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ABSTRACT

The 12-lead ECG aids in the diagnosis of myocardial infarction and is helpful in the prediction of cardiovascular
disease complications. It does, though, have certain drawbacks. For other electrocardiographic anomalies such as
Left Bundle Branch Block and Left Ventricular Hypertrophy syndrome, the ECG signal with Myocardial Infarction
is difficult to interpret. These diseases cause variations in the ST portion of the ECG signal. It reduces the clarity of
ECG signals, making it more difficult to diagnose these diseases. As a result, the specialist is misled into making an
erroneous diagnosis by using the incorrect therapeutic technique. Based on these concepts, this article reviews the
different procedures involved in ECG signal pre-processing, feature extraction, feature selection, and classification
techniques to diagnose heart disorders such as LeftVentricularHypertrophy, Bundle BranchBlock, andMyocardial
Infarction. It reveals the flaws and benefits in each segment, as well as recommendations for developing more
advanced and robust methods for diagnosing these diseases, which will increase the system’s accuracy. The current
issues and prospective research directions are also addressed.
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1 Introduction

ECG signal is one of the greatest initial sources to obtain diagnostic information. In recent
research, an effective computational technique has been evolved in processing and analyzing the
ECG signal. The major challenging research using the ECG signal is to provide a computational
technique based on signal processing to diagnose a heart disease which includes Bundle Branch
Block, Left Ventricular Hypertrophy (LVH), and Myocardial Infarction. The ECG with 12 leads
helps to diagnose Myocardial Infarction and is useful in predicting complications in cardiovascular
disease [1]. However, it has some limitations. The ECG signal with the presence of Myocardial

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://dx.doi.org/10.32604/cmes.2021.016485


876 CMES, 2021, vol.128, no.3

Infarction is difficult to interpret with other electrocardiographic abnormalities such as Left Bun-
dle Branch Block (LBBB) and Left Ventricular Hypertrophy disease [2]. The ECG patterns of
Left Bundle Branch Block and Left Ventricular Hypertrophy may resemble the ECG findings
related to myocardial Infarction. These patterns decrease the clarity of the ECG signals to detect
Myocardial Infarction [2]. Bacharova et al. [3] reported that left ventricular hypertrophy induced
modification in the QRS and T pattern, and based on Romhilt-Estes Score, the amplitude of R
wave and S wave was greater than 2.0 mV and induced depression in the ST segment. Gubner
reported that the sum of the amplitude of the R wave in lead I and S wave in lead III was greater
than 25 mV indicated in the LVH. Sokolow Lyon reported that the sum of amplitude of S Wave
in V1 lead and R wave in lead V5 caused an increase in voltage by 3.5 mV. Based on Cornell
voltage the sum of amplitude of R wave in avL and S wave in V3 was greater than 2.0 mV [3].
Gosse et al. [4] reported that the amplitude of the R wave in lead aVL produced a huge change
in the ECG signal for identifying LVH. This approach was simple and cost-effective. Increases in
voltage and length of the QRS complex, which are suggestive of a rise in LVM and repolarization
changes considered to indicate anomalies in myocardial perfusion, are the most common signs [4].
de la Garza-Salazar et al. [5] reported that the LVH could be diagnosed using ECG and that it
was independent of the parameter called ventricular mass. The measurements of ECG parameters
were complex and provided a low accuracy for the diagnosis of LVH. Efficient machine learning
algorithms were required for the diagnosis of LVH with the highest accuracy [5].

The Electrocardiographic pattern of Left Ventricular Hypertrophy induces a great change in
the ST segment and T waves. It shows depression in the ST segment with negative T waves and
elevation in the ST segment with positive T waves. This changed pattern may mean that the patient
with the ECG signal has a condition that is compatible with Myocardial Infarction [6–8]. The
LVH based ECG signal is shown in Fig. 1. An EKG with an R wave in lead I (17 mm) that is
greater than 14 mm is seen below. The R wave in lead V5 and/or V6 is about 24 mm, while the
S wave in lead V1 is 21 mm. According to Sokolow-Lyon guidelines, the total is 45 mm, which
is higher than 35 mm, suggesting left ventricular hypertrophy.

Myocardial Infarction (MI) is the origin of coronary artery disease. It is also known as a
heart attack. This is because of the occlusion of any one of the above coronary arteries [9].
The ECG signal with Myocardial Infarction is shown in Fig. 2. It represents the normal ECG
signal and the ECG signal with MI. The synthetic ECG [notice Fig. 2a] is only seen for wave
morphologies comparison. In a clinical setting, all of the above modifications (Figs. 2b–2d) can
be present during an infarction. This demonstrates the importance of evaluating a 12-lead ECG
for MI identification and localization.
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Table 1: Diagnosis criteria for pathological conditions using ECG signal

ECG signal with pathological conditions Criteria to diagnose disease

Figure 1: LVH ECG with various pathological conditions

R wave in lead I-17 mm >14 mm
R wave in lead V5 and/or V6 is
about 24 mm
S wave in lead V1 is 21 mm
amplitude of SV1+ amplitude of
RV5 or RV6> 3.5 mV

(a)

(b) (c) (d)

Figure 2: Normal ECG (a)(b)(c)(d) MI with various
pathological conditions [10]

T inversion ≥ 0.1 mV in two
contiguous leads
down-sloping ST depression >
0.05 mV in two contiguous leads.
Prominent R-wave or R/S ratio ≥ 1;
Q-wave> 0.1 mV deep

Figure 3: ECG with Left Bundle Branch
Block [10]

In leads I, aVL, V5, and V6, the R
wave is wide and notched
In lead aVL, a small q wave can be
present.
The ST and T waves are usually in
the opposite direction of the QRS
effect.
Positive T waves in leads with
positive QRS are likely normal
(positive concordance).
In leads with negative QRS (negative
concordance), a depressed ST section
and/or negative T wave are
abnormal.

(Continued)



878 CMES, 2021, vol.128, no.3

Table 1 (Continued).

ECG signal with pathological conditions Criteria to diagnose disease

Normal ST eleva�on

Figure 4: Normal and ST-segment Elevation
pattern of ECG signal

Elevation of the ST section at the
J-point of more than 0.2 mV in men
40 years of age or older, 0.25 mV or
more in men younger than 40 years of
age, and 0.15 mV or more in women
in leads V2–V3.

