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Active Control of a Reduced Model of a Smart Structure

N. Ghareeb1 and R. Schmidt1

Abstract: Control of vibration plays an important role in the performance of
mechanical systems. Moreover, the advances in active materials have made it pos-
sible to integrate sensing, actuation and control of unwanted vibration in the design
of the structure. In this work, a linear control system based on the Lyapunov stabil-
ity theorem is used to attenuate the vibration of a cantilevered smart beam excited
by its first eigenmode. An optimal finite element (FE) model of the smart beam is
created with the help of experimental data. This model is then reduced to a super
element (SE) model containing a finite number of degrees of freedom (DOF). The
damping characteristics are investigated and damping coefficients are calculated
and inserted into the model. The controller is applied directly to the SE model
and to the extracted state-space (SS) representation of the same structure. Finally,
results are presented and compared.

Keywords: super element, state-space representation, classical damping, Lya-
punov stability theorem

1 Introduction

Weight optimization has a high priority in the design of structures. It has the advan-
tage of reducing the manufacturing and operational costs by reducing the amount
of raw material used. Consequently, reducing material results in lower stiffness and
less damping which make the structure susceptible to vibration. Beside reducing
the performance of the structural system, vibration can also cause fatigue loads that
may lead to failure of the structure itself [Ghareeb and Radovcic (2009)].
One of the means to solve this vibration problem is to implement active or smart
materials which can be controlled in accordance to the disturbances or oscilla-
tions sensed by the structure. Structures incorporating such materials are called
smart structures. A smart structure comprises a passive structure and distributed
active parts working as sensors and/or actuators. Recent innovations in smart ma-
terials coupled with developments in control theory have made it possible to con-
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trol the dynamics of structures, and this field is still experiencing large growth in
terms of research and development [Vepa (2010)]. Although active vibration con-
trol was firstly applied on ships [Mallock (1905)], and after that on aircraft and
spacecraft [Vang (1944)], the use of piezoelectric materials as actuators and sen-
sors for noise and vibration control hast been demonstrated extensively over the
past thirty years [Piefort (2001)]. Bailey [Bailey (1984)] designed an active vibra-
tion damper for a cantilevered beam using a distributed parameter actuator in the
form of a piezoelectric polymer. Bailey and Hubbard [Bailey and Hubbard (1985)]
developed and implemented three different control algorithms to control the vibra-
tion of a cantilevered beam with piezoactuators. Crawley and de Luis [Crawley
and de Luis (1987)] and Crawley and Anderson [Crawley and Anderson (1990)]
presented a rigorous study on the stress-strain-voltage behaviour of piezoelectric
elements bonded to beams, and they observed that in the case of a thin bounding
layer, the piezoactuator effective moments can be seen as concentrated on the two
ends of the actuator. Fanson and Caughey [Fanson and Caughey (1990)] made use
of piezoelectric materials for actuators and sensors and implemented a positive po-
sition feedback controller to control the first six bending modes of a cantilevered
beam. Hwang and Park [Hwang and Park (1993)] used a constant gain negative
velocity feedback controller to attentuate the vibration of a piezolaminated plate.
Lim et al. [Lim, Varadan, and Varadan (1997)] used constant gain velocity and con-
stant gain displacement feedback controllers to reduce the vibration amplitude of
the first two resonance modes of an aluminium cantilevered piezolaminated plate.
Benjeddou [Benjeddou (2000)] presented a survey on the advances in piezoelectric
finite element modeling of adaptive structural elements. Manning et al. [Manning,
Plummer, and Levesley (2000)] presented a control scheme to control the vibration
of a piezoactuated cantilevered beam using system identification and pole place-
ment techniques. Ciaurriz [Ciaurriz (2010)] implemented P and PD controllers to
control the vibrations of a flexible piezoelectric beam by using a co-simulation be-
tween Adams/Flex and Matlab/Simulink. Kapuria and Yasin [Kapuria and Yasin
(2010)] used optimal control strategies with single-input-single-output and multi-
input-multi-output configurations to control the vibration in a finite element model
of a smart piezolaminated beam including one electric node.
All the works mentioned above emphasize the capabilities and applications of
piezoelements as distributed vibration actuators and sensors by simultaneously con-
troling a finite number of modes of the actual system. The majority of the investi-
gations done in this field were carried out either through experiments on an actual
model with infinite number of modes, or by using 2D or 3D FE models of the
smart structure. Moreover, the damping coefficients were not calculated but rather
assumed, which may not reflect the exact performance of the real model.
The present work comprises the modeling and design of an active linear controller
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to attenuate the vibration of a cantilevered smart beam excited by its first eigen-
mode. Firstly, the piezoactuator is modeled, and the relation between voltage and
moments at its ends is investigated. A modified FE model of the smart beam based
on first-order shear deformation theory (FOSD) is then created. The FE model is
reduced to a SE model with a finite number of DOF , and the damping coefficients
are calculated and added to it. The FE and SE models are validated by perform-
ing a modal analysis and comparing the results with the experimental ones. The
SS model is extracted too. Finally, the controller which is based on the Lyapunov
stability theorem is defined and implemented on the SE and the SS models of the
smart beam. The FE package SAMCEF is used for the creation of the FE and
SE models, and for the implementation of the controller in the SE model. Conse-
quently, Matlab/Simulink is used for the implementation of the controller in the SS
model.

