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Abstract: With increasingly more smart cameras deployed in infrastructure
and commercial buildings, 3D reconstruction can quickly obtain cities’ infor-
mation and improve the efficiency of government services. Images collected
in outdoor hazy environments are prone to color distortion and low contrast;
thus, the desired visual effect cannot be achieved and the difficulty of target
detection is increased. Artificial intelligence (AI) solutions provide great help
for dehazy images, which can automatically identify patterns or monitor the
environment. Therefore, we propose a 3D reconstruction method of dehazed
images for smart cities based on deep learning. First, we propose a fine trans-
mission image deep convolutional regression network (FT-DCRN) dehazing
algorithm that uses fine transmission image and atmospheric light value to
compute dehazed image. The DCRN is used to obtain the coarse transmission
image, which can not only expand the receptive field of the network but also
retain the features to maintain the nonlinearity of the overall network. The
fine transmission image is obtained by refining the coarse transmission image
using a guided filter. The atmospheric light value is estimated according to
the position and brightness of the pixels in the original hazy image. Second,
we use the dehazed images generated by the FT-DCRN dehazing algorithm
for 3D reconstruction. An advanced relaxed iterative fine matching based
on the structure from motion (ARI-SFM) algorithm is proposed. The ARI-
SFM algorithm, which obtains the fine matching corner pairs and reduces
the number of iterations, establishes an accurate one-to-one matching corner
relationship. The experimental results show that our FT-DCRN dehazing
algorithm improves the accuracy compared to other representative algorithms.
In addition, the ARI-SFM algorithm guarantees the precision and improves
the efficiency.
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1 Introduction

Artificial intelligence (AI) has recently become very popular, and a wide range of applica-
tions use this technique [1]. There are many smart systems based on deep learning for social
services, such as smart cities and smart transportation. Smart cities can use AI technology such
as machine learning, deep learning and computer vision to save money and improve the quality
of life of residents [2]. Through using AI or machine learning technology to perform intelligent
image processing, we can obtain important geographical region data. Such real-time data can be
continuously monitored through AI technology, which would further develop cities’ governance
and planning [3].

In hazy environments, the reflected light of an object is attenuated before it reaches the
camera or monitoring equipment, resulting in the degradation of the quality of an outdoor
image [4]. Therefore, obtaining dehazed images in smart cities is an important problem to be
solved by AI technology. In recent years, with the rapid development of AI technology, some
dehazing algorithms based on deep learning have been proposed. Tang et al. [5] used the random
forest algorithm to remove haze. Although the accuracy of the transmission image was improved,
the texture features in the image were not used, which has certain limitations; and the effect
of dehazing is not ideal. Cai et al. [6] adopted the convolutional neural network to learn the
features of hazy image to estimate the transmission image. The convolutional neural network
only uses a single scale for feature extraction, which makes it prone to color distortion, detail
loss and excessive dehazing for many specific scenes. Li et al. [7] proposed AOD-Net based on
a convolutional neural network to dehaze images. To avoid using additional methods to estimate
atmospheric light via mathematical transformation, the network structure of this algorithm is
relatively simple.

We propose a fine transmission image deep convolutional regression network (FT-DCRN)
dehazing algorithm that uses fine transmission image [8] and atmospheric light value [9] to com-
pute dehazed image. First, this paper proposes a deep convolutional regression network (DCRN)
to obtain the coarse transmission image. The DCRN can not only expand the receptive field
of the network, but it can also retain the features to maintain the nonlinearity of the overall
network [10]. Second, the fine transmission image is obtained by refining the coarse transmission
image using a guided filter [11]. The guided filter is used to optimize the coarse transmission image
to improve the accuracy of dehazed images. Furthermore, the atmospheric light value is estimated
according to the position and brightness of the pixels in the original hazy image. According to
the obtained fine transmission image and atmospheric light value, the dehazed image is inverted
using the atmospheric physical scattering model [12].