Another common observation in patients with the ECG signal associated with the LBBB and
Myocardial Infarction is revealed that there is a discordance of the ST segment, QRS complex,
and T waves. That is, the ECG signal shows ST-segment elevation with negative QRS complexes
and depression in the ST segment along with negative T wave and positive QRS complexes [11].
The ECG with LBBB is shown in Fig. 3. Traditional methods to diagnose these diseases are
cumbersome. The Electrocardiogram criteria for Left Bundle Branch Block, Left Ventricular
Hypertrophy mimics the criteria for the diagnosis of acute Myocardial Infarction. This may lead
to a wrong diagnostic and treatment procedure. Fig. 3 represents ECG with Left Bundle Branch
Block. In leads I, aVL, V5, and V6, the R wave is wide and notched. The RS pattern can
sometimes be shown in leads V5 and V6. In leads I, V5, and V6, there are no q waves. In
lead aVL, a small q wave can be present. The ST and T waves are usually in the opposite
direction of the QRS effect. Positive T waves in leads with positive QRS are likely normal (positive
concordance). In leads with negative QRS (negative concordance), a depressed ST section and/or
negative T wave are abnormal. As LBBB progresses, the mean QRS axis can move to the right
or left.

The ST segment in the ECG signal pattern indicates the period that occurs between ven-
tricular depolarization and repolarization. The ST segment is the isoelectric part of the ECG
signal between the terminal point of the S wave and the starting point of the T wave. The
elevation in the ST segment indicates heart abnormalities. Fig. 4 denotes the normal and abnormal
ECG signal patterns. This section describes the research work which investigates the heart disease
abnormalities that cause changes in the ST-segment pattern of the ECG signal. Tab. 1 indicates
diagnosis criteria for pathological conditions using ECG signals.
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Noriega et al. [12] evaluated whether the existence of multivessel coronary artery disease
(CAD) varied the ST-segment of the ECG signal in patients with acute coronary artery occlusion.
It was noticed that both the cases with a single or multivessel CAD had inverse depression in
the ST-segment, which was due to the occlusion of the LAD artery. It could lead to a major
infarction [12]. Rossello et al. [13] predicted whether QRS and QT duration differentiated between
pericarditis and acute myocardial ischemia. It was observed that the elongation of the QRS
complex and the reduction in QT interval in the ECG signal was noticed in patients who suffered
from acute STEMI but not with pericarditis. A diffuse elevation of the ST segment and an upright
divergence of the PR segment with ST-segment depression in lead aVR is common electrocardio-
gram (ECG) findings in patients with acute pericarditis [13]. Yildirim et al. [14] reported different
clinical pieces of evidence that the ECG signal of myocarditis was similar to that of Myocardial
Infarction (MI). The reciprocal of the ST-segment elevation was observed in the ECG signal
for acute myocarditis cases. It can have a variety of clinical symptoms and can be interpreted
as myocardial infarction (MI) because patients typically have chest pain and electrocardiographic
changes that are similar to those seen in acute ST-elevation MI [14]. Willemsen et al. [15] analyzed
three cases of chest pain. In all these cases, the clinical diagnosis for the general practitioner was
unambiguous for conditions such as Acute Coronary Syndrome and light pain in the chest. A
General Practioner’s ability to distinguish between ACS and less serious sources of chest pain
remains a challenge [15]. Coppola et al. [16] reported on various conditions that induced changes
in ST-segment Elevation Myocardial Infarction (STEMI). When septal hypertrophy is occurring,
the ECG reveals R waves with a high voltage in the anterolateral leads and Q waves in the anterior
and inferior leads. The T waves in V2 and V4 are always very deep and inverted, resembling
a non-Q AMI [16]. Smith et al. [17] reported that the elevation in ST-segment caused difficulty
in differentiating Myocardial infarction from early repolarization of ECG signal. For a variety
of causes, it can be impossible to determine the two entities apart. First, although upward ST-
segment concavity is typically associated with normal ECG findings, it is also present in 30% to
40% of anterior STEMI (due to occlusion of the left anterior descending artery), particularly
early after the onset of symptoms. Furthermore, 30% to 40% of anterior STEMIs have borderline
ST-segment elevation [17]. Dodd et al. [18] analyzed Left Bundle Branch Block ECG signal cases
with and without Myocardial Infarction and identified variations in the amplitude of QRS com-
plexes, the morphology of ST-segment, and the T waves of ECG signal, and he compared them
with modified Sgarbossa criteria to find them perform well against other variations [18]. Pollak
et al. [19] reported that the ECG pattern minimized an accurate diagnosis of acute coronary
syndrome because of the mystifying ECG patterns of Left Ventricular Hypertrophy, ventricular
paced rhythms, and Left Bundle Branch Block. The confound electrocardiographic patterns are
those that minimize the electrocardiogram’s ability to detect modifications relative to ACS, not
because the results resemble STEMI, but because the syndrome obscures the identification of
ST-segment elevation [19]. Nable et al. [20] reported that the changes in ST-segment elevation in
ECG signal were a key factor for the diagnosis of ST-segment elevation Myocardial Infarction
(STEMI). Particularly, this change in ST-segment elevation pattern could also be perceived in the
other diseases which included Takotsubo cardiomyopathy, left ventricular hypertrophy, left bundle
branch block, and early repolarization [20].
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Several efficient algorithms have been evolved for disease identification using the ECG signal.
The morphologies of the ECG signal play a vital role in its analysis. Various Signal Processing
techniques have been adopted to grasp information from the ECG signal. Various techniques have
been investigated to identify the characteristics related to coronary artery disease. The detection
of Q, R, S, and T wave amplitudes using signal processing techniques is an important indicator
to identify heart diseases.

However, it is troublesome to perceive the differences in the ECG signal to indicate a specific
type of heart disease. Hence, an automated heart disease diagnosis system has been devised in the
medical field to find a solution to this problem. The data employed in this system are required to
be processed and classified accurately. For this purpose, various techniques have been reported in
the literature so far.

The statistical diagnostic strategies for predicting cardiac diseases based on ECG signals are
summarized in this paper. The technique of ECG signal analysis based on machine learning is
explored from preprocessing, feature extraction, feature selection, and classification. End-to-end
models for ECG analysis based on deep learning algorithms have been summarized, removing the
need for feature extraction using hand-crafted techniques from the analysis process.