2 Modeling

In this section, the procedures for modeling a smart structure are examined. The
smart structure used in this work is a piezolaminated beam. The same beam model
will be used later to extract the SE model, derive the SS model, and finally, to im-
plement the control strategy. The first step in designing a control system is to build
a mathematical model of the structure with all disturbances causing the unwanted
vibration. One of the ways to derive the structural analytical model is by using the
FE method. The smart beam used consists of a steel beam, a bonding layer and an
actuator as seen in Figure 1.

actuator

V

beam

bonding layer

Figure 1: The smart beam
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2.1 Actuator modeling

Using an actuator implies implementing an appropriate electric voltage to control
the vibration of the smart structure (converse piezoelectric effect). Many FE pack-
ages do not offer elements with electrical DOF . Consequently, the voltage applied
by the actuator can be represented by two equal moments with opposite directions
concentrated at both ends [Crawley and Anderson (1990)]. The relation between
actuator moments and actuator voltage can be investigated, so that the moments
will then act as the controlling parameters on the smart structure Figure 2.

elastic material
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equivalent moment pair Mp

Figure 2: The induced stresses from a piezoceramic actuator

By considering the schematic layout of the middle portion of the smart beam (Figure 3),
if a voltage V is applied across the piezoelectric actuator, assuming one-dimensional
deformation, the piezo-electric strain εp of the piezo is:

εp =
d31

tp
·V (1)

where d31 is the electric charge constant and tp is the thickness of the piezoactuator.
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Figure 3: A schematic layout of the composite beam
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The longitudinal stress of the piezoactuator can be expressed with Hooke’s law as:

σp = Ep · εp (2)

with Ep as its Young’s modulus of elasticity.

This stress generates a bending moment Mp (around the neutral axis of the com-
posite beam) given by:

Mp =
∫ (tp+ta+tb−Zna)

(ta+tb−Zna)
σp ·b · zdz (3)

here, ta is the thickness of bonding layer (adhesive), tb is the thickness of beam, b is
the width of composite layer at beam’s middle, and Zna is the distance from beam’s
bottom to the neutral axis.

Considering equilibrium of moments (about the neutral axis) yields:

∫
beam

σb dA +
∫

adhesive
σa dA +

∫
piezo

σp dA = 0 (4)

After integrating (4), the position of the neutral axis Zna can be found:

Zna =
Ept2

p +2Eptpta +2Eptptb +Eat2
a +2Eatatb +Ebt2

b

2Eptp +2Eata +2Ebtb
(5)

where tp is the thickness of the piezo, Ea is Young’s modulus of adhesive and Eb is
Young’s modulus of the beam.

