear
height; EL, ear length; ED, ear diameter; ER, ear row; BTL, bare tip length; GWE, grain weight per ear; HSW, 100-seed weight and LR, lodging rate.
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minimum value was 0.62), which means that factors (FA) can explain a large part of the variance of each
variable. In this study, the 12 evaluated traits were divided into 4 factors. GY, GP, EH, EL and ED
belonged to FA1; FA2 characteristics included ER and HSW; FA3 included traits GMC and GWE. The
remaining three traits PH, BTL and LR were classified as FA4.

3.3 Genotypes Selected by Different Evaluation Methods
Assuming that the selection intensity was controlled at 15%, we can screen out different genotypes

through different evaluation methods (Fig. 1). Genotypes G21, G22, G23, G24, G10 and G12 were
selected by FAI-BLUP (Fig. 1a). The genotypes selected according to the MGIDI index were G22, G12,
G10 and G1 (Fig. 1b), Through the MGIDI index, the genotypes G15, G4 and G26 were very close to
the red cutting point (the red circle represents the number of genotypes selected based on the selection
pressure), which means that these genotypes are expected to have an excellent phenotype. Genotypes 23,
22, 10, 2 and 12, 24, 11, 14 were selected by the MTSI and SHindexes (Figs. 1c and 1d), respectively.
The genotypes G22, G10 and G12 were selected more times, followed by G 23 and G24 (Fig. 1e,
Tab. 4), implying that these two genotypes performed better and stable in different environments.

3.4 Combining Features of AMMI and BLUP Techniques
Fig. 2 showed the combined interpretation for mean performance and stability of the 12 agronomic

evaluated traits. In the GY � WAASB biplot, the abscissa represents the performance of grain yield, and
the ordinate represents the WAASB value. WAASB achieves the purpose of quantifying stability by
considering all possible interaction principal component axis values. The biplot is divided into four
quadrants by lines perpendicular to the abscissa and ordinate. The genotypes within Quadrants I and II

Table 3: Eigenvalues, explained variance and the community obtained after superposition by factor analysis

Agronomic traits FA1 FA2 FA3 FA4 Communality Uniquenesses

GY 0.581 0.57 0.08 0.19 0.71 0.29

GP −0.741 −0.07 −0.23 0.07 0.60 0.40

EH −0.741 0.52 0.16 −0.12 0.85 0.15

EL −0.831 0.24 0.06 0.01 0.74 0.26

ED −0.641 0.26 −0.37 0.14 0.62 0.38

ER −0.15 0.802 −0.18 0.22 0.74 0.26

HSW −0.31 0.812 0.08 0.09 0.76 0.24

GMC 0.01 0.17 −0.853 −0.01 0.76 0.24

GWE 0.19 0.19 0.823 0.01 0.76 0.24

PH −0.36 0.34 −0.08 0.684 0.71 0.29

BTL −0.13 0.06 0 −0.814 0.68 0.32

LR −0.01 0.46 0.06 0.644 0.62 0.38

Eigenvalues 3.73 2.24 1.57 1.02

Variance (%) 31.1 18.60 13.0 8.50

Accumulated (%) 31.1 49.7 62.8 71.3
Note: FA, factor analysis. The superscript numbers 1, 2, 3, and 4 represent FA1, FA2, FA3 and FA4, respectively. See Tab. 2 for the full names of
agronomic traits.
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are considered to be less stable. Different traits within Quadrants III and IV have different meanings.
Genotypes within Quadrants IV (for GY, HSW, EL, ED, ER and GWE which higher values are desired)
and III (for GP, GMC, PH, EH, BTL and LR which lower values are better) are assumed to be desirable.

Figure 1: Genotype ranking for the FAI-BLUP (a), Multi-trait genotype ideotype distance index (MGIDI)
(b), Smith-Hazel index (c), Multi-trait stability index (MTSI) (d), and Venn plot (e)
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Regarding the grain yield and stability performance for environments, located in the quadrant I, it shows
the lower performance below the average yield, and plays a maximum role in genotype and environment
interaction. The environments in the second quadrant is the same as that in the first quadrant, which
means that it plays a greater role in GEI, and the difference is that the trait performance is still good. So
the environments in the second quadrant deserve special attention because they provide above-average
trait performance and high ability to distinguish genotypes. The environments in quadrant III have a low
yield performance, and given their low WAASB values, these environments have a weaker ability to
distinguish genotypes. The environment in the last quadrant has higher grain yield performance and lower
WAASB value.

