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Identification of Parameters of a Nonlinear Material
Model Considering the Effects of Viscoelasticity and

Damage
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Abstract: This work deals with mechanical properties of a rubber material that
is used in modern tram wheels as a damping element. Nonlinear static response
as well as strain softening and hysteresis are captured in the material model. The
identification method of the model’s parameters is developed. The identification
method relies on successive minimizations with respect to different sets of param-
eters. The identification of the parameters of the material model is based on the
tensile and compressive experimental data. Shear data are used for validation.
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1 Introduction

Elastomeric materials are nowadays an inherent part of many structures thanks to
their good vibration damping properties and ability to reach large deformations
without a failure. An example of an elastomeric part is the utilization of rubber
segments in modern tram wheels. These rubber sprung wheels excel in reduction
of traffic noise and rail wear. Innovation of the wheels requires sufficient computa-
tional model of the rubber segments that considers the segment’s complex mechan-
ical behavior. Besides nonlinear response, the most noticeable phenomena observ-
able in mechanical behavior of elastomers are: strain induced softening (Mullins
effect, Mullins (1969)), hysteresis (Bergström and Boyce (1998)), and permanent
set (Amin, Lion, Sekita, and Okui (2006)).

Objectives of this article were: (i) Select a constitutive model that is able to cap-
ture the effects of nonlinear long-term response, strain induced softening and time-
dependence in mechanical behavior of a material. (ii) Develop a method to identify
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parameters of the model. (iii) Apply the method to the rubber of the wheel seg-
ments.

2 Material model

2.1 Strain induced softening

Mullins effect was captured using the Ogden-Roxburgh model (proposed in Ogden
and Roxburgh (1999)) of strain induced softening. The model can be described as
follows.

An internal variable η is introduced to quantify the damage at a given material
point. The strain energy density function can be written as

W = W (F,η) = W (λ1,λ2,λ3,η) = η ·W (λ1,λ2,λ3), (1)

where λ1, λ2 and λ3 are the principal stretches.

As a suitable representation of the strain energy density function, the five-parameter
Mooney-Rivlin model was chosen in this paper:

WMR(λ1,λ2,λ3) = C10 (I1−3)+C01 (I2−3)+C11 (I1−3)(I2−3)

+C20 (I1−3)2 +C30 (I1−3)3 ,
(2)

where I1 = λ 2
1 + λ 2

2 + λ 2
3 and I2 = λ 2

1 λ 2
1 + λ 2

2 λ 2
3 + λ 2

1 λ 2
3 .

The damage variable η in the Ogden-Roxburgh model is expressed as

η = 1− 1
r

erf
(

(Wm−W (λ1,λ2,λ3))

m−βWm

)
, (3)

where r, m and β are parameters of the model, Wm is the maximum strain energy
density achieved at the material point during the loading prior to the current time.

2.2 Finite-strain viscoelasticity

To introduce time dependency of the material behavior, the concept of free energy
was used. The development of Simo (1987) for derivation of stress-strain relation-
ships was used. The second Piola-Kirchhoff stress is

S =
∫ t

0
K(t− s)

d
ds

(
η(Wm)

∂WMR

∂E

)
ds, (4)

where K(t) is a relaxation function. Usually it is expressed in the form

K(t) = δ0 +
N

∑
n=1

δne−t/τn (5)
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Figure 1: Experimental specimens (left), prescribed deformation (right).

which involves more values of relaxation times τn and coefficients δn, where the
number of the viscoelastic terms, N, must be chosen according to the number of
time scales that have to be modeled. Apart from the values of δn and τn all being
positive, a natural requirement on the coefficients is that δ0 + δ1 + . . .+ δN = 1.

3 Experiments

The tram wheel segments are made from rubber based on synthetic isoprene and
butadiene elastomers. Experimental samples had to be cut directly from the seg-
ments. The small size of the segments limited the specimens geometry, therefore
all test method recommendations (Brown (2006)) could not be complied. Fig. 1
illustrates used shapes of the experimental specimens. Three types of tests were
performed: the tension, the compression and the simple shear test.

Major deformations of the real wheel segments are compressive and the minor de-
formations are shear. Predominantly, the segment strain magnitude ranges from
10 to 15%. Maximum strain magnitude is 25%. Therefore, prescribed deforma-
tion progress during the experiments was as shown in Fig. 1. The strain rate was
0.4min−1 in all performed tests. The results were obtained in room temperature of
20 ◦C to 25 ◦C.