With increasingly more smart cameras deployed in infrastructure and commercial buildings,
3D reconstruction can quickly obtain information on cities and geographical regions [13]. It is
important to solve the image matching problem using structure from motion (SFM) 3D recon-
struction algorithms [14]. Feature detection and feature matching are subordinate image matching
problems. Hossain et al. [15] proposed a CADT corner detection algorithm, which effectively
reduces the positioning error and improves the average repeatability. Zhang et al. [16] proposed
a Harris SIFT algorithm including illumination compensation, which not only improves the
matching accuracy but also improves the real-time performance of the algorithm. However, the
above image matching algorithms are not universal and cannot accurately extract image feature
points under special lighting conditions. Zhou et al. [17] proposed a registration algorithm based
on geometric invariance and local similar features, but it relies heavily on rough matching, and
the correct matching points are eliminated. To solve the problems of the above algorithms, an
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advanced relaxed iterative fine matching based on the SFM (ARI-SFM) algorithm is proposed.
The ARI-SFM algorithm, which obtains the fine matching corner pairs and reduces the number
of iterations, establishes an accurate one-to-one corner matching relationship.

The contributions of this paper are listed as follows:

(a) We use a deep learning algorithm for dehazed images in smart cities. The FT-DCRN
dehazing algorithm is proposed, which uses fine transmission image and atmospheric light
value to compute dehazed image. First, this paper proposes a DCRN algorithm to obtain
the coarse transmission image. The DCRN can not only expand the receptive field of the
network, but can also retain the features to maintain the nonlinearity of the overall net-
work. Second, the fine transmission image is obtained by refining the coarse transmission
image using a guided filter. The guided filter is used to optimize the coarse transmission
image to improve the accuracy of dehazed images.

(b) We perform 3D reconstruction using the dehazed images generated from the FT-DCRN
algorithm. The ARI-SFM algorithm is proposed, which can obtain fine matching corner
pairs and reduce the number of iterations. Compared with other representative algorithms,
the ARI-SFM algorithm establishes an accurate one-to-one corner matching relationship,
which guarantees the precision and improves the efficiency.

2 Our Approach

2.1 FT-DCRN Dehazing Algorithm
The purpose of a dehazing algorithm is to restore a sharp image from a blurred image caused

by haze. Deep learning algorithms can provide great help for dehazy images [18], which can
automatically identify patters or monitor the environment. In this paper, we propose a FT-DCRN
dehazing algorithm to obtain useful images for 3D reconstruction. The steps of the FT-DCRN
dehazing algorithm are as follows:

Step 1: Obtain the coarse transmission image. Input the hazy images, and the coarse
transmission image is obtained by using the DCRN dehazing algorithm.

Step 2: Compute the fine transmission image. The fine transmission image is obtained by
refining the coarse transmission image using a guided filter.

Step 3: Estimate the atmospheric light value. The atmospheric light value [19] is estimated
according to the position and brightness of the pixels in the original hazy image.

Step 4: Compute the dehazed image. According to the obtained fine transmission image
and atmospheric light value, the dehazed image is inverted using the atmospheric physical
scattering model.

2.1.1 DCRN Dehazing Algorithm
To obtain a coarse transmission image, this paper proposes a DCRN dehazing algorithm, and

the overall network structure is shown in Fig. 1. The DCRN is an end-to-end network based on
a convolutional neural network [20] that inputs hazy images and outputs corresponding coarse
transmission images.

The DCRN is similar to the encoder–decoder network. The core unit of the encoder network
is the convolutional unit (Conv), which is mainly composed of a convolutional layer [21], an
ReLU, a pooling layer and a batch normalization (BN) layer [22]. The core unit of the decoder
network is the deconvolutional unit (DeConv), which is mainly composed of a deconvolutional
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layer, a BN layer, an ReLU and a convolutional layer. The fully connected (FC) layer [23] is
replaced by the convolutional layer.
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Figure 1: Overall network structure of DCRN dehazing algorithm

The features of the overall network are extracted by the encoder network. The decoder
network is used to ensure the size of the output transmission image and retain the features
to maintain the nonlinearity of the overall network [24]. Our DCRN can not only expand the
receptive field of the network, but it can also ensure that the overall network has a certain
nonlinear learning ability.

The main characteristic of an end-to-end network is that the input and output of the network
are identical in size. However, due to the use of two pooling layers [25] in the encoder network,
the feature set is smaller, and the original image information is lost.