This article describes the work reported in various pieces of literature for the diagnosis of
cardiac diseases. The structure of the literature review is organized in this chapter as follows: ECG
signal database, various pathological-condition-based ECG signals, ECG signal preprocessing,
Feature Extraction techniques, and classification techniques. The advantages and disadvantages
of various research works are also discussed in detail to identify the appropriate technique
to diagnose and differentiate between various cardiac signals indicating heart diseases such as
Myocardial Infarction, Bundle Branch Block, and Left Ventricular Hypertrophy. The flow of ECG
signal processing technique to diagnose these diseases indicated in Fig. 5

Figure 5: The basic flow of ECG signal processing technique

2 ECG Signal Dataset

The vast majority of research used computational approaches for Ischemic heart disease and
myocardial infarction (MI) are detected automatically using publicly available datasets containing
ECG waveforms to test the efficacy of their methods. The Physikalisch-Technische Bundesanstalt
(PTB), The European ST-T (EST) and MIT-BIH arrhythmia Database as well as others, are all
accessible via the Physionet data repository [21]. Fig. 6 indicates the database mainly used for the
diagnosis of Myocardial Infarction, Bundle Branch Block, and Left Ventricular Hypertrophy.
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Figure 6: ECG dataset for the diagnosis of myocardial infarction, bundle branch block and left
ventricular hypertrophy

2.1 The Physikalisch–Technische Bundesanstalt Diagnostic ECG Dataset
The 549 ECG documents in this dataset were compiled from 290 healthy volunteers and

patients with multiple heart disorders. MI, cardiomyopathy/heart failure, bundle branch block
(BBB), dysrhythmia, myocardial hypertrophy, valvular heart attack, and myocarditis are among
the diseases represented in the dataset. There are 209 males and 81 females in the sample, with
an average age of 57.2 years. MI has been annotated in 148 documents in the dataset [22].

2.2 MIT-BIH Arrhythmia Database (MIT-BIH) Dataset
This database is made up of 48 two-lead recordings, each lasting about a half-hour and

sampled at 360 Hz. This database provides annotations for both beat class and timing detail,
which has been confirmed by an independent expert. Representative beats to be used in the
common training details can be found in the first 20 records (100–124). The diseased signal such
as Junctional, ventricular, and supraventricular arrhythmias are included in the remaining 24 used
documents (200–234) [23].

2.3 European ST-T Dataset
This dataset is designed to aid in the evaluation of ischemia detection algorithms by providing

a standard dataset for reporting detection accuracy metrics and benchmarks. A total of 70 men
and 8 women, ranging in age from 30 to 84, are included in the study. Of patient has myocar-
dial ischemia, which was confirmed or assumed in the dataset, which includes 367 episodes of
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ST-segment changes and 401 episodes of T wave changes. Two of the most revealing ambulatory
ECG leads, sampled at 250 Hz, are included in each record [24].

3 ECG Preprocessing

Preprocessing is the preliminary stage involved in the implementation of any proposed
approach. ECG signals are commonly affected by noises such as muscle artifacts, electrode
motion, powerline interference, and baseline wander [25]. Muscle artifacts are caused by muscle
activity. The movement in the position of the electrode introduces an electrode motion [26,27].
Powerline Interference is generally present in the ECG signal that contains a 50/60 Hz sinusoidal
signal and harmonics [28]. Baseline wander causes modifications in the baseline of the ECG signal
during respiration. These noises could affect the P, Q, R, S, and T segments of the ECG signal,
the frequency resolution, and signal quality, and generate amplitudes in the ECG signals that
could mimic PQRST waveforms. It made the analysis of the ECG signal more difficult, often
misdirecting the physician to make a false diagnosis [29,30]. Hence, the cancelation of these noises
present in the ECG signal was an essential task for further processing.

Different techniques have been presented in the literature for removing the noise present in the
signal. The adaptive filtering technique based on discrete Wavelet Transform and artificial neural
network is applied to the ECG signal, and it shows a significant improvement in Signals to Noise
Ratio (SNR). But the disadvantage is that it is restricted to remove only certain types of noises.
This technique reduces computational complexity [31]. The hybrid denoising techniques such as
Ensemble Empirical Mode Decomposition (EMD) along with Block Least Mean square tech-
nique and Discrete Wavelet Transform (DWT) along with Neural Network were investigated and
compared with DWT Thresholding method for eliminating the noise present in the signal. These
techniques showed better performance than DWT thresholding did [32]. The presence of baseline
wanders induced noise within 1 Hz which caused changes in the ST-segment. To reduce the noise
Framelet Transform was applied and compared with DWT. The framelet transform showed better
performance than DWT did [33]. The wavelet decomposition with level 2 was applied to the ECG
signal and it showed that the approximation coefficient was similar to the low-frequency ECG
signal. The higher-order decomposition coefficients emerged as the approximation coefficient with
distorted ECG signals. So, it minimized the use of Non-Local Means (NLM). The effectiveness
of both DWT and NLM was combined and found to be more efficient to remove the noise than
other techniques were [34]. The ECG signal processing technique was applied based on Empirical
Mode Decomposition (EMD) and the improved approximation envelope method. The Butterworth
lowpass filter was implemented before applying it to EMD to eliminate high-frequency noise. This
method eliminated the baseline wander and power line interference present in the ECG signal [35].
Jenkal et al. [36] proposed a method to denoise the ECG signal affected by various noises due
to EMG signal, high frequency, and power line interferences. This technique depended on the
DWT decomposition, and an Adaptive Dual Threshold Filter (ADTF). This technique produced a
better result for the noise with higher density [36]. Sharma et al. [37] implemented a wavelet-based
technique for the removal of the noise present in the electrocardiogram signal. This technique
involved thresholding the coefficients of wavelets at various sub-bands. It was noticed that the
utmost energy present in the signal existed in cD4, cD5, and cA5 sub-bands. The noise existed
in the lower order sub-bands [37]. AlMahamdy et al. [38] presented various algorithms includes
Savitzky-Golay filtering, adaptive filters, and discrete wavelet transform to remove the noise in the
ECG signal. The NeighBlock wavelet method outperforms the other techniques. In some mid-
range SNRs, however, the RLS and Savitzky-Golay filters work better [38]. Fig. 7 denotes the
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different methods with SNR improvement in decibel. Tab. 2 represents the different denoising
techniques using ECG signals.

Figure 7: Several methods of SNR improvement in decibel

Table 2: Performance of different denoising techniques

Techniques SNR in dB

Rahman et al. [39] 10.6
Jenkal et al. [36] 23.29
Wang et al. [40] 11.66
Kaergaard et al. [32] 11.11
Ari et al. [27] 12.76
Poungponsri et al [31] 15.72
El-Dahshan et al. [41] 13.5
Awal et al [42] 10.24
Yan et al. [43] 11
Kabir et al. [44] 8
Wang et al. [45] 13.68

4 Feature Extraction

Feature extraction in the ECG signal is one of the essential processes for classification and
different types of features are extracted to describe the ECG signal. The extracted features from
ECG signals play a significant role in diagnosing most cardiac diseases, according to Sujan
et al. [46] These features include temporal, statistical, and morphological features [47–50]. The
feature extraction stage aims to find the simplest number of features that result in acceptable
suitable classification rates [51]. It extracts valuable data from ECG signals [52]. Fig. 8 indicates
various feature extraction techniques to diagnose MI, BBB, and LVH.



