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Modeling and Simulation of the Nonlinear Computed
Torque Control in Simulink/MATLAB for an Industrial
Robot

Dinut Receanu!

Abstract:  The paper presents a conceptually simple nonlinear controller, com-
monly called computer torque controller, which can fully compensate the nonlinear
forces: Coriolis and centripetal forces (natural and continuous nonlinearities) and
at the same time the program in Simulink can fully compensate the natural and dis-
continuous nonlinearities (hard nonlinearities): friction and backlash utilizing the
intentional nonlinearities artificially introduced in system and lead to high accuracy
control for a very large range of robot speeds and a large workspace.
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1 Introduction

In order to achieve a pre-specified accuracy in robot tasks such as pick-and-place,
arc welding and laser cutting the speed of robot motion and thus productivity, has
to be kept low. In this case it is considered the simplest type of position control
strategy, namely: independent joint control or classical linear control. In this type
of control each axis of the manipulator is controlled as a Single-Input/Single Out-
put (SISO) system and any coupling effects due to the motion of the other links
is treated as a disturbance. The classical manipulator control schemes are based
on independent joint design using P, PD or PID controller. In reality the dynamic
equations: Euler-Lagrange of robot form a nonlinear and multivariable system and
in this case the robot control is named multivariable control: Multi-Input/Multi-
Output(MIMO). A conceptually simple nonlinear controller, called computed-torque
controller, can fully compensate the nonlinear Coriolis and centripetal forces (con-
tinuous nonlinearities) in the robot motion and lead to high accuracy control for
a very large of robot speeds and a large workspace. However, in control systems
there are many nonlinearities whose discontinuous nature does not allow linear ap-
proximation. These so-called “hard nonlinearities” or discontinuous nonlinearities
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include friction, saturation, dead-zones, backlash and hysteresis and are often found
in control engineering. Usually, the continuous and discontinuous nonlinearities,
named natural nonlinearities, have undesirable effects and control system have to
properly compensate for them and the intentional nonlinearities are artificially in-
troduced by the designer.

2 Classical linear and nonlinear control in Simulink/MATLAB

The position control system is a system that converts a position input command
to a position output response. A schematic layout of the servomotor (permanent
magnet d.c. motor) and gear reduction is shown in Fig.1.
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Figure 1: Servo plant schematic (D.C. motor and gear reduction).

The electrical parameters are as follows:

R,[Q]-armature resistance; L,[H]-armature inductance; K,,[Nms/rad]-motor torque
constant; K,[V/rad/s]-motor voltage constant.

The mechanical parameters are as follows:
J,[Nms?]-armature inertia; J,[Nms2]-load inertia; B,,[Nms/rad]-armature frictional
coefficient;B;[Nms/rad]-load frictional coefficient; i = Z, / Z;-low gear ratio; M,-
resistant moment refered to the rotor shaft.

From the Fig.1, we can write the following equations based on Newton’s law com-
binated with Kirchhof’s law:

di

ua:Raia+Lad—;‘+e (1)
do,
Mm—Mr:JTtm—i-me )

where: ujarmature voltage , e = K, @, the motor e.m.f., ®,, armature speed, M,, =
K i, motor torque, j, armature current and equivalent inertia and friction refered
to the rotor shaft(dynamic model)are:

1 1
J:Jm‘i’]sij:Bm‘i‘st (3)
1 l
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Using Laplace Transforms the above equations can be expressed in terms of ’s”:
Ua (S) = (SLa +Ra) Ia (S) + Ke Qm(S)

Kinla(s) —M;(s) = (sJ+B) Qu(s) “)
and it results the scheme of nonlinear model in Fig.2, where:

-Transf Fcn2 is the transfer function of d.c. motor: 1/(sL,+ R,);

-Transf Fcn 4 is the transfer function of mechanical transmission: //(sJ+B)
-Saturation (voltage and current limiters);

-LuGre F. M. is a dynamic model of friction with low speed and the friction moment
My is given by the expression:

dz
Mf:)l,oZ—Fﬂ,ldft-i—OCz(D

dz_ ,_Molol
dt g(w)
8(w)=ap+ae O )

where: ap-Coulomb friction; ¢;-Stribeck friction; ,-viscous friction; Ay-bristles
stiffness; A;-bristles damping; wg-Stribeck velocity; w-angular velocity.
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Figure 2: Software Simulink/MATLAB for the nonlinear independent control po-
sition in an industrial robot (model of position controlled robot link drived by per-
manent magnet DC motor).