4 Solution of the state problems

As shown in section 5, a boundary value problem (BVP) has to be defined for each
experiment (tension, compression) in order to define the parameter identification
problem. A state of uniform uniaxial strain can be assumed in the measured part of
the tensile specimen. Therefore, the tensile test does not need to be simulated using
the finite element method (FEM) because the true stress can be computed directly
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from the experimental data. The strain distribution in a compression specimen
is not uniform because it is not possible to fully avoid the friction between the
specimen and the loading plates. The strain distribution in the shear specimen is
also influenced, in this case, by adhesively bonded loading plates. Therefore, the
compression and shear tests were simulated using FEM in Abaqus 6.11 software.

5 The identification problem

Let us consider a system the state of which at a time step t(i) is described by a
vector y(i). The measured quantity and its computed counterpart are denoted ϕ i
and ϕ(x,y(i)) respectively, where x denotes the vector of material parameters.

As mentioned above, three experiments were performed in different modes of load-
ing. The shear loading mode was not used in the identification because of sig-
nificantly higher requirement on FEM computational time. The shear simulation
response was used only for the validation of the identified parameters.

The tensile and compressive loading modes represent two different state problems
and two different sets of measured data ϕ i that must together lead to a single set of
material parameters x. To account for this, the objective function

F(x) =
∑i∈I

(
ϕ

t
i−ϕ t(x,y(i))

)2

∑i∈I
(
ϕ

t
i
)2 +

∑i∈I
(
ϕ

c
i −ϕc(x,y(i))

)2

∑i∈I (ϕ
c
i )

2 (6)

was minimized. The set I is a set of all time steps in which the quantity ϕ i was
measured. The upper index t or c denotes value corresponding either to the tension
or the compression experiment/model. The sums in denominators were introduced
to compensate for the difference of magnitude of response in tension and com-
pression. In this work, the response in tension was calculated analytically and the
response in compression was the force computed by the finite element method.

Considering that in the Ogden-Roxburgh model (OR) the damage does not evolve
when Wm = W , we can identify the Mooney-Rivlin (MR) hyperelastic parameters
(Ci j) first (considering only the first-loading parts of data). The parameters of the
OR model (r, m, β ) can be identified independently afterwards, considering, simi-
larly, only the reloading paths.

However, the identification of the viscoelastic parameters (δn, τn) cannot be per-
formed without adjusting at least the MR parameters because viscoelasticity af-
fects the response of the material in every time step. This part of the identifica-
tion has been divided into three steps. Firstly, MR and viscoelastic parameters are
identified, the vector of variables x = [cMR; δn, τn]. The parameter cMR serves for
roughly adjusting the overall stiffness by multiplying the MR parameters that have
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Figure 2: Block diagram of the identification process.

been identified earlier. Secondly, all MR parameters are treated as separate opti-
mization variables in addition to the viscoelasticity parameters, x = [Ci j; δn, τn].
Thirdly, all previous successive steps lead to the final optimization of all parame-
ters, x = [Ci j; r, m, β ; δn, τn] (see Fig. 2).

The starting point for the identification of MR parameters was obtained by a genetic
algorithm in OptiSLang software. All other minimizations were carried out using
the interior-point algorithm that is part of the Matlab Optimization Toolbox.

6 Identification results

Using the procedure described in section 5, a set of model parameters was obtained.
Fig. 3 shows the comparison of stress-strain curves of the model and experiment
in tension and force–displacement curves for the case of compression. From the
model response in compression and shear a significant increase of stiffness was ob-
vious at strain values close to maximum. Therefore, maximum operational defor-
mations have to be known prior to the identification to ensure that the investigated
strain range is wider than the operational strain range. If there are any uncertain-
ties about the operational strain range, the objective function should be adjusted to
include final tangent of the model response.
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Figure 3: Stress-stretch curve of tensile test (left), force-displacement curve of
compression test (right).

7 Conclusion

In this work, a material model capable of describing dominant mechanical prop-
erties of the analyzed rubber was composed. The rubber is used as a damping
element in tram wheels. Applicable method of the identification of parameters of
the material model was proposed. The comparison of numerical simulations and
all experiments was in sufficient agreement although the simple shear test was not
used directly in the identification process.
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