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Application of the Multi Scaling Characteristic Time
Expansion Method for Estimating Nonlinear Restoring

Forces

Yung-Wei Chen1, Jiang-Ren Chang2, Fu-Hsuan Hsieh2 and Che-Wei Chen2

Abstract: Since numerical instability phenomena always arise in the solving
process for parameters identification of structural vibration. To resolve such a prob-
lem, the multi scaling characteristic time expansion method (MSCTEM) in con-
junction with the natural regularization method is adopted to overcome the higher
order numerical oscillation problem when polynomial series expansion is neces-
sary. Due to inclusion of the characteristic length (CL) in the scheme, the ill-posed
problem of the constructed Vandwemonde matrix will be overcome and will also
increase the term number of polynomial series. Thus, the ill condition and numeri-
cal instability of numerical calculations can be resolved. Besides, to overcome the
numerical instability problem of a noise disturbance, in contrast to the conventional
Tikhonov regularization method, the natural regularization method is again adopted
to resolve the problem. It is shown that the MSCTEM with the natural regulariza-
tion method can effectively resolve those above mentioned problems through three
benchmark examples.

1 Introduction

Nonlinear dynamical system identification problems are usually encountered in en-
gineering applications. For instance, to specify the parameters of dynamical sys-
tems is necessary in optimal processes, it is important to analyze and determine the
parameters of the system using experimental testing and numerical methods. How-
ever, uses of these methods might arise some challenging problems in the structural
mechanic field because a small measurement error can cause a large error in the pa-
rameter’s identification results.

To overcome these inverse problems, some solutions proposed in the literatures
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have included numerical techniques and experimental testing. Other various publi-
cations in [Gladwell (1986); Gladwell and Movahhedy (1993); Lancaster, Maroulas,
He, and Yu (1987); Starek and Inman (1991); Starek, Inman, and Kress (1992);
Starek and Inman (1995, 1997); Adhikari and Woodhouse (2001a,b); Feldman
(2007)] recommended using the damping coefficient, stiffness, and external force
for solving the inverse problems. Mode shape, frequency, displacement, and ve-
locity at different times can also be used to successfully estimate these properties
[Kerschen, Worden, Vakakis, and Golinval (2006)]. Huang (2001) has employed
a conjugate gradient method (CGM) to solve the nonlinear inverse vibration prob-
lem for the estimation of the time-dependent stiffness coefficient. Recently Liu
(2008a,c) has developed a Lie-group shooting method to study the inverse vibra-
tion problem for estimating the time-dependent damping and stiffness coefficients
and, at the same time, derived a closed-form solution to estimate the parameters.

A complete review of the developments of some useful methods for the realm of
nonlinear system identification can be found in [Liu (2008c)]. Masri and Caughey
(1979) also proposed the idea of a force state mapping method which is a sim-
ple procedure that allows a direct identification of the restoring force for nonlin-
ear mechanical systems. This idea was further extended in [Crawley and Aubert
(1986); E. F. Crawley (1986); Duym, Schoukens, and Guillaume (1996)]. Recently,
Namdeo and Manohar (2008) have modified the force state mapping technique with
two alternative functional representation schemes: 1) reproducing kernel particle
method and kriging technique and 2) estimating the nonlinear system parameters
from measured time histories of response under known excitations.

The purpose of this paper is to develop a simple, multi-step regulation algorithm
with easy numerical implementation and versatility. A simple power series can
be considered as a fit for the time history of displacement response under known
excitations. However, doing so will result an inaccurate matrix with a high-order
function (the Vandermonde matrix), which has been described in [Gohberg and
Olshevsky (1997)]. To resolve this problem, the characteristic length (CL) of com-
putational time into power series can be used to maintain numerical stability. This
concept was first proposed to deal with the Laplace equation using a physical quan-
tity reported in [Liu (2008a,c, 2007a,b)]. Recently, CL has been successfully ex-
tended to deal with the Laplace equation and sloshing wave problem in [Chen,
Liu, and Chang (2009); Chen, Liu, Chang, and Chang (2010); Chen, Yeih, Liu, and
Chang (2012)]. It should be noted that the instability of the mathematical procedure
and a small disturbance of measured data needs to be considered in the numerical
procedure because they could cause an error of the parameter’s identification. This
paper will apply the natural regularization and multi-scaling CL technique, pro-
posed in [Liu, Hong, and Atluri (2010); Liu and Atluri (2013)], to track ill-posed
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linear problems and to chose CLs in numerical procedures. One advantage of this
regulation method is that it can determine whether a solution exists for a linear
system.