Among the 12 agronomic traits evaluated, the observed values of the selected genotypes were all higher
than the average except for GP and BTL, and the SD percentage of the trait value and average performance of
the selected genotypes was −0.17% for GP and −2.94 for LR. This result can bring some enlightenment to
maize breeding. The maize growth period and bald tip are two agronomic traits that breeders try to control.
Regarding the WAASBY index, except for GMC, positive selection differences were observed in all other
agronomic traits (4.39% for EH ≤ selection difference ≤ 32.1% for GP), which indicated that the selected
genotypes were more stable (Tab. 5).

The ranking of genotypes depending on the number of PCAs used to estimate the WAASB was shown in
Fig. 3a, and ranking of genotypes considering the WAASB/GY ratio was shown in Fig. 3b. The left and right
sides of Fig. 3 give more weight to genotype stability and grain yield, respectively. Genotype groups with
similar stability capabilities can be easily divided into 4 groups by genotype codes of different colors.
The genotypes in the first group, such as G14 and G15, have the best overall stability and yield
performance. These genotypes are highly productive and broadly adaptable because they maintain a
similar independence in terms of average yield and stability weights. Because they have similar ranking
independence given weight for average performance and stability, these genotypes have higher level of
productivity and wider adaptability. The genotypes in the second group have poor stability but higher
yields. The representative genotypes here are G3, G4 and G5. The genotypes in the third group are
opposite to those in the second group, with higher stability but lower yield. G8, G11 and G12 are
representatives of this group. The genotypes in the fourth group, have the characteristics of poor stability
and poorly productive, especially G1, G2, G3 and G27.

Table 4: Coincidence index, number of common genotypes and shared genotypes for each pair of indexes
evaluated

Index1 Index2 Coincidence Common Shared genotypes

MGIDI FAI-BLUP 0 3 G22, G12, G10

MGIDI Smith-Hazel −16.67 1 G12

MGIDI MTSI −33.33 2 G22, G10

FAI-BLUP Smith-Hazel −33.33 2 G12, G24

FAI-BLUP MTSI 0 3 G22, G10, G23

Smith-Hazel MTSI −100 0 None
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Figure 2: AMMI biplot based on the mean performance and stability of each trait. The X-axis shows the
observed value of different traits and the Y-axis represents the WAASB index
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3.5 Comparison of Genotype Ranking Based on Stability Index ASV and WAASB
In this study, we introduced a new evaluation method for genotype stability in multi-environment trials

(METs), the weighted average of absolute scores from the singular value decomposition of the matrix of
BLUPs for the GEI effects (WAASB). The ranking of genotypes was very similar or the same as the
traditional evaluation method AMMI stability value (ASV) (Tab. 6). As the degree of METs and the
complexity of GEI increased, GEI in the form of being retained in a large number of IPCA in AMMI
analysis tends to be captured in the final IPCAs. Thus, the WAASB index is very promising for obtaining
a convincing genotype evaluation by quantifying genotype stability in future studies.

3.6 Genotype by Yield�Trait (GYT) Biplot
The GYT biplot, which combines grain yield and any other agronomic traits, can be used to evaluate how

grain yield is combined with such trait. Thus, the use of GYT biplot technology can determine when the value
of any genotype trait was low, and then the grain yield was high. The reverse is also true, and whether the
results were affected by this combination or whether the ranking changes accordingly. As a result, when
agronomic traits and grain yield values are input in combination, the data changes with the genotype
ranking. Therefore, it is always desirable to have a larger value in the GYT table. The values of 28 maize
genotypes in 24 different environments over 2 years are listed in Tab. 7. The superiority index (SI) ranks
genotypes by all traits, among which the higher SI values were defined as the best genotypes. According
to Fig. 4, the genotypes G20, G15, G16, G19 and G17 had the highest grain yield; on the contrary, G28,
G11 and G12 were classified as the worst genotypes. According to the principle introduced in the GYT
biplot method, the relationship between the grain yield and agronomic traits combinations in Fig. 4 can be
further observed. In the GYT biplot, except for Y�LR, in view of the acute-angle relationship between the
vectors, all yield-trait combinations showed a positive correlation. The grain yield-agronomic trait
combination provided a very meaningful way to rank genotypes through graphs. The same relationship
can be clearly seen through the GYT biplot; for example, the lower correlation value and the acute angle
within the vectors between Y�GP, Y�EH, Y�HSW, Y�PH, Y�ER, Y�ED and Y�EL.