884 CMES, 2021, vol.128, no.3

Figure 8: Various feature extraction techniques to diagnose MI, BBB and LVH

4.1 Wavelet Transform Based Features
In several techniques, the temporal features are obtained from the time domain signal. But

certain hidden properties cannot be acquired in the time domain signal and do not provide
adequate discrimination [53]. Statistical and morphological features can be obtained from both
the time and frequency domains. The most popular used time-frequency approach is the wavelet
transform [54–58]. This section reviews the wavelet-based research to Diagnose Myocardial Infarc-
tion, Bundle Branch Block, and Left Ventricular Hypertrophy.

Non-stationary signals are easily analyzed with DWT [59–63]. The determined DWT coeffi-
cients have a compact representation of the signal’s energy distribution in time and frequency [64].
As a result, the feature vectors describing the signals were determined using the approximation
and detail wavelet coefficients of the ECG signals. Jayachandran et al. [65] applied a Discrete
Wavelet Transform to extract morphological features and calculated entropy. It was observed that
more entropy value was obtained for normal signal than for MI-based signal. The classification
accuracy obtained was 96.1% [65]. The feature extraction technique based on the Discrete Wavelet
Transform (DWT) provides superior results [66]. For non-stationary ECG signals, DWT has
acceptable scale values and shifting time [66]. Tab. 3 indicates some other papers based on the
wavelet transform method.

Table 3: Wavelet transform method-based detection

Author Database Method Comment

Acharya
et al. [67]

PTB
diagnostic
ECG

Discrete wavelet
transform,
Discrete cosine
transform, and
Empirical mode
decomposition

The advantage was that it was
insensitive to the ECG signal
noise. This technique was
automotive, simple, robust,
reliable, and easy to use.

Kumar
et al. [68]

PTB
diagnostic
ECG

Flexible analytic
wavelet
transform

This technique computes
sample entropy and is fed to
various classifiers. The Least
square SVM performs well than
other classifiers.

Arif
et al. [69]

PTB
diagnostic
ECG

Discrete Wavelet
Transform

In MI identification,
time-domain features perform
exceptionally well.

(Continued)
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Table 3 (Continued).

Author Database Method Comment

Diker
et al. [70]

PTB
diagnostic
ECG

Discrete wavelet
transform and
the classification
was performed
using support
vector machine
and a genetic
algorithm.

The advantage was that there
was no derivative information
required and it was efficient.

Bhaskar [71] PTB
diagnostic
ECG

Pan tompkins
algorithm and
wavelet
Transform

The features are fed to various
classifiers. But this technique
provides low accuracy when
compared to other techniques.

Banerjee
et al. [72]

PTB
diagnostic
ECG

Crosswavelet
transform to
differentiate
normal and
inferior MI

It helps to find the similarity
between two signals in the
frequency domain

Banerjee
et al. [73]

PTB
diagnostic
ECG

wavelet
cross-spectrum
and wavelet
coherence to
extract features

The cross-correlation between
two time-domain signals is used
to determine how close two
waveforms are. The continuous
wavelet transform is applied to
two-time series, and the
cross-analysis of the two
decompositions reveals localized
time and frequency correlations.
But the computational
complexity is high

Mohsin
et al. [74]

PTB
diagnostic
ECG

Discrete wavelet
transform

Rapid computation
The amount of dataset used is
less for comparison

4.2 Feature Selection Based Approaches
The dimension of the feature vector can increase the computational complexity. To overcome

this issue, feature selection techniques help to select a feature set with good accuracy. Typically,
the feature selection process is intended to provide a method for selecting the features that are
suitable for classification optimization [75]. To identify features that are most descriptive for a
specific type of disease, a feature selection process is needed [76]. It also helps to improve increase
the process of disease detection. The papers which use feature selection techniques are reported
in this section. Fig. 9 indicates various feature selection-based techniques to diagnose MI, BBB,
and LVH.
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Figure 9: Various feature selection-based techniques to diagnose MI, BBB and LVH

4.2.1 Adaptive Bacterial Foraging Optimization (ABFO) Technique
Many techniques evolved based on the behavior manners of living organisms and have been

implemented for finding solutions for real-world practical challenges. The bacterial Foraging opti-
mization technique is one of the populations supported search approach [77–79]. The BFO is
a non-gradient problem solved by using E. Coli microorganisms [80]. The operating steps are
chemotaxis, Swarming, and reproduction. The movement of E. Coli is based on chemotaxis. This
optimization technique helps to extract features from the ECG signal. It minimizes the features by
eliminating unnecessary and noisy data. This method is helpful when the gradient of cost function
unidentified. The mathematical computation complexity is less in the BFO technique. Bacterial
Foraging Optimization with constant step size leads to two issues [81]. The larger step size leads
to low precision even though the bacterium attains the optimum point quickly. For the smaller
step size, it takes many chemotaxis steps to arrive at the optimal point. Hence, decrease in the
convergence rate. Selecting a suitable step size is essential to increase convergence speed and reduce
the error to achieve the final optimal value. The adaptive delta modulation helps to select the
suitable step size [82]. The detection of BBB using ABFO is compared with the other algorithm
which includes GA and BFO. The ABFO shows better result than other techniques.

4.2.2 Hybrid Firefly and Particle Swarm Optimization (FFPSO) Technique
A firefly optimization approach is a newly evolved technique based on the flashing process of

fireflies [83]. The fitness function is implemented based on the fluorescence illumination manner
of fireflies. Kora et al. [84] presented a Hybrid Bacterial Foraging along with a Particle Swarm
Optimization algorithm for the diagnosis of Bundle Branch Block. The time-domain features were
extracted from the MIT-BIH database to diagnose Bundle Branch Block. The feature selection
approach is based on the combination of particle Swarm and Firefly optimization approach. In
this hybrid approach, the position vector of the Firefly approach is adjusted based on the distance
between the position of the firefly and the best velocity from previous and global best obtained
from PSO. The distance was calculated based on cartesian distance. In this approach, every
particle is randomly collected based on the global best in the overall population. The traditional
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Firefly Algorithm (FFA) has one drawback: it can get stuck in the local optimum. It is often
impossible to get out of that situation. The parameters in the firefly algorithm are set, and there
is no mechanism to remember each firefly’s previous best situation, so they shift regardless of the
previous better solution [84].