To solve the problem of information loss from the original image, this paper uses a decon-
volutional layer [26] to replace the upsampling layer, which can not only increase the size of
the feature set, but can also produce a dense feature set with a larger spatial structure, the
“Upconv4” is shown in the red box of Fig. 1. The Upconv4 contains the deconvolutional layer,
convolutional layer and BN layer. The deconvolutional layer is often used in the densest mapping
estimation problem. Furthermore, the cross-convolutional layer used in the DeConv unit can
not only provide the DCRN with the multiscale feature learning ability, but can also avoid the
vanishing gradient problem in the backpropagation process. Therefore, the DCRN can estimate
the coarse transmission image more accurately.
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2.1.2 Fine Transmission Image
In this paper, a guided filter is used to optimize the coarse transmission image to improve the

accuracy of dehazed images [27]. The guided filter can be defined as:

q(x,y) = akM(x,y) + bk ((x,y)∈ωk) (1)

where q is the output image, which is the fine transmission image obtained after optimization. ak
and bk are the coefficients of the window ωk.

E (ak,bk)= Σ
((
akM(x,y) + bk− p(x,y)

) 2+εa2k
)

(2)

where ε is the regularization parameter. A linear regression was used to obtain the follow-
ing results:

ak =
Σ(x,y)∈ωkM(x,y)/ω− p(x,y) − ukpk

σ 2
k + ε

(3)

bk = pk− akuk (4)

where uk and σ 2
k are the average and variance of image M in current window ωk, respectively.

pk is the average value of p in window ωk.

2.1.3 Atmospheric Light Value
When estimating the atmospheric light value, He et al. [28] selected the pixels with the top

one percent brightnesses in the hazy image and then calculated the average brightness of these
pixels as the atmospheric light value. This method is more effective in most cases, but when a
large white area appears in the image, the method will not accurately estimate the atmospheric
light value, which will lead to image color distortion.

To solve the above problems, this paper uses the method of combining the pixel position and
brightness to estimate the atmospheric light value. The relative height of each pixel is defined as
H (x,y), and the brightness value is V (x,y). The probability of a pixel being located in the white
area is defined as follows:

P (x,y)=H (x,y) V (x,y) (5)

The process determines the pixels with the probability value P (x,y) of being among the top
one percent and uses the average brightness value of these pixels as the atmospheric light value.

2.2 ARI-SFM Algorithm
It is important to solve the image matching problem in the 3D SFM reconstruction algorithm.

In the image matching process, the coarse matching relationship between corners is established by
using the zero mean normalized cross-correlation method [29]. This method only builds a one-to-
many set of matching corner pairs, so there are many unclear and incorrect matching pairs. We
propose an ARI-SFM algorithm to guarantee the precision and improve the efficiency.

2.2.1 ARI Algorithm
To establish an accurate one-to-one corner matching relationship, an advanced relaxed iter-

ative (ARI) algorithm is proposed, which obtains fine matching corner pairs and reduces the
number of iterations. The flowchart of the ARI algorithm is shown in Fig. 2.
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Figure 2: Flowchart of the ARI algorithm

The steps of the ARI algorithm are as follows:

Step 1: Calculate the matching strength of coarse matching pairs. The matching strength is
used as the indicator for fine matching corner selection [30].

Step 2: Judge the uniqueness of the corner pairs. The matching pairs are sorted according to
the matching strength from large to small. We select the corner pairs SM(p1i,q2j) and S′M(p1i,q2j)
with the largest and second largest matching strengths, respectively. We calculate SP(p1i,q2j) and
use it to measure the uniqueness of the corner matching.

SP(p1i,q2j)= 1− S′M(p1i,q2j)

SM(p1i,q2j)
(6)

The value range of SP is 0∼1. According to SM(p1i,q2j) and SP(p1i,q2j), all matching pairs
in the set are sorted. If all corners are in the top 60% of the two items, the corner pairs are
accurate matching pairs. Then, proceed to Step 4; otherwise, proceed to Step 3.

Step 3: Delete the correct corner after fine matching, and return to Step 1.

Step 4: Output the fine matching corner pairs.