Combining (1),(2),(3) and (5) together determines the actuator bending moment
Mp as a function of the voltage V :

Mp =
EpEa(tpta + t2

a)+EpEb(t2
b + tptb +2tatb)

Eptp +Eata +Ebtb
· d31 ·b

2
·V (6)

Since the relation between Mp and V is now known, the actuator moment is taken
instead of the voltage as input to the controller that will be later designed and im-
plemented. From now on, there will be only mechanical DOF in the model.
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2.2 FE modeling

The resultant FE model of the smart beam must be faithfully representative in order
to use it for further applications like control analysis. To find the best FE model,
the optimal element type and size must be selected. Thus, a modal analysis of the
real beam is experimentally performed and results of the natural frequencies are
compared with those from the FE model where different element types are used. A
detailed geometry of the smart beam is shown in Figure 4, and the material prop-
erties and thickness of each part are represented in Table 1.
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Figure 4: A detailed geometry of the smart beam [dimensions in mm]

Table 1: Parameters of the components of the smart beam

Beam Bonding Actuator
Material steel epoxy resin PIC151
Thickness [mm] 0.5 0.036 0.25
Density [kg/m3] 7900 1180 7800
Young’s mod. [MPa] 210000 3546 66667

The smart beam is created as a unique structure but modeled as a composite shell
with three layers. This means, all the three components of the model, i.e. beam,
bonding layer and actuator are bonded together without any relative slip among the
contact surfaces. Consequently, each layer has its own mechanical properties. To
validate the choice of the FE type used (a composite shell element with 8 nodes
based on the FOSD), a modal analysis of the FE model is done and the first two
eigenfrequencies are read and compared to those from the experiment. This is seen
in Table 2. As a boundary condition, the far left edge of the smart beam is clamped.

Concerning the optimal FE size to be used, it’s well known that reducing the FE
size will improve the solution accuracy. However, especially in the case of large
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Table 2: Validation of element-type based on the modal analysis

FE model Experiment
1st eigenfrequency [Hz] 13.81 13.26
2nd eigenfrequency [Hz] 42.67 41.14

complex structures, the use of excessively fine elements in the FE model may re-
sult in unmanageable computations that exceed the memory capabilities of existing
computers [Ko and Olona (1987)]. From Table 3, it is seen that using an element

Table 3: Effect of element size on the eigenfrequency

FE size [mm] 1st eigenfreq. [Hz] 2nd eigenfreq. [Hz]
0.25 13.80 42.66
0.5 13.81 42.66
1.0 13.81 42.67
2.5 13.83 42.71
5 13.89 42.81
10 14.09 43.21

size less than 1 mm does not make any significant change on the values of the 1st
and 2nd eigenfrequencies of the smart beam. This means, it can be regarded as the
optimal value for the element size in the FE modeling.

Before this subsection is closed, it may be argued that the damped frequency from
experimental modal analysis of the real model was compared to the undamped fre-
quency of the FE model, where the damping coefficients are not yet calculated.
This is true, but it does not have a big influence on the solution since the relation
between the damped and the undamped frequencies in terms of the damping ratio
ξ is

ωdamped = ωundamped
√

1−ξ 2 (7)

Thus, a direct comparison between both frequencies can be made since ξ � 1.
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2.3 SE modeling