4.2.3 Genetic Algorithms
Genetic algorithms are global search approaches that are based on the natural selection and

genetics principle. The process starts with a population that is created at random and whose out-
put is assessed using a fitness function [85]. It employs three basic operators known as selection,
crossover, and mutation to find an optimized solution [86–88]. Kora et al. [89] implemented a
genetic algorithm to obtain the best features. The features were fed to the LMNN classifier for the
diagnosis of BBB. This technique achieved an accuracy of 98.9% [89]. Ragheed Allami et al. [90]
implemented a Genetic algorithm along with Neural Network (GA-ANN) to extract 19 temporal
and 3 morphological features to diagnose Bundle Branch Block. The results of this algorithm
were compared with the principal component analysis along with the Neural Network technique.
The GA-ANN techniques performed well showing an accuracy of 98% [90].

4.2.4 Bat Algorithm
Bats are the most amazing group of birds [91]. Bats come in over 1200 different varieties [92].

Yang et al. [93] created the Bat Algorithm based on micro-bat behavior. They use echolocation to
find their prey. The majority of bats have a highly developed sense of hearing. They make noises
that are echoed back to them by insects or other things in their way. The bats can tell how far
the insects or objects are from their current location by listening to the echoes. Within a fraction
of a second, approximate the size of insects or particles [93]. As it gets closer to the prey, the
bat’s pulse emission rate raises and loudness reduces. As a result, the Bat Algorithm’s optimal
points can be chosen based on the bat’s pulse emission rate and loudness [94]. Kora et al. [95]
presented an Improved Bat algorithm for extracting the best features and applied them as input
to the neural network classifier. A good technique consists of high exploration and exploitation
ability [94]. Much less exploration and too much exploitation can lead to premature convergence,
while too much exploration but not enough exploitation can lead to difficulties in the algorithm’s
convergence to optimal solutions [96]. But the bat algorithm provides feeble exploration. So, it
leads to poor convergence towards global points. This can be overcome by balancing the pulse
rate and loudness with the problem dimension. It was noticed that the bat algorithm along with
LM NN performed better than other classifiers did to show an accuracy of 98.9% [92].

4.2.5 Particle Swarm Optimizer
Kennedy et al. [97,98] invented the particle swarm optimization method. This is based on

the action of a bird [98]. Based on its own and other birds’ best flight experience, each particle
reaches the optimum velocity. The fitness function is calculated using the inputs of particle
coordinate positions as inputs. Sun et al. [99] implemented Multiple Instant Learning algorithms
to diagnose Myocardial Ischemia without labeling heartbeats. In this technique, he applied a
derivative-based technique and polynomial fitting function to extract features from R, S, T points,
and ST segments. Particle Swarm Optimizer was used to cluster the features which were fed to the
various classifiers. Its drawback was that the tuning of the input parameter was difficult. But it
enhanced the quality of the classification in terms of sensitivity and specificity [99]. The demerits
of the PSO technique are that it has been captured into local minima but convergence speed is
high but in BFO the convergence speed is low but it’s not being captured into local minima.
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4.3 Hidden Markov Model
Tang et al. [100] described a hidden Markov model (HMM) for the diagnosis of Myocardial

Ischemia. In this work, the time domain signals were documented by the ECG before and during
the event of ischemia. Then, the Hidden Markov model was applied for the ischemia diagno-
sis [100]. Chang et al. [101] extracted features from the ECG signal using the Hidden Markov
model. It helps to detect ECG segmentation and a statistical feature called log-likelihood value.
In the hidden Markov model, 16 states and 6 states were employed. The 16 states showed better
results than the 6 states and the accuracy obtained was 82.5%. The advantage of the proposed
system was that the hybrid technique showed better classification accuracy [101].

4.4 Dimensionality Reduction Technique
The ECG signal can be much more detailed if the feature vector has high dimensionality.

The cost of computation increases as the volume of data increases. Due to the vast amount
of redundant data, some of the features may be associated, resulting in a large number of
irrelevant variables, which would have a substantial impact on computational performance [102].
As a result, it is important to eliminate some associated features while enhancing classification
accuracy and performance. Data processing becomes much easier and faster as dimensionality is
reduced, which improves the efficiency of clustering algorithms with fewer features [103]. PCA
(Principal Component Analysis) and ICA (Independent Component Analysis) are dimensionality
reduction algorithms. Even if dimensionality reduction is successful, the features extracted before
dimensionality reduction are still valuable because they provide the details needed for dimen-
sionality reduction [104]. The processing of principal components includes computing the data’s
covariance matrix, decomposing it into eigenvalues, sorting the eigenvectors in decreasing order
of eigenvalues, and eventually projecting the data into the latest principal component basis by
taking the inner product of the actual signals and the sorted eigenvectors. This method reduces the
computational complexity of a problem [105]. ICA is a nonlinear dimensionality reduction process
to solve the weights. This method implies that the signal being targeted is composed of linearly
mixed source components. In this, the data is centered on subtracting the mean and whitened by
converting the data distribution into Gaussian. An iterative procedure is used to test the weights.
The weight matrix, which contains the source signal weights, can be used to differentiate between
ECG beat patterns [106]. This technique is widely used in ECG signal analysis.

4.5 Energy Based Features
Liu et al. [107] extracted features from ECG signals collected from the PTB database by

fixing an ECG signal with a polynomial function of order 20. The fixed ECG curve was studied
based on the Akaike information criterion (AIC), and to obtain a 94.4% accuracy in the diag-
nosis of Myocardial Infarction (MI) [107]. Sharma et al. [10] reported a technique to Diagnose
Myocardial Infarction (MI) from a multi-lead electrocardiogram (ECG). The Multi-scale Energy
and Eigenspace (MEES) method was implemented to extract only the relevant clinical components
from ECG signal using Eigenvalues [10]. This technique comprises of wavelet transform of ECG
signal. The clinical details of an ECG spread in various subbands are based on frequency content.
These signals are recomposed with the eigenvalues. Multiscale matrices consist of segmented
clinical components from the ECG signal. It helps to identify the MI pathologies [108]. The
advantage of this technique was that it did not require the process of segmentation of ST-T
complex and the history of the patient [108]. Kumar et al. [109] extracted statistical features
which included kurtosis, form factor, and coefficient of variance for the diagnosis of ischemia. The
bell curve was obtained from a normal distribution for various conditions of ST-segment which
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included normal, elevation, and depression episodes. The statistical features provide low compu-
tational complexity. The benefit of this method was that it eliminated noisy beats automatically.
It efficiently filtered the desired signals to diagnose ischemia. It showed 97.83% average sensitivity
and 97.56% specificity [109].