Table 5: Selection differential for mean performance and stability according to the WAASBY index

Traits Mean performance Stability (WAASBY)

Xo Xs SD SD percent (%) Xo Xs SD SD percent (%)

GY 9.55 9.59 0.04 0.45 53.20 70.20 17.10 32.10

GP 102.00 102.00 −0.31 −0.30 55.60 61.30 5.68 10.2

EL 18.00 18.20 0.27 1.50 57.5 66.8 9.32 16.2

EH 115.00 116.00 0.65 0.57 51.60 53.80 2.26 4.39

ED 5.10 5.15 0.05 0.98 52.60 64.40 11.80 22.40

ER 16.40 16.40 0.03 0.20 57.5 71.10 13.60 23.70

HSW 34.80 34.90 0.11 0.31 58.90 70.10 11.20 19.0

GMC 28.00 28.40 0.41 1.45 49.90 33.60 −16.30 −32.7

GWE 159.00 161.00 1.63 1.02 43.10 46.30 3.25 7.55

PH 285.00 285.00 0.91 0.32 60.70 71.10 10.40 17.10

BTL 1.41 1.40 −0.01 0.43 59.60 62.70 3.07 5.15

LR 2.55 2.63 0.08 2.94 55.6 65.00 9.39 16.9
Note: Xo, mean for WAASBY index of the original population; Xs; mean for WAASBY index of the selected genotypes; SD, Standard deviation;
WAASBY, weighted average of WAASB and response variable.
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Figure 3: The heatmap shows the ranking of 28 maize genotypes according to the amount of IPCA scores
used to compute the WAASB index (a) and different weights for yielding and stability used in this study (b)
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Table 6: Genotypes ranking for 12 agronomic traits, compare the ASV and WAASB

Genotype GY GP PH EH

ASV WAASB ASV WAASB ASV WAASB ASV WAASB

G1 24 24 25 25 14 19 13 14

G2 23 26 27 27 22 14 18 17

G3 28 28 28 28 8 8 12 15

G4 27 27 26 26 12 7 19 25

G5 26 25 24 22 19 10 8 13

G6 19 20 21 24 2 4 5 6

G7 18 16 22 21 10 17 15 7

G8 10 5 2 1 15 18 2 5

G9 8 11 3 3 6 12 22 22

G10 16 12 1 4 25 23 7 20

G11 1 2 4 5 13 15 16 4

G12 4 4 8 6 17 16 28 19

G13 5 7 9 8 11 13 3 18

G14 2 1 7 11 7 5 20 8

G15 3 3 6 2 21 21 24 24

G16 6 6 18 13 23 25 10 21

G17 7 10 15 12 5 9 25 28

G18 15 15 10 9 9 6 9 3

G19 22 21 19 19 1 1 6 10

G20 12 13 11 18 4 3 23 12

G21 13 8 12 10 3 2 11 16

G22 21 22 5 7 26 26 14 27

G23 9 9 16 20 16 11 17 2

G24 17 19 13 15 27 28 27 23

G25 20 17 14 16 28 27 21 9

G26 11 14 17 17 20 20 26 26

G27 25 23 20 14 24 24 1 1

G28 14 18 23 23 18 22 4 11

Genotype ED ER BTL GWE

ASV WAASB ASV WAASB ASV WAASB ASV WAASB

G1 1 5 10 13 23 22 4 4

G2 15 12 9 5 24 16 8 8

G3 23 6 19 9 8 2 1 1
(Continued)
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Table 6 (continued)