A super element, also termed substructure, is a complex element that includes a
number of finite elements used in a structural modeling. The main virtue of this
technique is the ability to perform the analysis of a complete structure by using the
results of prior analysis of different regions comprising the whole structure [Gha-
reeb and Weichert (2009)]. The application of the SE technique goes back to the
early 1960s when it has been used by aerospace engineers to break down the struc-
ture of an airplane into simpler first-level substructures for enhancing the com-
putaional efficiency [Fan, Tang, and Chow (2004)].
The basic concept of substructuring is that all DOF , which are considered useless
for the final solution, are condensed and the rest is retained. This means, the DOF
of the whole system correspond to the retained nodes plus a number of internal
deformation modes (dynamic analysis problems).
To construct a SE, or in other words to remove the unwanted nodes and DOF from
the substructure, the method of "component mode synthesis" is used [Craig and
Bampton (1968)], and a linear SE is created. According to this method, the DOF
of each substructure are classified into:

1. Boundary DOF shared by several structures

2. Internal DOF belonging only to the considered substructure

The behaviour of each substructure is described by the combination of two types of
component modes:

1. The constraint modes (static deformed shape) which are determined by as-
signing a unit displacement to each boundary DOF , while all other bound-
aries DOF are being fixed

2. The normal vibration modes (dynamic deformed shape) that correspond to
the vibration modes obtained by clamping the structure at its boundary

It is then assumed that the behaviour of the substructure in the global system can be
represented by superimposing the constrained modes and a small number of nor-
mal vibration modes. Taking an infinite number of modes would not help and does
not make sense since only a few number of modes has a physical meaning [Hughes
(1987)]. Hence, by retaining only the low-frequency vibration modes, the substruc-
ture’s dynamically deformed shape can be represented with sufficient accuracy.

Starting from the FE model of the previous subsection, a SE model with a limited
number of DOF will be created.
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Firstly, the master or retained nodes must be selected. These correspond to the
nodes where a boundary condition or a load is applied. The rest of the nodes will
be considered as slave or condensed nodes. In the FE model, 5 nodes are consid-
ered as retained nodes (Figure 5).

1 4 5
2 3

Figure 5: The retained nodes of the SE

This means:

- Node 1 is used to introduce a boundary condition (clamping constraint).

- Node 2 is used to introduce a load (actuator moment).

- Node 3 is used to introduce a load (actuator moment).

- Node 4 is used to measure the displacement (distance sensor).

- Node 5 is used to measure the tip displacement (distance sensor).

Secondly, 10 modes, which correspond to 97% of the modal effective mass, are
selected. The percentage of modal effective mass for each mode is usually found
inside the input file created by any FE software.
To check the validity of the SE created, it has to be compared to the FE model
which was already validated before. Abstractly said, the reduced model must have
the same characteristics as the original model, except that the number of nodes is
reduced, as well as the number of DOF . The eigenfrequencies of the first 2 modes
resulting from each model are depicted in Table 4.

Table 4: Eigenfrequencies of the first two modes

Mode SE model [Hz] FE model [Hz] Experiment [Hz]
1 14.249 13.811 13.26
2 43.414 42.673 41.14

The physical properties of each model are shown in Table 5. It is clear that both
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models deliver almost the same value of the eigenfrequency for the first two modes.
Since the excitation of the beam by its first eigenmode is concerned, furhter read-
ings are not necessary. Compared to the FE model, the SE model has few number
of DOF and a very small number of nodes. It consists of a single element and
has the advantage that the simulation time becomes short and the controllers are
implemented on the SE model itself.

Table 5: Characteristics of the FE and SE models

FE model SE model
Element size [mm] 3.07
Number of elements 2575 1
Number of nodes 8206 5
Number of DOF 16860 40