Kumar et al. [110] reported a technique for the diagnosis of ischemia using an isoelectric
energy function that depended on the morphology of the ST segment. The isoelectric function
helps to observe the samples that close to the isoelectric line. The value of the isoelectric function
raises as an ST-segment exists near the isoelectric level and the value decreases as an ST-segment
falls away from the isoelectric line. There were no complex calculations involved in this study.
This method helped in the diagnosis of Myocardial Infarction without the knowledge of past
references. The limitation of using the isoelectric energy function was that it was not suitable for
examining T waves in the ECG signal. It showed 98.12% sensitivity and 98.16% specificity [110].
Sadhukhan et al. [111] extracted morphological and temporal features using the phase distribution
pattern based on Fourier Harmonics. The logistic regression and Threshold-based classification
rule were applied and obtained an accuracy of 95.6%. The advantage of this technique was that
it reduced training time and computational complexity.

5 Classifiers

The performance of the classification is improved by extracting a combination of features
mentioned in the previous section [112]. The major issue in the diagnosis of heart disease is that
normal ECG signals vary from person to person, and the same disease induces various signs in
the ECG signal for different patients. The diagnosis of heart disease using the ECG signal is
difficult. Hence, the classification of the ECG signal plays a significant role in the diagnosis of
various heart diseases. Many researchers implemented various types of conventional classifiers and
artificial Neural Network classifiers for the diagnosis of heart diseases. Different feature extraction
and classification techniques have been presented in the literature for obtaining better results from
the ECG signal.

5.1 Support Vector Machine Based Classifier
SVM classifier is a supervised learning technique employed for classification or regres-

sion [113,114]. A classifier’s generalization is better as it minimizes training error while also
increasing testing precision for uncertain testing datasets. Because of its generalization capacity,
the SVM classifier for a single layer will supervise classification problems [114]. The kernel SVM is
based on a statistical learning concept called a non-probabilistic binary-linear classifier [115–117].
In a high-dimensional feature space, this technique is used to formulate a computationally efficient
way of learning good separating hyperplanes [118]. The merits of an SVM classifier are highly
efficient along with greater accuracy [119]. The kernels are represented in mathematical function
supported by kernel function selection [120,121]. The MEES-based extracted features were fed to
SVM with linear and kernel function to diagnose Myocardial Infarction, yielding an accuracy
of 87.69% and 99%. Han et al. [122] suggested a fusing energy entropy and morphological
features diagnose MI. ECG signals are first disintegrated using the maximum overlap discrete
wavelet packet transform (MODWPT), and then energy entropy is measured as global features
using the decomposed coefficients. As local morphological features, the area, kurtosis coefficient,
skewness coefficient, and standard deviation extracted from the QRS wave and ST-T segment of
the ECG beat are computed. The best overall result is achieved by using a support vector machine
(SVM) with radial basis kernel function and obtained an accuracy of 99.81%. Park et al. [123]
implemented a discrete wavelet transform technique to diagnose ischemia. Three elements are
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extracted that can be used to distinguish ST episodes from regular episodes: 1) the region between
the QRS onset and T-peak points, 2) the normalized and signed sum from the QRS offset to the
active zero voltage level, and 3) the slope from the QRS onset to the offset point. These features
fed to the SVM classifier and obtained an accuracy of 95.7%. de Lannoy et al. [124] implemented
a Wavelet and Independent Component Analysis to extract features and fed to the SVM classifier
and obtained an accuracy of 82.47%. Sharma et al. [125] segmented multi-lead electrocardiogram
(ECG) signal was decomposed into separate sub-bands using the stationary wavelet transform. The
features used are sample entropy, normalized sub-band capacity, log energy entropy, and median
slope measured over chosen bands of multi-lead ECG. These features were fed into an SVM
classifier, which yielded a 98.84% accuracy.

5.2 KNN Based Classifiers
It is a non-parametric approach employed for regression or classification [126,127]. It is based

on the instant learning principle [128]. One of the benefits of the KNN system for classifying
objects is that it only involves tuning two parameters: K and the distance metric, to achieve
high classification precision. The best choice of K and distance metric for calculating the nearest
distance plays a key role in KNN-based implementations. Larger K values generally minimize the
impact of noise on classification but leave class boundaries less distinct. The nearest neighbor
algorithm is used when the class is estimated to be the class of the closest training sample (i.e.,
when K= 1). When solving binary classification problems, it’s best to make K an odd number
to prevent tying votes [129]. When there are many elements in the training set, this classifier is
useful in reducing the error of misclassification [130]. A group of “k” features from the training
set that is close to the test features is chosen during classification. The distance between vectors
was calculated using the Euclidean Distance. The class for the specific data is determined by
the most commonly occurring group of the K nearest neighbors [131]. This technique minimizes
overlearning and achieves the best results [132]. Don et al. [133] extracted features based on
Higuchi’s fractal dimension. This method for calculating FD in a discrete-time series is very
effective and is less noise-sensitive. The different features extracted in this analysis are FD, spectral
entropy, QRS length, kurtosis, QRS amplitude, and mean of the power spectral density. These
features were fed to the KNN and GMM classifiers to diagnose ischemia to obtain an accuracy
of 99% and 98.24%, respectively [134]. Applied KNN classifier to diagnose MI and obtained an
accuracy of 99.31%. The limitation of the KNN classifier was increased memory requirements
to hold a training dataset. KNN is a memory-intensive algorithm that has already been labeled
as instance-based or memory-based. KNN would take more time to scan all data points, and
scanning all data points would necessitate more space for training data storage. This is because
KNN is a lazy classifier that memorizes the entire training set without requiring any learning time.
To minimize the storage space, Arif et al. [69] implemented a pruning algorithm. The obtained
features were fed to the KNN classifier and obtaining 99.97% and 99.99% accuracy, respectively.