Genotype ED ER BTL GWE

ASV WAASB ASV WAASB ASV WAASB ASV WAASB

G4 17 20 27 21 19 24 6 6

G5 13 21 17 16 12 10 5 5

G6 18 17 7 11 17 18 7 7

G7 5 8 13 15 9 4 3 3

G8 28 22 28 27 20 20 2 2

G9 24 23 15 20 10 6 14 13

G10 7 3 24 22 28 28 27 27

G11 9 7 18 19 3 7 12 14

G12 12 19 1 4 14 15 28 28

G13 11 15 25 23 1 1 22 22

G14 3 2 6 3 18 11 23 23

G15 4 10 4 2 11 9 13 12

G16 25 25 22 26 25 21 16 16

G17 26 28 21 25 4 14 25 25

G18 20 4 3 7 7 5 26 26

G19 14 11 26 24 27 26 24 24

G20 10 13 5 14 22 23 20 20

G21 22 18 12 10 2 3 15 15

G22 8 16 8 17 15 17 18 19

G23 19 9 2 1 6 27 19 18

G24 6 14 23 28 21 13 9 9

G25 27 27 14 12 13 12 11 11

G26 16 26 20 18 16 19 21 21

G27 21 24 11 8 26 25 10 10

G28 2 1 16 6 5 8 17 17

Genotype EL GMC HSW LR

ASV WAASB ASV WAASB ASV WAASB ASV WAASB

G1 16 14 9 10 27 21 17 18

G2 19 15 7 11 8 5 16 14

G3 5 6 18 14 3 10 13 9

G4 3 3 15 25 9 7 21 20

G5 8 7 13 13 12 11 26 26

G6 7 11 16 18 4 9 19 19
(Continued)
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3.7 Correlation Between Different Agronomic Traits
The spearman’s correlation matrix among the 12 agronomic traits and the significance between the traits

was presented in Fig. 5. A high-magnitude positive correlation was observed between GWE, ED, EL, PH and
GY, while a negative significance was reached between LR, BTL GP and GY, suggesting that the above
agronomic traits have positive and negative effects on grain yield, respectively. Agronomic traits PH, EH,
ER, ED, EL, LR and HSW reached a significant positive correlation with each other. However, PH, ED
and BTL, GWE and GMC, LR and GP reached a significant negative correlation.

Table 6 (continued)

Genotype EL GMC HSW LR

ASV WAASB ASV WAASB ASV WAASB ASV WAASB

G7 25 23 8 15 6 12 27 27

G8 10 9 2 1 24 23 25 23

G9 15 24 12 5 20 17 23 24

G10 13 8 10 4 23 22 2 4

G11 6 2 1 6 14 4 1 3

G12 26 27 27 24 26 25 5 2

G13 28 28 17 12 19 19 20 21

G14 14 13 21 23 5 1 12 12

G15 11 19 23 27 1 3 18 15

G16 17 16 11 7 13 24 9 17

G17 23 25 14 8 28 28 6 6

G18 27 22 5 9 2 14 22 22

G19 4 5 4 17 15 18 10 7

G20 22 20 28 26 18 20 24 25

G21 18 21 25 28 21 15 7 10

G22 12 12 19 16 7 6 14 16

G23 1 1 3 2 10 2 11 13

G24 9 17 20 22 25 27 28 28

G25 20 18 26 20 11 16 4 5

G26 24 26 6 3 22 26 8 8

G27 2 4 24 21 16 8 3 1

G28 21 10 22 19 17 13 15 11
Note: ASV, AMMI stability value; WAASB, theWeighted Average of Absolute Scores from the singular value de composition of the matrix of BLUPs
for the GEI effects.
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3.8 Correspondence Among the Stability Indexes
The loading biplot obtained by principal component analysis (PCA) considering the correlation matrix

with grain yield and stability statistics indexes was presented in Fig. 6. The first two PCAs explained
accounted for 74% of the GEI variance. Except for EV, SIPC, ACV, POLAR, CV and PC1, all other
stability indexes vectors were very long, which indicated that they were well expressed in the factor

Table 7: Standardized genotype by yield*trait (GYT) data for the tested maize genotypes

Genotype Y � GP Y �GMC Y � PH Y � EH Y � EL Y � ED Y � ER Y � BTL Y � GWE Y � HSW Y �LR Mean (SI)