3 Damping Characteristics

Damping of structures has historically been of great importance in nearly all branches
of engineering endeavors. Mechanical and structural systems rely on various damp-
ing mechanisms to dissipate energy during undesirable vibratory motions [Taylor
and Nayfeh (1997)]. Damping parameters, which are also of significant importance
in determining the dynamic response of structures, cannot be deduced deterministi-
cally from other structural properties or even predicted by using the FE technique.
For this reason, recourse must be made to data from experiments conducted on
completed structures of similar characteristics. Such data is scarce in general, but
they are very valuable for studying the phenomenon and modeling of damping
[Butterworth, Lee, and Davidson (2004)]. In fact, there are many non-linear damp-
ing models available [Puthanpurayil, Dhakal, and Carr (2011)], but in this work the
damping is assumed to be viscous and frequency dependent for the sake of conve-
nience and simplicity [Alipour and Zareian (2008)].
With this linear approach, which was initially introduced by Rayleigh [Rayleigh
(1877)], it is supposed that the damping matrix is in a linear combination of the
mass and stiffness matrices. Although this idea was suggested for mathematical
convenience only, it allows the damping matrix to be diagonalized simultaneously
with the mass and stiffness matrices, preserving the simplicity of uncoupled, real
normal modes as in the undamped case [Adhikari and Woodhouse (2001)]. The
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relation is:

C = α M + β K (8)

where α and β are real scalars that must be determined.

The main advantage of this formulation is that the damping matrix will be a di-
agonal matrix. The damping ratio ξ is related to the scalars α and β through the
relation [Ghareeb and Schmidt (2012)]:

ξi =
α

2 ωi
+ β

ωi

2
(9)

with ω as the eigenfrequency and the subscript i the mode number.

Here, two values for the eigenfrequency ωi with the corresponding values of ξi are
needed to find out the scalars α and β and thus to compute the damping matrix C.
Two methods are used to find these damping characteristics. These are the method
of Chowdhury and Dasgupta [Chowdhury and Dasgupta (2003)], and the method of
damping from normalised spectra, also known as the half-power bandwidth method
[Butterworth, Lee, and Davidson (2004)],[Ewins (1984)]. Results from both meth-
ods are represented in Table 6.

Table 6: Results of α and β from both methods

Chowdhury Half-power bandwidth
α 0.02577 0.02955
β 9.918×10−6 9.770×10−6

It can be noticed that both methods have shown that the damping is mass propor-
tional, since α � β in both techniques. In this work, the average values of both
methods are used, and the damping characteristics are added to the SE model and
to the SS representation that will be derived in the next section.

4 State-Space Representation

4.1 Basics of the state-space representation

Beside the SE model, the SS representation is used as a second approach to im-
plement the controller. The basic idea of this procedure is to describe a system of
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equations in terms of n first-order differential equations. Hence, the use of vector-
matrix notation greatly simplifies the mathematical representation of the system of
equations. On the other hand, the increase in the number of state variables, the
number of inputs, or the number of outputs does not increase the complexity of
these equations [Ogata (2002)]. This approach is used here in order to validate or
compare the results of the SE model.
The state equations have the form:

ẋ = A x + B u
y = C x

(10)

and the size of the matrices A, B and C depends on the number of states, inputs
and outputs of the system. Upon specifying the type and position of the input and
output vectors, a FORTRAN code is used to create the SS model of the smart beam.
This model is then integrated in Matlab/SIMULINK to give the dynamic response
of the modelled structure under one or several inputs and outputs.

4.2 Creation and validation of the SS equations for the case of a smart beam

The objective now is to create the SS representation of the smart structure investi-
gated in this work, and to validate it by carrying out a simple simulation, so that the
results can be compared to those from the FE model. At the beginning, the inputs
and outputs of the system must be specified. Referring to Figure 5, a sensor is
placed at Node 5 to measure the tip displacement, and the input will be a harmonic
force at the same node. Thus, the smart beam will be excited by its first eigenmode.
The force F has the form:

F = c sin(ω1 t); with c as a constant (amplitude) (11)

Now, there is a single input and a single output. Since Node 1 is clamped, the
number of states is defined as:

2p = 30 + 10 − 6 = 34 (12)

There are 30 DOF in the system, in addition to 10 vibration modes. Concerning
the dimensions of the matrices A, B, C:

dim(A) = 34×34
dim(B) = 34×1
dim(C) = 1×34

(13)

The SS representation of this smart beam is shown in Figure 6. The simulation is
carried out for 40 seconds while the load is kept active for the first 20 seconds. The
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resulting curve in Figure 7 shows that both models had the same value of tip dis-
placement throughout the simulation time. This gives more reliance to the results.
However, both models will be used in the coming section for the implementation
of the controller.