5.3 Neural Network-Based Classifier
An artificial neural network (ANN) is a mathematical model that is inspired by biological

neurons’ establishment and functioning. It is a robust data processing platform that can capture
and visualize dynamic input/output relationships [135]. Neural network-based systems [136] can
diagnose ischemia diseases more accurately than other current systems, but they cannot provide
an interpretation of a diagnosis. The ANN techniques most generally used for the diagnosis
of MI, BBB and LVH are Levenberg–Marquardt Neural Network, scaled conjugate gradient
method and Resilient Backpropagation Neural network. The best backpropagation network, the
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Levenberg–Marquardt Neural Network, is used. The Levenberg–Marquardt optimization method
is used to change the weights and bias of this network. It is a simple method for approximating
the function [135]. It reduces the nonlinear equation to a minimum and produces numerical
performance. The scaled conjugate gradient approach is used to change the weights and biases.
The analysis in this system is based on conjugate directions [136]. For each iteration, this approach
determines the optimum distance [136,137]. The Resilient Backpropagation Neural network pri-
marily shows the gradient’s orientation. It works in a similar way to a backpropagation network,
but the weights are modified differently. The weights are determined by resilient propagation based
on the sign of partial derivatives obtained in the current and previous iterations [138]. It reduces
the influence of partial derivative magnitude. The gradients in the backpropagation network
have small magnitudes, resulting in limited weight shifts. It is simple to choose the learning
parameter, and it’s faster than a backpropagation network [139]. Hopkins et al. [140] designed a
Backpropagation Neural Network to diagnose the presence of Left Ventricular Hypertrophy based
on clinical information from ECG. This network showed an accuracy of 82%. Liu et al. [141]
developed a Backpropagation Neural Network with PCA and without PCA to diagnose LVH.
The BPN along with the PCA technique obtained an accuracy of 99.6% and BPN without PCA
obtained an accuracy of 98.5%. The advantage of this technique was robust and more accurate
production of either real-value or discrete value output. The disadvantages were that it was hard
to understand the learning weights, the technique required more domain knowledge, and that it
needed more training time [141]. Chaves et al. [142] developed a non-linear Sigmoidal Regression
Blocks network which was a feedforward network to diagnose Left Ventricular Hypertrophy. This
technique provided flexibility and robustness [142]. To diagnose BBB, a resilient backpropagation
algorithm was implemented with 30 and 40 hidden node structures. The Levenberg-Marquardt
algorithm was implemented with the 10 hidden nodes and achieved the best result when com-
pared to the resilient backpropagation algorithm. The Polak-Ribiere conjugate gradient algorithm
converges 11 times faster than the variable learning rate algorithm. This method lowers the
computing complexity [143]. Signal features, rather than the raw signal, were used as the neural
network’s input vector, which increased the suggested networks’ accuracy for both training and
testing. Furthermore, by breaking down the classification process into various steps, using multi-
stage ANN for ECG signal classification improved the classification process [144]. To diagnose
BBB, the feature selection technique along with neural network performs well than conventional
technique [144].

5.4 Deep Learning-Based Classification
This paper [145] suggests a novel deep learning-based method for the successful classification

of ECG signals. The aim of deep learning, also known as feature learning [146] is to automatically
learn a good feature representation from the input data [147–151]. Deep belief networks (DBNs),
stacked autoencoder (SAE) [149], and convolutional neural networks (CNNs) [150] are examples
of common deep learning architectures [152]. Deep learning has recently shown superior results
in many implementations as opposed to shallow architectures [153]. The deep learning approach
helps to find out an appropriate feature from the ECG signal. Deep learning has generated benefits
in investigating features extracted using a deep neural network. The different layers in the network
help to extracts the features from a deep neural network.

Shi et al. [154] reported Convolution Neural networks and long short-term memory Neural
networks for the diagnosis of Bundle Branch Block. In this network, features extracted from three
inputs using CNN and pooling layers were combined and fed to the LSTM network. A common
recurrent neural network is the LSTM [155]. Since it remembers features from the early part
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of a series, an LSTM network can learn long-term dependencies [156]. The advantage of this
technique was that the features were extracted automatically and combined with implicit features.
The heartbeat regions were fully employed as various convolution strides. However, there was
a disadvantage because the computational complexity was more and the performance of classes
required improvement. It achieved an accuracy of 99.26% [154]. Hu et al. [157] extracted deep
features which included Wavelet features, Linear Discriminant Analysis Features, Morphological
Features, and statistical features using Deep Neural Network and Bidirectional long short-term
memory networks from the multi-lead ECG signal for the diagnosis of Bundle Branch Block
to obtain an accuracy of 99.96% [157]. Kwon et al. [158] implemented a Deep Neural Network
with 5 hidden layers, Convolutional Neural Network, and an Ensemble Neural Network algorithm
to diagnose LVH. The accuracy obtained by these neural networks was 85.2%, 85%, and 86.6%
respectively. There were also a few disadvantages to this study. For example, a deep analysis of
the characteristics of the P and T waves was required [158]. Tab. 4 indicates the diagnosis of MI
based on the deep learning approach.

Table 4: Deep Learning approach

Author Database Method Comment

Reasat
et al. [159]

PTB diagnostic ECG Convolution layer based
on Euclidean distance
and geometric
separability index

This technique provides
better performance than
Stationary Wavelet
Transform

Acharya
et al. [160]

PTB diagnostic ECG Convolutional neural
network

It identifies the disease
along with the noise

Liu
et al. [161]

PTB diagnostic ECG Multiple-feature-branch
convolutional neural
network (MFB-CNN)

In this technique, 11
layers are implemented.
so computational
complexity increased

Baloglu
et al. [162]

PTB diagnostic ECG Convolutional neural
network

This technique was able
to differentiate between
10 different types of MI
and normal ECG
signals. The
disadvantage was that it
was more
time-consuming due to a
large set of data

Liu
et al. [163]

PTB diagnostic ECG Deep convolution neural
network

It does not use manual
feature extraction or
feature selection, and
instead of heartbeat
segmentation, it takes
three-second ECG signal
segments as input.
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6 Discussion

This study imparts details of various techniques that are associated with heart disease which
induces changes in the ST segment. It describes the performance of each method and provides
the scope for further development to explorers. Initially, various signal processing algorithms
were implemented to diagnose various heart diseases. Later, different machine learning and deep
learning approaches have been proposed to diagnose various diseases. These approaches provide
a better result than the conventional techniques.

The various techniques implemented to diagnose Bundle Branch Block, Myocardial infarction,
and Left Ventricular Hypertrophy. Most researchers implemented a hybrid technique that involves
feature selection and a neural network approach. The feature selection technique along with neural
network results shows that convergence speed is high. Generally, the performance of various
feature selection and neural network classifiers to diagnose these diseases is nearly 98% accurate.
For high-dimensional data, the computation complexity is high in machine learning classifiers. The
deep learning approaches extract features implicitly and integrate them. The main disadvantage
is higher computational complexity. The existence of a greater number of layers may increase
computational time. Several factors may affect the performance of classifiers, which includes
several data’s in the training set, and the existence of weights and biases in the neural network.
Figs. 10–12 show the percentage of accuracy of feature selection, deep learning, and neural
network techniques to diagnose. The figures represent that the neural network-based approach
provides better results than the feature selection approach along with the conventional classifier.

