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Abstract: In this paper, the group preserving scheme (GPS) is adopted to sim-
ulate the dynamic ship maneuvering behaviors. According to the mathematical
model of the maneuvering ship motion, ship dynamic behaviors are affected by the
ship hull resistance, rudder and propulsive propeller forces, and main engine in-
duced force; therefore, the conventional approach uses the high order time integra-
tion to simulate the ship dynamic behaviors and results in the numerical instability.
Due to the characteristics of the cone structure, Lie-algebra, and group property of
the GPS, this research introduces the non-linear GPS to simulate the dynamic ship
behaviors. Through the group weighting factor of the GPS, the non-linear param-
eters’ behaviors can be observed and the numerical stability can be guaranteed. In
addition, the second order of the GPS can ensure the accuracy of the high-order
numerical method for simulating ship simulation behaviors and enhance the effi-
ciency of the numerical calculation. Finally, results of the proposed approach are
compared with the sea-trial data of a 278,000 DWT ESSO OSAKA ore & tanker
[Crane (1979)] further validation.

Keywords: Group preserving scheme, numerical instability, ship dynamic be-
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1 Introduction

When the hydrodynamic forces during maneuvering are provided for each time
step, no mathematical model is required. In such a case, only the equation of mo-
tion is used for simulations. Recently computer fluid dynamics (CFD) techniques
have gradually made ship simulations possible; however, these simulation tech-
niques cannot work to be satisfied due to the limited sea-trial data. In order to
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well describe the hydrodynamic forces for each time step, mathematical models
are usually used. However, the expression is not so simple because there still exist
non-linear terms and the interaction of ship hull and various wave motions. Conse-
quently, the expressions of the hydrodynamic forces in the mathematical model are
assumed to depend on velocity and acceleration components. That is a well-known
“quasi-steady approach”. In the figure 1 is the coordinate system for the simula-
tion of ship maneuvering; the following equations of motion for four-degrees of
freedom can be expressed as:

m(u̇− vr) = X , (1)

m(v̇−ur) = Y, (2)

Izzṙ = N, (3)

Ixxψ̇ = K. (4)

Here m represent the mass of a ship, Izz is the inertia moment of yawing, Ixx is the
inertia moment of rolling, X and Y denote the hydrodynamic forces in the x and y
directions, and N and K denote the moments of the z and x directions acting on the
gravity of the ship.

For the expression of these hydrodynamic forces and moment, some polynomial
functions with acceleration and velocity components are used. The coefficients of
them corresponding to hydrodynamic derivatives can be obtained from [Kobayashi
(2002); Yoshimura (2005)]:

1. Captive model test such as oblique towing test (OTT), rotating arm test (RAT),
circular motion test (CMT) and planar motion mechanism (PMM) test.

2. Numerical calculation.

3. Identification to the free-model tests or full- scale trials.

4. Database of hydrodynamic derivatives.

2 Mathematical MODEL

In 1976-1980, Japanese research group named Maneuvering Mathematical Mod-
eling Group (MMG) proposed a mathematical model [Ogawa and Kasai (1978);
Kose, Yumuro, and Yoshimura (1981)] which is call as MMG model.
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2.1 Basic equation of motion

The mathematical model used in this study is shown as equations (1) to (3). These
hydrodynamic forces and moments can be divided into the following components.

m(u̇− vr) = XH +XP +XR +XW +XC, (5)

m(v̇−ur) = YH +YP +XR +YW +YC, (6)

Izzφ̈ = NH +NP +NR +NW +NC, (7)

Ixxφ̈ = KH +KP +KR +KW +KC, (8)

where subscripts H, P, R, W and C denote hull, propeller, rudder, wind and current,
respectively. The equations (5-8) represent surge motion, sway motion, yawing
motion and rolling motion, respectively.

2.2 Hydrodynamic forces and moment acting on the hull

As mentioned above, steady hydrodynamic forces with XH and YH and moments
with NH and KH are the functions of u, v, r, and β . Here r and β denote yawing
rate and drift angle. In the total force model, these functions are described as the
following polynomials using Taylor expansion, for example.