Tip displacement

F
y = Cx
x’ = Ax + Bu

Figure 6: The SS model of the smart beam
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Figure 7: Free and forced vibration of the smart beam

5 Controller Design

5.1 Lyapunov Stability Theorem Controller

Although there is no general procedure for constructing a Lyapunov function, yet
any function can be considered as a candidate if it meets some requirements, i.e.,
positive definite, equal to zero at the equilibrium state and with its derivative less
or equal to zero [Khalil (1996)],[Bacciotti and Rosier (2005)]. Now, the energy
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equation of a thin Bernoulli-Euler beam which is modelled as a single FE in a one-
dimensional system with length h and left point coordinate xi, is considered as a
Lyapunov function candidate (Figure 8).

M (x  ,t)

 X, u

 Y, v

h

z i

ix

 F (x +h,t)s s F (x ,t)i i

 M (x +h,t)z i

Figure 8: Section of the smart beam where the piezoelement is located

According to [Gorain and Bose (1999)], the total energy equation of a beam without
any external forces or moments is:

U =
1
2

∫ xi+h

xi

[
ρA
(

∂v
∂ t

)2
+ EI

(
∂ 2v
∂x2

)2
]

dx (14)

where h is the length of the beam section, u and v are the displacements in longitu-
dinal and transverse directions, E and ρ are the elastic modulus and density of the
beam.
According to Figure 8, Mz is the actuator bending moment, Fs is the shear force
on the beam, and Iz is the second moment of inertia of its cross-section about the
(bending) z-axis.

The above function is locally positive definite, continuously differentiable and equal
to zero at the equilibrium state. Yet, to consider it as a Lyapunov function, the
derivative of this function must be smaller or less than zero as well.
Differentiating (14) in time leads to:

U̇ =
∫ xi+h

xi

[
ρA

∂v
∂ t

∂ 2v
∂ t2 + EI

∂ 2v
∂x2

∂

∂ t

(
∂ 2v
∂x2

)]
dx (15)
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Referring to the relationships for a vibrating beam, which are summarized in any
reference about beams like [Petyt (2003)], it reveals that:

ρA
∂ 2v
∂ t2 + EI

∂ 4v
∂x4 = 0

Mz = EI
∂ 2v
∂x2

Fs = −EI
∂ 3v
∂x3

(16)

Substituting the derived equations for the bending moment Mz, shear force Fs, and
assuming no shear after that, the first derivative yields:

U̇ = Mz

[
∂

∂ t

(
∂v
∂x

)]xi+h

xi
= Mz

(
v̇′xi+h − v̇′xi

)
(17)

where v̇′xi is a rotational velocity at node xi.
To ensure that (17) is always smaller or equal to zero, Mz, the actuator moment, can
have the value:

Mz = − k
(

v̇′xi+h − v̇′xi

)
(18)

with k as a positive constant, sometimes called "the proportionality factor". Varying
k has a significant effect on the response. Theoretically, the system is stable for any
positive value. Nevertheless, larger values of k tend to "overcontrol the structure"
since the moment will have a magnitude larger than that required. Consequently,
if k is very small, the added moments will be insufficient and this will reduce the
damping ratio. Therefore, a trial-and-error procedure is required to select the best
value and customize the control to the application [Newman (1992)].