2.2.2 Calculation of Matching Strength
The initial matching corner pairs are represented as (p1i,q2j), where p1i is the corner of image

I1 and q2j is the corner of image I2. N(p1i) and N(q2j) are neighborhoods with point p1i and point
q2j as centers, respectively, and R as the radius. If (p1k,q2f ) is the correct matching pair, there
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must be more correct matching pairs (p1k,q2f ) in its neighborhoods N (p1i) and N
(
q2j

)
, where

p1k ∈N(p1i) and q2f ∈N(q2j) satisfy the conditions for calculating the matching strength.

Condition 1: Only the matching corner pair (p1k,q2f ) affects the matching corner pair
(p1i,q2j).

Condition 2: The angle between p1ip1k and q2jq2f is less than 90 degrees.

If the matching corner pairs (p1i,q2j) and (p1k,q2f ) satisfy the above two conditions, the
matching strength is calculated using formula (7):

SM = �
p1k∈N(q1i)

max
q2f∈N(q2j)

[
SimilarijSimilarkf�(p1i,p1k,q2j,q2f )

1+ dist(p1i,p1k,q2j,q2f )

]
(7)

Similarij and Similarkf are the gray cross-correlation values of the matching corner pairs
(p1i,q2j) and (p1k,q2f ), respectively. dist is the average distance of the corner pairs. The expression
of δ is shown in formula (8):

δ
(
p1i,p1k,q2j,q2f

) =
{
e−r/εr , r< εr
0, others

(8)

r is the relative distance deviation of the corner pair. The similarity contribution δ of (p1k,q2f )
to (p1i,q2j) is a power function with a negative exponent and relative distance deviation r. δ is a
monotonically decreasing function of r. When r is very large, the matching corner pair (p1k,q2f )
is ignored.

3 Experiments

In this paper, synthetic hazy images and real hazy images are used to train and test the
performance of the FT-DCRN dehazing algorithm. First, we adopt the Make3D dataset [31]
(http://make3d.cs.cornell.edu/data.html) to synthesize hazy images using the atmospheric scattering
model. We selected 900 pairs of hazy and sharp images as training samples. Second, we take
1200 real hazy images of outdoor scenes, such as those of buildings, gardens, and parking areas,
to analyze the results of the FT-DCRN dehazing algorithm. The FT-DCRN dehazing algorithm
runs on a GeForce RTX 2080Ti GPU and executes using Python.

To verify the efficiency and accuracy of the ARI-SFM algorithm, the algorithm is
implemented on an experimental platform with 64-bit Windows 10, an Intel(R) Core(TM)
i5-10210U@1.60 GHZ CPU, and 8.00 GB of memory; the development platform is
MATLAB R2018b.

3.1 Generation of Synthetic Hazy Images
Given a random value for the transmission image t (x,y) ∈ [0, 1] and the atmospheric light

value A ∈ [200, 255], the synthetic hazy image I (x) is generated by formula (9).

I (x,y)= J (x,y) t (x,y)+A (1− t (x,y)) (9)

where J (x,y) represents the original sharp image.

Fig. 3 shows the original sharp images, including images of a road, house, tree, and fountain,
from the Make3D dataset. Fig. 4 shows the corresponding synthetic hazy image of the sharp
images in the Make3D dataset.

http://make3d.cs.cornell.edu/data.html
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(a) (b) (c) (d)

Figure 3: Original sharp images from the Make3D dataset. (a) Road. (b) House. (c) Tree.
(d) Fountain

(a) (b) (c) (d)

Figure 4: Corresponding synthetic hazy images from the Make3D dataset. (a) Road. (b) House.
(c) Tree. (d) Fountain

3.2 Experiment of FT-DCRN Dehazing Algorithm
3.2.1 Qualitative Evaluation

(1) Results of Synthetic Hazy Images

To verify the effect of the FT-DCRN dehazing algorithm on the synthetic hazy images, the
results of the algorithm are compared with some representative algorithms. Because different
deep learning algorithms have their own advantages,we adopt the Tang’s algorithm [5], Cai’s
algorithm [6] and Li’s algorithm [7], which are described in the introduction. Figs. 5–8 show
the comparison results of the dehazing of the road, house, tree and fountain images in the
Make3D dataset.