Except for the current section, Section 2 of this paper will describe the mathemat-
ical formulation of the characteristic time expansion method and introduces the
numerical procedure of the matrix CGM. Section 3 will demonstrate several nu-
merical examples, including Duffing’s oscillator, Duffing’s oscillator with negative
linear stiffness, Van der Pol’s oscillator, and the seat model, to compare our method
with the analytical solution. Finally, some concrete conclusions will be summarized
in section 4.

2 Basic formulation

A second-order ordinary differential equation (ODE) for the equation of motion is
expressed as:

ẍ = H(x, ẋ) = P(t), (1)

where x represents the displacement of response of a system and P(t) and H(x, ẋ)
are the external excitation and restoring force, respectively. In order to obtain H, a
trivial rearrangement of (1) gives:

H(x, ẋ) = P(t)− ẍ. (2)

Here H can be obtained if the quantities, P(t) and ẍ, on the right-hand side are
known. In general, it is easier to measure the displacement at some discrete sam-
pling times than it is to directly measure velocities and accelerations. Therefore, if
x1(t) = g(t) is denoted as the measured displacements can be expressed as follows:

x1(t) = g(t), (3)

ẋ1 = x2(t), (4)

ẋ2 = x3(t). (5)

This is however an index-three differential algebraic equations [Liu (2008b)], which
is hard to solve.

2.1 The characteristic time expansion method

According to (1) above, the displacement can be expressed as a power series:

x(ti) =
∞

∑
k=0

ak

(
ti
Tk

)k

,0≤ ti ≤ t f , t f < Tk (6)
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where ti denotes each discrete time, x(ti) denotes the displacement at each time, t f

denotes the final time, Tk denotes the CL, and ak denote the unknown coefficients.

Differentiation of (6) yields velocity and acceleration and is expressed as follows:

ẋ(ti) =
∞

∑
k=0

k
Tk

ak

(
ti
Tk

)k−1

, (7)

ẍ(ti) =
∞

∑
k=0

k(k−1)
T 2

k
ak

(
ti
Tk

)k−2

. (8)

The power series in (6) can be used to describe the displacement of a system.
Hence, (6) has admissible functions with finite terms, and one can be expressed
as a linear equation system with n = m+1:


1 t0/T1 (t0/T2)

2 · · · (t0/Tm)
m

1 t1/T1 (t1/T2)
2 · · · (t1/Tm)

m

1 t2/T1 (t2/T2)
2 · · · (t2/Tm)

m

...
...

...
. . .

...
1 tm/T1 (tm/T2)

2 · · · (tm/Tm)
m




a0
a1
a2
...

am

=


x(t0)
x(t1)
x(t2)

...
x(tm)

 . (9)

We denote the above equation by:

Rc = b1, (10)

Where c = [a0,a1,a2, . . . ,am]
T is the vector of unknown coefficients.

The norm of the first column of R is
√

n. According to the idea of “equilibrated
matrix”, we can choose the multiple-scale Tk, k = 1, . . . ,m by

Tk =

(
1
n

m

∑
i=0

t2k
i

) 1
2k

,k = 1, . . . ,m (11)

In order to satisfied t f < Tk, at each time step, (11) can be expressed as follows:

TMR = TS +Tk, (12)

where TS is a positive integer chosen by the user.
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2.2 The matrix CGM for ill-posed linear system

When a matrix is ill-posed and measured data contains noisy disturbances, it is dif-
ficult to determine the stability of the system using the conventional regularization
techniques. Therefore, Liu, Hong, and Atluri (2010) proposed a natural regulariza-
tion method, which proves that a solution exists when ill-posed matrix and noisy
disturbances occur. This method can be described by the following matrix equa-
tion:

RT UT = Im, i.e., (UR)T = Im (13)

If U is the inversion of R, then numerically, U is a left-inversion of R. Then we
have

(RRT )UT = R (14)

Let

RX0 = y0. (15)

Given X0, say X0 = I = [1, . . . ,1]T , y0 can be directly obtained because R is a given
matrix. Hence, we have:

yT
0 UT = XT

0 , i.e., X0 = Uy0 (16)

When (13) and (16) are combined, they create an over-determined system to calcu-
late UT . The over-determined system can be written as:

BUT =

[
Im

XT
0

]
, (17)

where:

B =

[
RT

yT
0

]
, (18)

is an n×m matrix with n = m+1, we can obtain an m×m matrix equation:

[RRT +y0yT
0 ]U

T = R+y0XT
0 , (19)

Besides the primal system in (10), we need to solve the dual system with

RT y = b1, (20)
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Applying the operators in (19) to b1, and utilizing the above equation, i.e., y =
RT b1, we can obtain

[RRT +y0yT
0 ]y = Rb1 +(X0 ·b1]y0 (21)

where y0 = RX0.