G1 0.12 0.56 0.10 0.36 0.29 −0.02 0.35 −0.35 0.42 0.35 0.08 0.21

G2 −0.22 −1.11 −0.49 −0.56 −0.39 −0.75 −0.31 −0.50 −0.08 −0.30 −0.99 −0.52

G3 0.63 −0.44 0.73 0.69 0.56 1.04 0.65 −1.08 0.69 0.61 −0.08 0.36

G4 0.87 −1.30 0.85 1.09 0.82 0.84 0.90 0.46 0.99 0.91 −1.42 0.46

G5 0.36 −0.80 0.23 0.65 0.59 0.20 0.23 0.47 0.70 0.48 −2.02 0.10

G6 −0.47 −1.29 −0.72 −0.76 −0.82 −0.64 −0.84 0.45 −0.53 −0.62 0.26 −0.54

G7 −0.65 −2.04 −0.54 −0.68 −0.43 −1.04 −0.84 −0.84 −0.63 −0.82 1.32 −0.65

G8 −1.13 −1.02 −0.96 −1.16 −1.12 −1.02 −1.47 −0.98 −1.02 −1.16 0.84 −0.93

G9 −0.49 −0.38 −0.55 −0.76 −0.79 −0.64 −0.28 −1.01 −0.28 −0.64 1.14 −0.43

G10 −0.92 −0.43 −1.22 −0.81 −1.08 −0.92 −0.84 1.93 −0.64 −1.10 0.02 −0.55

G11 −1.82 −0.75 −1.75 −1.62 −1.78 −1.74 −1.78 −1.54 −1.49 −1.66 −0.50 −1.49

G12 −2.33 −1.43 −1.98 −1.75 −1.50 −1.61 −1.98 −0.36 −1.74 −2.02 −0.01 −1.52

G13 0.36 0.09 0.19 0.04 −0.22 −0.29 0.08 −0.90 0.63 0.15 −0.97 −0.08

G14 0.56 0.02 0.67 0.46 0.48 0.29 0.84 −0.16 0.94 0.50 0.81 0.49

G15 1.43 1.16 1.39 1.47 1.73 1.33 1.14 0.58 1.80 1.61 1.25 1.35

G16 1.45 0.37 0.81 0.82 0.86 0.99 0.48 1.07 1.70 0.89 −0.39 0.82

G17 1.14 0.07 1.11 1.05 1.24 0.80 1.25 1.87 0.73 1.13 0.83 1.02

G18 1.18 0.87 1.16 0.91 1.01 1.02 0.85 0.66 0.66 0.83 −1.24 0.72

G19 1.23 0.90 1.21 0.95 0.80 1.34 1.29 0.70 0.85 1.39 0.45 1.01

G20 1.41 2.50 2.01 1.98 2.13 1.99 1.86 0.43 1.42 1.67 0.88 1.66

G21 0.59 1.48 0.58 0.64 0.83 1.11 0.70 0.03 0.27 0.67 −0.64 0.57

G22 −0.16 0.72 −0.42 0.24 0.14 0.22 0.03 −0.42 −0.46 0.04 0.31 0.02

G23 −0.29 0.22 −0.19 −0.18 −0.18 −0.13 −0.26 2.24 −0.44 −0.13 −1.23 −0.05

G24 −0.70 0.25 −0.06 −0.15 −0.21 0.51 0.07 −0.87 −0.68 −0.18 2.35 0.03

G25 −0.34 0.27 0.01 −0.43 −0.42 −0.74 0.12 0.38 −0.50 −0.18 0.49 −0.12

G26 0.18 0.25 0.31 0.48 0.06 0.10 0.44 −0.09 −0.19 0.21 0.15 0.17

G27 −0.86 0.39 −1.10 −1.39 −1.25 −0.78 −1.15 −0.57 −1.34 −1.09 −0.74 −0.90

G28 −1.13 0.88 −1.38 −1.58 −1.35 −1.47 −1.52 −1.61 −1.81 −1.54 −0.96 −1.22

Mean 0 0 0 0 0 0 0 0 0 0 0

SD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Note: Y, Grain yield; SD: Standard deviation.
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plane. It can also be seen from Fig. 6 that the stability indexes used for evaluation could be divided into left
and right parts according to the middle dotted line. The angles between their vectors of the left part was less
than 90°, indicating that these indexes had reached a highly positive correlation. Except for EV, the indexes in
the right part also reached a highly positive correlation. The new stability indexes WAAS and WAASB were
highly positively correlated with ZA, ASV, Sij, and Eclval, and slightly positively correlated with ssiEV,
ssiSIPC, ssiZA, and ssiASV, but negatively correlated with WAASY and WAASBY. After using PCA to
check the relationship between the statistical indexes, it was found that grain yield was highly positively
correlated with HMGV, RPGV, Gai and HMRPGV, and also had a positive correlation with WAASBY
and WAASY, because their vectors were less than 90°. The angles between other statistical indexes and
grain yield were greater than 90°, indicating that there was a negative correlation with grain yield, and
the ranking of genotypes was reversed.