Figs. 5–8 show that Tang’s algorithm does not consider the texture features in the images,
and the results of the algorithm have unclear boundaries. Cai’s algorithm has color oversaturation
in dehazed images, resulting in large areas of color distortion. Li’s algorithm contains detailed
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information, but the overall colors of the images are not close to the normal visual effect. Our
approach is superior to other methods. The boundaries of the dehazed images are clear, and the
textures are close to those of the real images.

Figure 5: Comparison results of the dehazing of the road images. (a) Sharp image. (b) Synthetic
hazy image. (c) Tang’s algorithm. (d) Cai’s algorithm. (e) Li’s algorithm. (f) Our approach

(2) Results of Real Hazy Image

To verify the effect of the FT-DCRN dehazing algorithm on real hazy images, we analyze
1200 real hazy images of outdoor scenes, such as building, garden and parking area. We compare
the results of the FT-DCRN with those of Tang’s algorithm, Cai’s algorithm and Li’s algorithm.
Fig. 9 show the comparison results of the dehazing of the images of building.

Fig. 9 show that Tang’s algorithm results in unclear boundaries for the buildings. Cai’s algo-
rithm easily produces color distortion, which makes the scene of the buildings look unreal. Li’s
algorithm changes the color of the white areas. Our approach has clear boundaries and textures,
and the overall colors of the images are close to the normal visual effect.



2816 CMC, 2021, vol.68, no.2

3.2.2 Quantitative Evaluation
To perform the quantitative evaluation, synthetic hazy images and real hazy images are

selected. We adopt the structural similarity (SSIM) [32], peak signal-to-noise ratio (PSNR) [33]
and information entropy (IE) [34] to evaluate the effect of the FT-DCRN dehazing algorithm.
The SSIM is an indicator of the similarity of two images. When two images are the same, the
SSIM is equal to 1. The PSNR is a statistical indicator that is based on the gray values of image
pixels. The higher the PSNR is, the better the image restoration. The IE is a statistical measure of
features that reflects the average amount of information in the image. The larger the entropy is, the
clearer the image. The experimental results for the synthetic hazy image are shown in Tabs. 1–4.

Figure 6: Comparison results of the dehazing of the house images. (a) Sharp image. (b) Synthetic
hazy image. (c) Tang’s algorithm. (d) Cai’s algorithm. (e) Li’s algorithm. (f) Our approach

The results of Tang’s algorithm provided relatively low values for each indicator. Tang’s
algorithm did not use the texture features in the image, which creates certain limitations on the
dehazing effect. Cai’s algorithm and Li’s algorithm have significantly higher SSIM and PSNR
values than those of Tang’s algorithm. However, Cai’s algorithm and Li’s algorithm do not result
in normal visual color effects in Figs. 5–8. The IE of our approach is higher than those of other
algorithms, which reflects that the dehazed image retains more detail and texture information.
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Figure 7: Comparison results of the dehazing of the tree images. (a) Sharp image. (b) Synthetic
hazy image. (c) Tang’s algorithm. (d) Cai’s algorithm. (e) Li’s algorithm. (f) Our approach

3.3 Experiment of ARI-SFM Algorithm
3.3.1 Results of 3D Reconstruction

Figs. 10a–10f includes six images of a building taken from different perspectives. The images
of the building from different perspectives are taken from a real scene.

After using the ARI-SFM algorithm, the one-to-one relationship between corners is deter-
mined, and one-to-many relationship almost does not exist. In this experiment, we selected 6
images shown in Fig. 10 for 3D reconstruction. The final experimental results are shown in
Fig. 11. Fig. 11 is the point cloud of 3D reconstruction of building. The Fig. 11 shows that the
ARI-SFM algorithm can accurately reconstruct the 3D building, and the signs on the building
are clearly visible.
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3.3.2 Performance of 3D Reconstruction
To verify the matching efficiency of the ARI-SFM algorithm, the results of the algorithm

are compared with some representative algorithms. Because different image matching algorithms
have their own advantages, we adopt the Hossain’s algorithm [15], Zhang’s algorithm [16] and
Zhou’s algorithm [17], which are described in the introduction. We analyze the comparison of the
matching results of the building, as shown in Tab. 5.