Replacing the R in (21) by RT , we have a similar equation for the primal system in
(10):

[RT R+y0yT
0 ]c = RT b1 +(X0 ·b1)y0 (22)

where y0 = RT X0.

Finally, when c of (22) is calculated by CGM, the restoring force and acceleration
can be obtained from (2), (7) and (8).

3 Numerical examples

Example 1

In this case, we consider a Duffing oscillator and a second-order ODE to describe
the forced vibration of a nonlinear structure by:

ẍ+ γ ẋ+βx+αx3 = P(t) (23)

where the parameters are fixed as α = 1, β =−1 and γ = 0.3. The restoring force
can be expressed as follows:

H(x) = x3− x (24)

In order to identify the restoring force H as a function of x, a monotonic function
of t is required.

In this instance, x(t) = t2−8 is used to obtain the external force, x, and is given by:

P(t) = (t2−8)3− t2 +0.6t +10. (25)

In order to test the stability of the MSCTEM and single scaling characteristic time
expansion method (SSCTEM), the order of the polynomial and computational time
are increased. The restoring force in the initial and final time changed very rapidly.
To understand a CL effect, m = 200, X0 = I, and ε = 1× 10−16 have been fixed.
The maximum estimation error of H, shown in Fig. 1 is smaller than 10−6. From
Fig. 1(b), we can observe that the MSCTEM can effectively overcome numerical
oscillation in the initial and final time, and then the numerical errors decrease varied
with Ts increasing.
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Fig. 1. For Example 1 showing the error of estimation with different CL. Figure 1: For Example 1 showing the error of estimation with different CL.

It can be seen that including the CL into this case is efficiently to overcome an ill-
posed matrix. Furthermore, when fixing TS = 800, the exact solutions for velocity
and acceleration can be determined. The numerical results are shown in Figs. 2-4.
According to the numerical results, the maximum estimation errors are found to be
smaller than 10−9. Applying a CL and matrix regularization method can provide
highly stability and accuracy. In order to further test the stability of the present
method we also consider:

x̂i = xi +σR(i) (26)

as an input into the estimation equations, where Ri is a random number in [−1,1],
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and σ is a noise level. Using different noise levels, with σ = 1% and 5%, the
computed profile of restoring forces is shown in Fig. 5. Also, Fig. 5 shows that the
maximum estimated errors are smaller than 10−1 with noisy disturbances. We can
see that the present method has a high numerical accuracy and stability for noisy
disturbances.
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(b) 

Fig. 2. For Example 1: (a) comparing numerical solution and exact velocity, and (b) 

displaying the error of estimation. 

Figure 2: For Example 1: (a) comparing numerical solution and exact velocity, and
(b) displaying the error of estimation.
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(b) 

Fig. 3. For Example 1: (a) comparing numerical solution and exact acceleration, and 

(b) displaying the error of estimation. 

Figure 3: For Example 1: (a) comparing numerical solution and exact acceleration,
and (b) displaying the error of estimation.
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Fig. 4. For Example 1: (a) comparing numerical solution and exact restoring force, 

and (b) displaying the error of estimation. 

Figure 4: For Example 1: (a) comparing numerical solution and exact restoring
force, and (b) displaying the error of estimation.
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(b) 

Fig. 5. For Example 1: (a) comparing estimated and exact restoring forces under 

different noise level, and (b) displaying the error of estimation. 

Figure 5: For Example 1: (a) comparing estimated and exact restoring forces under
different noise level, and (b) displaying the error of estimation.



48 Copyright © 2013 Tech Science Press SL, vol.9, no.1, pp.37-58, 2013

Example 2

In this case, H(x, ẋ) of the Van der Polo scillator is given by:

H(x, ẋ) = x+(x2−1)ẋ (27)

In this equation, x is given by x(t) = t3/3− 8t and then the external force can be
obtained as:

P(t) =
(

t3

3
−8t

)
+

[(
t3

3
−8t

)2

−1

]
(t2−8)+2t (28)

In this calculation, by fixing ε = 1× 10−16, X0 = I, and Tf = 4, he numerical
accuracy and stability of different parameters can be tested, which include: m= 100
and 500 and different TS, respectively. The maximum numerical error of H shown
in Fig. 6 and 7 are smaller than 10−3. From numerical results, we can find that the
maximum numerical error approximate stability when TS is much larger than Tf .