Substituting (18) in (17) yields:

U̇ = − k
(

v̇′xi+h− v̇′xi

)2
≤ 0 (19)

and thus, all the requirements to have a Lyapunov function are met. Therefore, (18)
can be used as the controller for the smart beam.
To implement this equation on the smart beam, the moments at node 2 and node 3,
which are equal in magnitude but with opposite directions, are calculated as func-
tions of the rotational velocites at both nodes [Ghareeb and Schmidt (2012)]. They
have the form:

M2y = −k (v̇2y − v̇3y)
M3y = −k (v̇3y − v̇2y)

(20)
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From the above equations, it is clear that the controller is in fact a connection
between the DOF of the nodes composing the SE. To do that in SAMCEF, the
nonlinear forces element (FNLI) is used. This element allows the introduction of
a list of n general linear or nonlinear internal forces as a function of list of n DOF
and their derivatives. The control strategy is defined directly inside the input file
without the use of any external programming language, and this is one of the merits
of the SE technique.
Coming back to the control law of (20), the controller is stable for any positive
value of the constant k. At the beginning, three different values of k are taken, and
the results are depicted in Figure 9.
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Figure 9: The Lyapunov stability theorem controller for different values of k (SE
model)

Moreover, the choice of k has an influence on the amplitude of the resonance at the
natural frequency of the structure, which is seen in Figure 10. Now, the optimal
value of the constant k must be found. Since the design of optimal controllers
is not the task of this work, the method of trial-and-error is used to find out this
optimal value. Best results are got for k = 30, and the corresponding curve of tip
displacement vs. time of the smart beam is illustrated in Figure 11. In the FFT
spectrum diagram (Figure 12), the effect of the controller on the amplitude of the
resonance at the natural frequency is shown as well.

As stated before, the SS representation of the smart beam is derived in order to
validate the results from the SE model. To do that, the inputs and the outputs are
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Figure 10: The FFT spectrum of the smart beam for different values of k (SE model)
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Figure 11: The Lyapunov stability theorem controller for k = 30 (SE model)

designated in order to find out the matrices A, B and C of (10). To implement the
controller in the SS model, two steps are performed. In step one, the only input to
the system is the forced excitation until the magnitude of vibration does not change
anymore, i.e., up to t = 20s, and the output consists of the tip displacement, as
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Figure 12: The FFT spectrum of the smart beam using Lyapunov stability controller
(SE model)

well as the state vectors exactly at t = 20s. The diagram is shown in Figure 13.
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0
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Figure 13: The SS model of the smart beam with controller (step 1)

These state vectors are then fed in as initial conditions in the second step. This
time, the input comprises both actuator moments at both ends of the actuator, and
the output embraces the tip displacement at node 5, and the velocities at the node 2
and node 3.
The steps mentioned above could be also summarized in one step, but in this case a
timer must be inserted in the model to deactivate the exciting force when vibrations
become stable at t = 20s. The SS representation of the smart beam in the second
step is shown in Figure 14.
A comparison of the results from the SE model and the SS model is shown in
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Figure 14: The SS model of the smart beam with controller (step 2)

Figure 15 and Figure 16 where the time region between 20 and 22 s is magnified.
It can be seen that both models yielded the same results. Nevertheless, much more
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Figure 15: Tip displacement vs. time using SE and SS models

time was needed to carry out the simulation in the SS model (about 35 minutes),
while in the SE model, less time (only 3 minutes) was needed. This could be due to
the fact that in the SE model a fixed time-step can be assigned (here 0.01 s), while
in the SS representation the time-step was automatically set. Moreover, the stresses
and energy curves, could be requested in addition to the force vectors along the
SE model. This is one of the advantages of the SE technique in comparison to the
SS representation which is more practical and in which the controller can be easily
implemented [Ghareeb and Schmidt (2012)].
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Figure 16: Tip displacement vs. time in a zoomed region of Figure 15

6 Summary

In this work, a linear controller based on the Lyapunov stability theorem was de-
signed and implemented on a reduced model of a smart structure. The super el-
ement technique was used to create this reduced model starting from the finite
element model. A state-space representation of the same model was extracted as
well. The controller was implemented on this model too, and the results from both
models were compared.
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