(a) (b) (c)

(d) (e) (f)

Figure 8: Comparison results of the dehazing of the fountain images. (a) Sharp image. (b) Syn-
thetic hazy image. (c) Tang’s algorithm. (d) Cai’s algorithm. (e) Li’s algorithm. (f) Our approach

Tab. 5 show that our approach have higher matching accuracy and cost less match time,
which indicates that we guarantee the precision and improve the efficiency compared with other
algorithms. Our approach determine the one-to-one relationship between corners and almost does
not exist one-to-many relationship, which obtains fine matching corner pairs and reduces the
number of iterations.
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Figure 9: Comparison results of the dehazing of the building images. (a) Sharp image. (b) Real
hazy image. (c) Tang’s algorithm. (d) Cai’s algorithm. (e) Li’s algorithm. (f) Our approach

Table 1: Experimental results for the synthetic hazy road images

Indicator Tang’s algorithm Cai’s algorithm Li’s algorithm Our approach

SSIM 0.8322 0.8522 0.9023 0.9128
PSNR 24.2644 26.5940 27.1845 27.8906
IE 7.2173 7.2802 7.3429 7.4018

Table 2: Experimental results for the synthetic hazy house images

Indicator Tang’s algorithm Cai’s algorithm Li’s algorithm Our approach

SSIM 0.8452 0.8756 0.9048 0.9230
PSNR 24.3325 26.7622 27.9630 28.2588
IE 7.0518 7.2090 7.3281 7.4979
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Table 3: Experimental results for the synthetic hazy tree images

Indicator Tang’s algorithm Cai’s algorithm Li’s algorithm Our approach

SSIM 0.8472 0.8822 0.9123 0.9278
PSNR 25.2511 26.0771 26.6549 27.3971
IE 7.2811 7.3573 7.4412 7.5134

Table 4: Experimental results for the synthetic hazy fountain images

Indicator Tang’s algorithm Cai’s algorithm Li’s algorithm Our approach

SSIM 0.8485 0.8863 0.9194 0.9283
PSNR 25.0496 26.2763 27.2319 27.4703
IE 7.0188 7.1977 7.3857 7.4603

Figure 10: Six images of a building taken from different perspectives. (a) First perspective. (b) Sec-
ond perspective. (c) Third perspective. (d) Fourth perspective. (e) Fifth perspective. (f) Sixth
perspective
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Figure 11: Point cloud of 3D reconstruction of building

Table 5: Comparison of the matching results of the building

Building Hossain’s algorithm Zhang’s algorithm Zhou’s algorithm Our approach

Matching accuracy (%) 83 85 86 90
Match time (s) 15.69 14.77 13.56 10.83

4 Conclusion

AI solutions can provide great help for dehazing images, which can automatically identify
patterns or monitor the environment. Therefore, we propose a 3D reconstruction method for
dehazed images for smart cities based on deep learning. First, we propose an FT-DCRN dehazing
algorithm that uses fine transmission images and atmospheric light values to compute dehazed
images. The DCRN is used to obtain the coarse transmission image, which can not only expand
the receptive field of the network, but can also retain the features to maintain the nonlinearity of
the overall network. The fine transmission image is obtained by refining the coarse transmission
image using a guided filter. The atmospheric light value is estimated according to the position
and brightness of the pixels in the original hazy image. Second, we use the dehazed images
generated by the FT-DCRN dehazing algorithm for 3D reconstruction. The ARI-SFM algorithm,
which obtains the fine matching corner pairs and reduces the number of iterations, establishes
an accurate one-to-one matching corner relationship. The experimental results show that our FT-
DCRN dehazing algorithm improves the accuracy compared to other representative algorithms.
In addition, the ARI-SFM algorithm guarantees the precision and improves the efficiency.

Developing AI systems supporting smart cities requires considerable data. Through the acqui-
sition of effective information, smart cities can truly become sustainable developments. By 2021,
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one billion smart cameras will be deployed in infrastructure and commercial buildings. The large
amount of raw data collected is far beyond the scope that can be viewed, processed or analyzed
manually. Through the machine learning training process, images can be analyzed for city planning
and development. AI algorithms have become the developmental trend and key point of smart
cities [35]; therefore, how to manage deep learning algorithms, data, software, hardware and
services will become another problem in the future.
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