XH =mxu̇+(mx+Xvr)vr+
1
2

ρL2V 2(X
′
vvv

′2+X
′
rrv
′
r
′
+X

′
rrr
′2+X

′
vvvvv

′4)+X(u). (9)

YH =−myv̇−mxur+
1
2

ρL2V 2(Y
′

β
β
′
+Y

′
r r
′
+Y

′
NL +Y

′
Roll). (10)

NH =−Jzzṙ+
1
2

ρL3V 2(N
′

β
β
′
+N

′
rr
′
+N

′
NL +N

′
Roll). (11)

KH =−Jxxφ̈ −N(φ̇)−mgGZ(φ)−YHZH . (12)

These total force models can easily describe the steady hydrodynamic forces, and
has been widely used. The coefficients in equations (9), (10), (11) and (12) are
called hydrodynamic derivatives and can be obtained by some model tests [Kobayashi
(2002)] using scaled model. These mathematical models can be usually applied for
the simulation of the specified ship.
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2.3 Hydrodynamic forces induced by propeller

The hydrodynamic forces induced by the propeller are expressed as follows:

2πJPPṅ = QE +QP. (13)

XP = (1− tP)ρn2D4
PKT (JP). (14)

QP = 2πJPPṅ−ρn2D5
PKQ(JP). (15)

where t is thrust deduction factor, ṅ is propeller revolution, DP is propeller diameter,
JP is propeller advance ratio, JPP is added polar moment of inertia of propeller, QP

and QE are the moment of propeller and engine, and KT and KQ are the thrust
coefficient and torque of propeller.

2.4 Hydrodynamic force and yaw moment induced by rudder

In order to considering the effect of hydrodynamic forces acting on hull, the forces
caused by propeller and rudder are estimated using the following mathematical
model, and are expressed as below:

XR =−FN sinδ , (16)

YR =−(1+αH)FN cosδ , (17)

NR =−(1+αH)xRFN cosδ , (18)

KR = (1+αH)zRFN cosδ , (19)

where FN is rudder normal force, δ is rudder angle, and xR, αH and zR are the
interactive coefficients between rudder and hull.

FN is rudder normal force and can be described as following:

FN = 0.5ρ
6.13λ

λ +2.25
ARV 2

R sinαR, (20)

αR = δ − γβ
′
R, (21)

γ =Cp ·Cs, (22)

where λ is aspect ratio of rudder, AR is rudder area, VR is effective rudder inflow,
αR is effective rudder inflow angle, γ is flow-rectification coefficient, Cp is flow-
rectification coefficient of propeller, and CS is flow-rectification coefficient of ship
form.
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For describing the effect of propeller stream, the longitudinal and lateral inflow
velocity of rudder can be described as the followings:

VR =V (1−wR)
√

1+C1g(s), (23)

g(s) =
ηk[2− (2− k)s]s

(1− s)2 , (24)

η = Dp/H, (25)

k =
0.6(1−wP

1−wR
, (26)

CP =

√
(1− s)2

1+0.6η(2−1.4s)s
, (27)

s = 1− u(1−wP)

nP
, (28)

CS = 0.45β
′
R, if β

′
R ≤

0.5
0.45

,

or CS = 0.5, if β
′
R >

0.5
0.45

, (29)

β
′
R = β −2x

′
r
′
, (30)

where H is rudder height, wR is effective rudder wake fraction, s is slip ratio, P is
propeller pitch.

3 Group Preserving Scheme

The group-preserving scheme [Liu (2001); Chen, Liu, and Chang (2007)] is a
scheme that can preserve the internal symmetry group of the considered system.
Although previously we do not know what kind symmetry group of the general
nonlinear dynamical systems is, yet Liu (2001) has embedded them into the aug-
mented dynamical systems, which concern with not only the evolutions of the state
variable itself but also with the evolution of its magnitude. That is, for the general
dynamical system of n ordinary differential equations:

ẋ = f(x, t), x ∈ R, t ∈ R, (31)

We can embed it into the following (n+1)-dimensional augmented dynamical sys-
tem:

d
dt

[
x
||x||

]
=

[
0n×n

f(x,t)
||X||

fT (x,t)
||X|| 0

]
=

[
x
||x||

]
(32)
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Consequently, we have an (n+1)-dimensional augmented system:

Ẋ = AX (33)

With a constraint of equation (33), where

A =

[
0n×n

f(x,t)
||X||

fT (x,t)
||X|| 0

]
(34)

Satisfying

AT g+gA = 0 (35)

Remarkably, the original n-dimensional dynamical system of equation (31) in En

can be embedded naturally into an augmented (n+1)-dimensional dynamical sys-
tem of equation (33) in Mn+1. Although the dimension of the new system is
raised by one, it shows that the new system has the advantage of devising group-
preserving numerical scheme as follows [Liu (2001)]:

X`+1 = G(`)X`, (36)

where X`+1 denotes the numerical value of X at the discrete time t`, and G(`) ∈
SO0(n,1) is the group value at time t`.