GY, grain yield; HMRPGV, Harmonic mean of the relative performance of the genotypic values; WAAS
the weighted average of absolute scores; WAASB, weighted average of absolute scores for the best linear
unbiased predictions (BLUPs) of the genotype-vs.-environment interaction; WAASY and WAASBY are
the simultaneous selection indexes using WAAS and WAASB, respectively; ZA, the absolute value of the
rela-tive contribution of the principal component axis of the interaction to the interaction; ASV, AMMI
stability value; EV, averages of the squared eigenvector values; CV, coefficient of variation; ACV,
adjusted coefficient of variation; POLAR, Power Law Residuals; Wi_g, Wi_f and Wi_u, Annichiarrico’s
genotypic confidence index for all, favorable and unfavorable environments, respectively; Ecoval,
Wricke’s ecovalence; Sij, Deviations from the joint-regression analysis; SIPC, sum of the absolute values
of the IPCA scores; The ssi are the simultaneous selection indexes using AMMI-derived stability indexes;
PC1 and PC2, the first and second principal component axis, respectively.

Figure 4: The associations of the combinations between grain yield and other traits based on the genotype
by yield * trait (GYT) biplot
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4 Discussion

In this study, we evaluated the performance of 12 agronomic traits of 28 different summer maize
genotypes in two consecutive planting years (2018–2019) under the climatic conditions of Huang-huai-
hai region. This region is the largest summer maize planting area in China. The performance of
agronomic traits of germplasm resources is generally considered to be an important step in selecting
genotypes suitable across different environments and with ideal agronomic traits, which can be used in
future breeding programs to breed new and improved genotypes [33]. Genetic variability plays a vital
role in improving the good progress for agronomic traits in plant breeding selection procedures. The
results for the 12 evaluated agronomic traits showed that the genotype � environment interaction (GEI)
was statistically significant (P < 0.001) based on the likelihood ratio test. This indicates that the genetic
variation between genotypes varied across the environments. The magnitude of the GEI effect in the total
variation is mainly attributed more to diversification than the genotypes [34]. In METs analysis,
quantitative stability strategies are the basis for selecting genotypes, and are increasingly favored by
agricultural researchers. The genotypes are evaluated based on the contribution of the scores of the first
two principal component scores to the sum of square interactions, and the AMMI stability value (ASV) is
used for this purpose [35–37]. It is possible to show how genotypic stability is quantified after
introducing WAASB, which can be seen as a mixed model version of the ASV evaluation method.
WAASB and ASV are consistent based on the first two IPCAs to evaluate genotype stability, and the
ranking of both is highly consistent. It should be noted that for most of the analyzed traits, if there is a
small proportion of GEI variance explained by the first two IPCAs in a certain trait, the ranking of
genotypes based solely on ASV may be biased. WAASB will make up for this defect well, thus, the

Figure 5: The correlation heat map among the 12 different agronomic traits. *, **, and *** represents
significance at 0.05, 0.01 and 0.001, respectively
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WAASB index will have a good effect on genotype evaluation in the future studies about quantifying
genotypic stability [4,25,38]. WAASB × GY (or other agronomic traits) as one of the AMMI model
biplots can be used to interpret the combination of trait observation values and stability, thereby
evaluating the adaptability range of this genotype. Compared with the well-known AMMI1 biplot, the
main advantage of the WAASB × GY biplot is that all IPCA axes are used, and GEI patterns that are not
retained in IPCA1 can be considered in the genotypes ranking.

The MTSI evaluation system has unique and easy-to-understand characteristics. In addition, agricultural
researchers have found that MTSI has many practical applications in breeding practices. For example,
obtaining multiple agronomic traits and selection for mean performance and stability can be performed
simultaneously [39]. The MGIDI index and the MTSI index also use the same rescaling process to select
genotypes. This rescaling program places all the agronomic traits in the range of 0–100, which
contributes to the definition of ideotype; thereby, all identical ideotype values for the evaluated agronomic
traits are expressed as 100. This is only possible from the perspective of the selection direction required
by the rescaling process. Future METs studies will have to rescale the evaluated traits by the breeders to
define the value of the new maximum and minimum value of the agronomic trait after rescaling,
respectively [21]. Based on the MGIDI index, selected genotypes were G22, G12, G10 and G1 as the
promising maize genotypes. Apart from the genotypes selected above, G15, G4 and G26 were close to
the cutting point, which means that this type of genotypes can show interesting features. Thus, genotypes
near the cutting point need to obtain more attention from agricultural researchers. The genotypes G22 and
G10 were selected by the MGIDI index and MTSI at the same time; it means that these two genotypes
showed an ideal mean performance (MGIDI selection) and stability (MTSI selection). In this study,