98.0

98.9

98.74

98.9

97.3

97.5

99.1

98.1

96.0 96.5 97.0 97.5 98.0 98.5 99.0 99.5

GANN[91]

GAANN[89]

ABFO+LMNN[82]

IBA+LMNN[93]

FFPSO+SCG NN[84]

GA+LMNN[166]

FFA+LMNN[165]

BFPSO+NN[164]

Performance of feature selection and Neural
Network Algorithms
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Previous research on the diagnosis of these heart diseases was based on statistical and mor-
phological features, wavelet transform, neural networks, and deep learning approaches. The deep
learning approach requires huge data for analysis. It leads to time consumption and computational
complexity. Tab. 7 indicates the shortcomings and advantages of various features to diagnose
these diseases. Only very few researches have been implemented in the diagnosis of LVH. Most
researchers proposed neural network approaches to diagnose LVH [135]. The method does not
necessitate any advanced knowledge of the ST section. The estimated features can be used for
automated LVH labeling, reducing the need for manual annotation and allowing for faster LVH
diagnosis. The limitations are that it requires more computational time.

Tab. 5 indicates the performance analysis to diagnose these heart diseases using the MIT-
BIH dataset. The PTB diagnostic database is used widely to diagnose Myocardial Infarction,
Bundle Branch Block, and Left Ventricular Hypertrophy. Tab. 6 indicates the classification analysis
of these heart diseases based on ResNet and VGGNet. This article benefits researchers to seek
various hybrid approaches to differentiate these diseases.

Table 5: Comparative analysis of various methods using MIT-BIH database

Author Database Method Percentage of accuracy

Sharma et al. [169] MIT-BIH QRS complex and obtained
five statistical features and
fed them to KNN classifier

99.05%

Allami et al. [90] MIT-BIH Genetic algorithm along with
Neural Network

98%

Hao et al. [170] MIT-BIH multiple-feature from
magnitude-squared coherence

98.9%

Ceylan et al. [171] MIT-BIH Backpropagation algorithm
with Mexican hat

99.2%

Vedavathi et al. [172] MIT-BIH Discrete wavelet transform
with SVM classifier

98.46%

(Continued)
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Table 5 (Continued).

Author Database Method Percentage of accuracy

Zhu Li et al. [173] MIT-BIH Residual
convolutional
neural network

99.06%

Haroon et al. [174] MIT-BIH Residual neural
network
and VGG Network

ResNet-50 = 83%
VGG-16-99%

Hu et al. [175] MIT-BIH Deep residual
network

78.58%

Table 6: Classification result analysis based on ResNet and VGG Net

Author Database Method Percentage of accuracy

Han et al. [176] PTB Multi-lead residual
neural network

95.49

Gopika et al. [177] PTB Deep residual CNN 99
Jafarian et al. [178] PTB Deep residual CNN 98
López-Espejo et al. [179] PTB Deep residual

learning with
dilated convolutions

99.99

Alghamdi et al. [180] PTB VGG-Net model 99.02
Diker et al. [181] PTB VGG-16 76.47

ResNet-18 83.35

Table 7: Merits and demerits of various techniques

Type of
features

Advantages Disadvantages

Statistical Does not involve complex
calculations
Does not require prior
information on the ST-segment

Difficult to develop model properties
of ECG signal.
Not suitable for non-stationary
signals

Morphological Techniques that depend on
morphological features rely on
accurate results

Difficult to analyze the morphology
of waveforms due to the presence of
noise
Extracting morphology of
ST-segment and QRS wave is
complex and modifiable

(Continued)
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Table 7 (Continued).

Type of
features

Advantages Disadvantages

Statistical Does not involve complex
calculations
Does not require prior
information on the ST-segment

Difficult to develop model properties
of ECG signal
Not suitable for non-stationary
signals

Morphological Techniques that depend on
morphological features rely on
accurate results

Difficult to analyze the morphology
of waveforms due to the presence of
noise
Extracting morphology of
ST-segment and QRS wave is
complex and modifiable

Feature
Selection
based MI

Speed is high, memory space
low, high reliability
Minimal possibility to make
decisions based on noise

Adjusting input parameter is difficult

Wavelet
transform

Supports both time and
frequency domain dimensions
Apply different mother wavelets
for different ECG pattern

Features extracted based on wavelet
transform are difficult to implement
in hardware platforms because of
complexity

Hidden
Markov
model

Capable to detect low
amplitude waveforms
Automatically assess the model
parameters from the training
dataset

It accomplishes better average
statistics in ischemic detection but
not suitable for non-ischemic
detection

Deep
learning

This model automatically
acquires distinctive features
from the dataset and attempts
to match the results with the
desired output
It doesn’t require feature
extraction and selection
techniques
Denoising is not an essential

More network size and training
complexity
Network training was slow when
nodes that exist in the hidden layer
increases. It indicates no progress in
the performance
Huge data required

7 Conclusion and Future Scope

This paper describes the overview of heart diseases that induce changes in the ST segment
of the ECG signal. The process of analysis of ECG signal is reviewed in different sections which
include diagnosis of Myocardial Infarction, Bundle Branch Block, and Left Ventricular Hyper-
trophy. Left Bundle Branch Block and Left Ventricular Hypertrophy are two similar conditions.
Since patients normally complain of chest pain and the electrocardiographic changes mimic those
seen in acute ST-elevation MI, it is called a myocardial infarction (MI). It has the potential to
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mislead the diagnostic process. A General Practitioner’s task is made more difficult by the fact
that distinguishing between Acute Coronary Syndrome and less serious causes of chest pain. The
majority of scientific work is focused on the automatic diagnosis of Myocardial Infarction using
ECG signal, with a few works based on the automatic diagnosis of Left Ventricular Hypertrophy
using ECG signal. Several issues with the automated classification of these diseases have been
posed by researchers. The MIT-BIH and PTB diagnostic databases are used to present results in
the literature. The limited number of databases available is a significant impediment to progress
in research based on the fully automated classification of these diseases in ECG. To enhance the
observed performance, some investigators used hybrid approaches. This is further described in var-
ious subsections such as different signal processing and classification techniques. Signal processing
and classification techniques for the diagnosis of Myocardial infarctions in specific positions of
coronary arteries in the heart, such as Left Anterior Descending Artery (Anterior position), Left
Circumflex (Lateral position), and Right Coronary Artery (Inferior and Posterior position), can
be investigated. Another essential direction is the investigation of these heart diseases using hybrid
approaches.
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