Inserting the above Cay [τA(`)] for G(`) into equation (36) and ranking its first
row, we obtain

x`+1 = x`+hw(`)f` (37)

w(`) =
||x`||2 + τf` ·x`
||x`||2 + τ2||f`||2

(38)

Where is called a weighting factor. In the above, x` denotes the numerical value of
x at the discrete time t`, τ is one half of the time increment, i.e., τ = h/2, and more
precisely, f` is f (x`, t`).

4 Numerical Examples

According to the above-mentioned MMG model, maneuvering ship motions can
be predicted by the computer simulation. The principal particulars are listed in
Table 1. Hydrodynamic derivatives and coefficients for the simulation are listed in
Table 2. According to turning circle test, simulated ship motions, ψ , r, the non-
dimensional velocity ratio ,and ship trajectory, under turning right rudder 35◦ are



Group Preserving Scheme for Simulating Dynamic Ship Maneuvering Behaviors 65

Table 1: General Data for a Sample Ship

Length between perpendiculars, L, m 343
Breadth molded, B, m 53
Draft in full load, T , m 21.76
Block coefficient 0.831
Displacement, metric tons 27313.5
Longitudinal position of center of gravity, xcg, m 10.3
Movable rudder area, AR, m2 119.817
Rudder span, Sp, m 13.85
Engine type: Diesel
Maxim continuous rating of engine MCR, RPM 82
Nominal continuous rating of engine NCR, RPM 81

Table 2: Hydrodynamic Coefficients [Chu and Tseng (1988)]

Symbol Value Symbol Value Symbol Value
X
′
vv -0.001276 Y

′

βγ
0.022335 N

′
rr -0.000976

X
′
rr 0.0003 Y

′
γ 0.0045843 N

′

β
0.0094447

X
′
vvvv 0.045241 Y

′

ββ
0.02255 N

′
r -0.0036063

Y
′
γγ -0.0022275 N

′

rrβ
-0.005014
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Figure 1: Co-ordinate system

shown in figs. 2-5. In additional, ship motions, ψ , r, the non-dimensional velocity
ratio ,and ship trajectory, under turning left rudder 35◦ are shown in figs. 6-9.

In order to further test maneuvering stability, we compute heading change and yaw-
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ing rate by the zig-zag test. Under rudder at 10/-10 and 20/-20 by zig-zag test, the
rudder angle, yawing rate and heading change of ESSO OSAKA are shown in
figs. 10-13. In summary, the method presented is a more effective and convenient
approach to simulate maneuvering ship motion problems.
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Figure 2: Comparisons of numerical results and sea trial data of ESSO OSAKO for
the yawing varying with time at right rudder 35◦ condition
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Figure 4: Comparisons of numerical results and sea trial data of ESSO OSAKO for
the non-dimensional velocity ratio varying with time at right rudder 35◦ condition
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Figure 6: Comparisons of numerical results and sea trial data of ESSO OSAKO for
the rudder angle varying with time at left rudder 35◦ condition
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Figure 8: Comparisons of numerical results and sea trial data of ESSO OSAKO for
the non-dimensional velocity ration varying with time at left rudder 35◦ condition
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Figure 10: Comparisons of numerical results and sea trial data of ESSO OSAKO
for the heading change varying with time at 20/20 zig-zag test
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Figure 11: Comparisons of numerical results and sea trial data of ESSO OSAKO
for the yawing rate varying with time at 20/20 zig-zag test
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Figure 12: Comparisons of numerical results and sea trial data of ESSO OSAKO
for the heading change varying with time at 10/10 zig-zag test
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for the yawing rate varying with time at 10/10 zig-zag test
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5 Conclusions

In this paper, we have successfully applied the GPS to simulate ship maneuvering
behaviors. Since the ship dynamic behaviors are affected by those non-linear forces
such as the ship hull resistance, rudder and propulsive propeller forces and induced
engine force, the non-linear GPS is adopted to simulate the dynamic ship behav-
iors and ensure the numerical stability. Through the group weighting factor of the
GPS, the non-linear parameters’ behaviors can be observed and the numerical in-
stability can be overcome. In addition, the second order of the GPS can ensure the
accuracy of the high-order numerical method for simulating ship simulation behav-
iors. Finally, results of the proposed approach are compared with the sea-trial data
of turning circle test in a 278,000 DWT ESSO OSAKA ore & tanker for further
validation.
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