-Adaptive F. M. (friction compensation) is adaptive friction model based on a Coulomb
model:

M*=a"sign(®)
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z=Kucsign(®)
at =z—KJ|o| ©)

where: K is an adaptation gain; J is inertia, 2 is a internal variable; M*is the estimate
friction moment, u. (M,,) is the conventional controller output, @ is the relative
velocity and a* is the estimated Coulomb model parameter.

-Backlash, also known as play, is the difference between tooth width and, for ex-
ample, a lead compensator, named Filter, has the expression:

_D.s+l
Ti.s+1

F(s) (N

where: Ti, 7> are constants.

-The unit Step, as:

0 — { 0 t=0.5s (for example)
;=

1 t>0 ®)

is widely used in studying input/output systems and step response of linear or non-
linear system is defined as the output 6,(¢) starting from initial condition

-The constant for the conversion: angle-voltage is Kt in the case input g; or output
65 (encoder). The scheme of servomechanism has a P-Controller with proportional
gain Kp.

Fig.3. presents the input system @;-unit step and the step response ;" for the ideal
linear control position and @ for the nonlinear control position with a) backlash or
b) friction plus backlash and compensations.

(a) with backlash, without compensation; (b)with friction + backlash and compensations

Figure 3: Step response of the linear or nonlinear control position model in
Simulink/MATLAB.
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The backlash induces oscillations or steady state errors and the effect of friction is
the existence of a considerable steady state error. These effects disappear in pres-
ence of "lead compensator”-filter and model based friction compensation (Fig.3.b)

3 Nonlinear computed torque control in Simulink/MATLAB

In reality, the dynamic equations of a robot manipulator form a complex, nonlinear
and multivariable system. A basic problem in controlling robots is to make the
manipulator follow a preplanned desired trajectory. Suppose that the end of the
arm should trace out the circular workspace path shown in Fig.4., which described
(point E) by:

x(¢) =xp+Rcos @

Y(@) =Yo+Rsin® )

In the same time the characteristic point E has the Cartesian coordinates:
X = [12¢08 01 4[> cos 62

Y =1l12sin 0 + > sin 6 (10)

where: [12, [2, 01, 6, are the parameters of the elbow manipulator.
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Figure 4: Desired Cartesian trajectory.
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Figure 5: Two-link plannar elbow arm.

Therefore, it is important to be able to find the desired joint space trajectory ¢,(¢)
given the desired Cartesian trajectory(inverse kinematics):

B Y(p)—Isin@,
O1a = arctgx((P) —hcos &

(@) —l128in6;
= arct
02 = arc gX((p) —l12¢08 6

1D

where: 4, (014, 624) are the joint variables in terms of the x and Y coordinates of E.
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Figure 6: Minimum-time trajectory: (a) position of the point E in the plane OXY;
(b)velocity; (c)acceleration.
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A minimum-time trajectory is shown in Fig.6. This is the sometimes called a Bang-
Bang trajectory. In this condition, Fig 8. presents the "Trajectory planner" which
converts the circular trajectory of the end of the arm (with mid point X,, Y, and
radius R) in joint space trajectoryq, (614, 624)-

Using Lagrange’s equation to compute the dynamical equations it results a special
form (without viscous friction and disturbances):

M(q)G+C(q:4)+G(q) =T (12)

where:

q,q—joint-variable and joint velocity vectors;
T=[17 mn]" —generalized force vector;

M —inertia matrix is symmetric and positive definite;
C (g,¢) —Coriolis/centripetal vector;

G (q) — gravity vector.

The nonlinear term is:

N(q,9) = Clq,9) +G(q) (13)
and the arm dynamics becomes:

M(q)§+N(q,4) =T (14)
An independent joint PD-control scheme can be written in vector form as:

u(t) = — Kpe—Kpe (15)

where: e(t) = q,(t) —4(t) is the error between the desired joint displacements ¢4(t)
and the actual joint displacements ¢(¢) and Kp, Kp are diagonal matrices (positive)
of proportional and derivative gains, respectively.

Then the overall robot arm input becomes:
T=M(q)(§s+Kpé+Kpe)+N(q,q) (16)

We call this the computer-torque control law. It is important to realize that computed-
torque depends on the inversion of the robot dynamics, and indeed is called inverse
dynamics control and it results the real joint acceleration vector:

G=M "{T_N} (17)

Successively integrating it results the ¢, g joint-variable and joint velocity vector.
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The outer-loop signal u(¢) can be chosen using many approaches, including robust
and adaptive control techniques.