To test the numerical stability of increasing the computational time by 10 seconds,
the parameters are fixed as: TS = 450 and m = 500. The maximum estimation
errors of H, shown in Fig. 8, is smaller than 10−7. Then, when using for the noisy
disturbances with 1 and 5%, the computed profile of H is plotted in Fig. 9. Fig. 9(a)
compares the restoring force with exact one, and the maximum estimation error of
H shown in Fig. 9(b) is smaller than 10−1. From these results, it is shown that
the restoring force can be recovered very well, even adding noisy disturbances into
measuring data, which shows the stability and accuracy of the proposed scheme.

Example 3

A one-degree of freedom of first seat-person system model (i.e., Fig. 10), consid-
ered in [Wei and Griffin (1998)], is given by:

Mẍ+ c1ẋ+ c2|ẋ|ẋ+
k1

1+ k2|x|
x = P(t). (29)

The model parameters are given k1 = 48000(N/m), k2 = 24000(N/m), c1 = 300(N−
s/m), c2 = 1500(N− s/m). M = 8(kg), and M1 = 42(kg). Here the external force
is given by P(t) = 0.04cos(t), and the parameters are given by TS = 2, t f = 10,
X0 = I, and ε = 1×10−16, respectively. The computed profile of H by m = 51 and
151 is shown in Fig. 11(a), and the maximum estimated absolute error of H, shown
in Fig. 11(b), is smaller than 10−1. From these figures, the numerical results of
the proposed method for solving restoring force problem with discontinuous solu-
tion are extremely accurate and stable. In addition, using noise level with σ = 1%,
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the computed profile of restoring forces is shown in Fig. 12. From the figure, the
numerical errors by m = 51 and 151 are smaller than 10−1. Therefore, we can con-
clude that the proposed scheme can stably and efficiently obtain accurate restoring
force, even adding noise to the measuring data.
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Fig. 6. For Example 2 showing the error of estimation with different  and m=101 

under 4 seconds.  

Figure 6: For Example 2 showing the error of estimation with different TS and
m = 101 under 4 seconds
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(b) 

Fig. 7. For Example 2 showing the error of estimation with different  and m=500 

under 4 seconds. 

Figure 7: For Example 2 showing the error of estimation with different TS and
m = 500 under 4 seconds.
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(b) 

Fig. 8. For Example 2 showing the error of estimation with and m=500 under 

10 seconds. 

Figure 8: For Example 2 showing the error of estimation with TS = 450 and m= 500
under 10 seconds.
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(b) 

Fig. 9. For Example 2: (a) comparing estimated and exact restoring forces, and (b) 

displaying the error of estimation. 

Figure 9: For Example 2: (a) comparing estimated and exact restoring forces, and
(b) displaying the error of estimation.
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Fig. 10. For Example 3: First seat-person system model. 
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Figure 10: For Example 3: First seat-person system model.

4 Concluding remarks

In this articles, a combination of the MSCTEM and natural regularization tech-
nique have been proposed to stably and accurately analyze the restoring force iden-
tification problem. In nonlinear mechanical system analysis, the inverse vibration
problem is difficult to solve under the measured data with noise. This paper has
successfully combined the MSCTEM with a natural regularization technique to
determine the unknown restoring force. Due to the inclusion of different CLs to re-
tain high accuracy and stability, the MSCTEM can avoid the numerical instability
caused by a high-order polynomial function. Furthermore, when the measured data
is contaminated by a large noise, the errors can be controlled by utilizing a natural
regularization technique and increasing the CL. In summary, the method presented
is a more effective and convenient approach to solve inverse vibration problems.

Acknowledgement: The corresponding author would like to express his thanks
to the National Science Council, Taiwan for their financial support under contract
number: NSC-102-2218-E-019-001.
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(b) 

Fig. 11. For Example 3: (a) comparing estimated and exact restoring forces; (b) 

displaying the error of estimation with m=51 and 151. 

Figure 11: For Example 3: (a) comparing estimated and exact restoring forces; (b)
displaying the error of estimation with m = 51 and 201.
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(b) 

Fig. 12. For Example 3: (a) comparing estimated and exact restoring forces under 1% 

noise level, and (b) displaying the error of estimation. 

Figure 12: For Example 3: (a) comparing estimated and exact restoring forces
under 1% noise level, and (b) displaying the error of estimation.
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