Figure 6: The rankings with genotypic grain yield and stability parameters are based on loading graphs
obtained from principal component analysis
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among different genotype ranking evaluation methods, MGIDI and FAI-BLUP, Smith-Hazel, MTSI had co-
selected that the number of genotypes were 3, 1 and 2, respectively. Since there is a better consistency with
other genotype ranking techniques, MGIDI will have more applications in future METs in terms of genotype
rankings [40].

In previous studies, ranking ASVand mean performance of each agronomic trait were used to calculate
a non-parametric simultaneous selection index (ssiASV) to identify genotypes with high performance and
stability [41,42]. If the stability rating in such studies computed using ASV is reliable, simultaneous
selection using ssiASV parameters will be promising. In view of the poor interpretation of the GEI model
by the first two IPCAs, this ranking may be misleading. Therefore, in future fixed-effects model research,
consider using simultaneous selection indexes based on important IPCA; these indexes include WAASY,
ssiZA, ssiSIPC and ssiEV. WAASBY is considered to be a useful selection index when analyzing METs
under the framework of the mixed effects model [43]. The reason why the WAASBY index results are
more reliable than ssiASV is that all estimated IPCAs are considered after quantification of the stability,
based on the mixed effect model and even the random effect model framework [4].

The main purpose of METs in summer maize genotypes is to identify and select excellent genotypes
based on multiple agronomic traits and mega-environments. Taking into account the unpredictable
environmental factors in GEI interaction research, different analysis models (PCA, Cluster analysis,
AMMI and GGE) have been developed to clarify the effects of genotype, environment or their interaction
[44]. The GYT biplot proposed in this study provides an analysis method for genotype evaluation based
on multiple agronomic traits. This method is comprehensive and effective, as it ranks genotypes
graphically based on the combined grain yield and the level of various evaluated agronomic traits, while
showing the strengths and weaknesses of the tested genotypes. Because it does not involve subjective
weights and cutting points, the analysis result of the GYT biplot is objective [23,45]. Among summer
maize, high-yielding and stable maize genotypes are the first choice for farmers. However, grain yield is
affected by a variety of agronomic traits. Thus, the GYT biplot provides maize breeders with an
opportunity to evaluate genotypes and determine superior genotypes and superior indexes. The GYT
method reveals the influencing factors by determining the high-efficiency performance of affected traits
under a variety of environmental conditions. If the genotypes are evaluated based on the combination of
traits and yield obtained from multiple locations, they will be very stable in all traits and yield across
similar environments. For this reason, the GYT biplotting technique is used by some researchers to
evaluate the performance of combining multiple traits with yield and multiple environments in breeding
research [46,47]. Certain agronomic traits (GWE, ED, EL, and PH) directly increase the grain yield,
while some agronomic traits directly reduce grain yield, such as LR, BTL and GP. In the current
agricultural production, grain yield is not the only target. Those corn varieties that have both high grain
yield and good agronomic traits are more favored by farmers. Therefore, when selecting the best
genotypes, the influence of yield-traits combinations is more significant than the influence of individual traits.

5 Conclusion

In this study, 12 agronomic traits of 28 maize genotypes were evaluated across 24 different environments
in a 2-year field experiment. In general, there was a statistically significant GEI effect for grain yield and the
evaluated agronomic traits of maize genotypes in Huang-huai-hai region. This indicated that there may also
be performance differences across the environments. In the multi-environment trials, the combination of
AMMI model and BLUP technique made it possible to correctly describe GEI. We have used MGIDI,
FAI-BLUP, Smith-Hazel and MTSI total of 4 evaluation methods of genotype ranking. In terms of total
expected return, MGIDI was superior to the other three methods, which could be used as an ideal tool for
genotype selection based on multiple traits. The GYT biplot technique provided information about the
overall adaptability of the genotypes, and could clearly observe the stability and yield performance.
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