The resulting control scheme appears in Fig.7. It consists of an inner nonlinear loop
plus an outer control signal u(¢) (with PD-control).

Therefore, the PD gains are usually selected for critical damping & = 1. In this
case: kp, = 2+/kp, and kp = k3, /4 (for joint i).

In the computed-torque control scheme it is introduced the backlash.
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Figure 7: Inner loop/outer control architecture.

Computed-torque control scheme. PD-control scheme.
For a two-link planar elbow arm, the inertia matrix and the mentioned vectors are:

r /

J Jcos(6; — 6y)
M == . 1 /
(9) | Jcos(6; — 6,) J,
or
[ My My
Miq) = | Moy Mx ]
with:

J; =/ —|—m1112] —I—m21122; J; =/ —i—mzl%; J= myli2lh
N(g,q) = -Jj6, (91 — 92) sin (6) — 6,) +J6,6,sin (6; — 6,) +M/1 cos 6
49)= *jél (91 — 92) sin(91 — 92) *jél 92 sin(91 — 92) +M/2 cos 6,

M, cos 61
M/2 cos 6

6la)= |
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with: My = & (li1my +12ama); My = 8ma by

my,Jy,my, J, the masses and masses moment of inertia (1) and (2)

)= [ ] (a5 ) [a]+ [ ] [a])+ )
(%) M> My 024 0 kpo | | é2 0 kpa | | e2 Noy
1 My, —Mp

detM | —My; My

and detM = M1 Mx»; — M2 M2
?1 _ 1 My  —M> T — N (18)
0, detM | —M>y; My T — Ny

In Simulink/MATLAB it is realized the simulation of PD Computed-Torque Control
for a two-link elbow arm in plane circular motion (Fig.8).
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Figure 8: Software Simulink/MATLAB for the nonlinear multivariable control in
an industrial robot (two-link planar elbow arm).

The software contains the trajectory planner with inverse kinematics, the MIMO
system which includes PD computed-torque control, the backlash compensators
(filters) and a block for verification which comprises the direct kinematics.

The diagrams of the joint variables: desired and real values: 614, 624, 01, 62, com-

puted torque 7;,7, and circular workspace path (x,y), after simulation, are pre-
sented in Fig.9.
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Joint variables: desired and real values

Computed torque
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Figure 9: The results of the simulation: joint variables, computed torque and circu-
lar path
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The Fig.9.a) presents these diagrams when it is backlash and without compensa-
tion For our example the PD gains: Kp;,Kp2,Kp1,Kp2 and T1,T» constants of the
"filters" are selected to obtain minimum errors and a trajectory without oscillations
Fig.9. b).

Another natural discontinuous nonlinearities produce the following effects:

-The effects of saturation is the decrease and delay of output. These effects are not
compensated.

-The effect of friction is the existence of a considerable steady state error. When
the friction is compensated, the steady state error approximately disappears but the
settling time increases after simulations.

4 Conclusions

In the analysis, a nonlinear closed-loop system is assumed to have been designed
and it is necessary to determine the characteristic of the system’s behavior.

In the design it is given a nonlinear plant to be controlled and some specifications
of closed-loop system meets the desired characteristics.

When a linear controller is used to control robot motion, it neglects the inherent
nonlinear forces associated with the motion of the robot links. The controller’s
accuracy thus quickly degrades as the speed of motion increases, because many of
the dynamic forces, such as Coriolis, centripetal forces, vary as square of the speed.

However, in control systems there are many nonlinearities whose discontinuous na-
ture does not allow linear approximation (friction, saturation, dead-zone, hysteresis
and backlash). These so-called”’hard nonlinearities” produce: oscillations (insta-
bility) or steady state errors. Their effects cannot be derived from linear methods
and nonlinear analysis techniques must be developed to predict a system’s perfor-
mance in the presence of these nonlinearities. The intentional nonlinearities are
artificially introduced by the designer and this activity is named the compensation
of the natural nonlinearities.

The Simulink/MATLAB software is in accordance with the design and the analysis
of a nonlinear closed-loop system and with help of the Win Con software, a data
acquisition board, it is possibly to control in real-time a servomechanism or an
industrial robot.
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