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Diffraction and Dynamic Stress Concentration around
Multiple Holes in a Finite Elastic Solid by BEM

S. Parvanova1, P. Dineva2 and G. Manolis3

Abstract: The aim of the present study is to develop and validate an efficient
boundary element method approach for solution of in-plane, time-harmonic prob-
lems in elastodynamics that involve finite elastic solids weakened by holes of dif-
ferent shapes. The modeling approach is within the framework of continuum me-
chanics and linear wave propagation theory. The results obtained show a sensitivity
of both the dynamic stress concentration factor and the scattered wave field that de-
velop in the finite solid to defect geometry, to wave interaction with the holes and
to multiple hole interaction.
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1 Introduction

Elastic wave propagation in solids weakened by multiple cavities (or defects) is an
old problem of mechanics [Mow and Mente (1963); Pao and Mow (1971)] with ex-
tensive applications in many modern technological fields such as material science,
non-destructive testing evaluation and computational geophysics [Hirose (1989);
Manolis (2003); Meguid and Wang (1995)]. A clear understanding of both the wave
scattered far-field and the dynamic stress concentration factor (SCF) around holes
provides useful information for predicting the life expectancy of various engineer-
ing structures, new technological devices and even underground structures such as
tunnels or pipelines. The present work is an effort in this direction that aims to de-
velop and validate an efficient boundary element method (BEM) approach, which
in turn can be used for solving in-plane, time-harmonic problems involving a finite
elastic solid with holes of different shapes (e.g., square, circular or elliptic).
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2 Problem statement and its BEM formulation

Consider a finite homogeneous linear elastic solid with boundary Γ in a Cartesian
coordinate system Ox1x2x3. The solid is subjected to a time-harmonic load with
prescribed frequency ω . The analysis is then carried out for in-plane motion with
respect to plane x3 = 0. The nonzero field quantities are the displacements u1, u2
and the stresses σ11, σ22, σ12, all depending on (x1,x2). Since the response is also
time-harmonic, the common multiplier exp(iωt) is suppressed in the following.
Next, the field equations in the absence of body forces are given by:

σi j, j +ρω
2ui = 0 (1)

where ρ is the material density, σi j =Ci jkluk,l , Ci jkl = λδi jδkl +µ(δikδ jl +δilδ jk),
δi j is the Kronecker delta symbol and λ , µ are the Lame constants. Subscript
commas denote partial differentiation and the summation convention over repeated
indices is applied. The solid contains multiple circular holes Γm

h , m = 1,2, . . . ,M
of diameter d and center Cm

h , quadratic holes with size a, or ellipsoidal holes with
semi-axes d1/2 and d2/2. We assume the holes do not intersect and denote their
total surface as Γh =

⋃M
k=1 Γm

h . The boundary conditions along the solid’s outer
boundary Γ are prescribed displacements ui(x1,x2) = ūi(x1,x2) on Γu or/and trac-
tions ti(x1,x2) = σi jni = t̄i(x1,x2) on Γt , where Γ = Γu

⋃
Γt . The hole surfaces

are traction-free as tm
i (x1,x2) = 0, (x1,x2) ∈ Γm

h and the total problem boundary is
S = Γ

⋃
Γh.

An equivalent formulation to the above boundary-value problem (BVP) is a system
of boundary integral equations (BIE) along hole boundaries Γh plus the external
boundary Γ. This yields the conventional displacement BEM, see Manolis and
Beskos (1981):

ci ju j(x,ω) =
∫
s

U∗i j(x,y,ω)t j(y,ω)ds−
∫
s

P∗i j(x,yω)u j(y,ω)ds (2)

where ci j is the jump term depending on the geometry at the collocation point, x =
(x1,x2) and y = (y1,y2) are the position vectors of the field and source points, U∗i j
is the fundamental solution of Eq. 1 and P∗i j is the corresponding traction solution.

3 Numerical procedure, validation and parametric study

3.1 BEM discretization and validation study

The numerical procedure is based on discretization of the boundary S by line el-
ements, followed by nodal collocation. After satisfaction of the boundary condi-
tions, the BIE transforms into a system of linear algebraic equations with respect
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to the unknown displacement and/or tractions. Curved geometries can be success-
fully represented by quadratic or higher order line elements; the former types of
elements are employed here.

A MATLAB software code for 2D problems has been developed based on the the-
ory described above and on the FORTRAN source codes given by Domínguez
(1993). This program allows for traction values assigned on both sides of a given
node, connecting two elements, to be different. In addition, provisions are made
for modeling of several closed domains.

In sum, many numerical examples and comparisons with exact analytical solutions
have been worked out that show excellent accuracy of the developed software code
with solutions given in the literature. Some additional comparisons have been per-
formed with general purpose software programs based on the finite element method
(FEM). The BEM models, realized by using relatively coarse meshes, have shown
superb accuracy when compared with corresponding FEM solutions.

3.2 Parametric study

In the interest of brevity, the results of a single parametric study are given in this
paper that investigate the effect of cavity shape on the scattered wave field, together
with the dynamic hole interaction phenomenon. Conclusions are drawn by moni-
toring a typical displacement of node A from the outer boundary of the finite region,
and the stress concentration factor for node B on the surface of a circular or elliptic
cavity (see Fig. 1).
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Figure 1: Geometrical dimensions of the perforated plate under tension

The solid matrix is a square plate whose dimensions, boundary conditions, external
loads, and potential locations of the holes are all given in Fig. 1. The mechanical
properties of the plate are: density ρ = 0.5× 10−5kg/mm3; shear modulus G =
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0.76923× 105N/mm2; Poisson’s ratio v = 0.3, and plate size 60× 60mm. The
amplitude of the time-harmonic load is σ0 = 400N/mm2. In order to restrict rigid
body motion in the x1 direction, nodes belonging to the vertical axis of symmetry
are restrained, and so are the vertical displacements of nodes on the horizontal axis
of symmetry.

The shape of a given cavity can be circular, elliptic or square. More specifically, the
radius of a circle is d/2 = 3mm, while the first semi-axis an ellipse is d1/2 = 3.8,
the second semi-axis is d2/2, and both are calculated so that the area of the elliptical
cavity equals to the area of the circular one (see Fig. 1). The size of the square is
again determined so that its area equals to the circular one.

Next, the numerical model is shown in Fig. 2. The outer contour is discretized
by using 16 equal-length quadratic elements, 4 along each side of the square. Each
single hole is modeled by 8 quadratic elements, independently of its shape. In order
to properly define the outer plate domain in the BEM discretization, the interface
must be traversed in a counter-clockwise direction; conversely, the cavity contour
must be discretized in the clockwise direction.
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Figure 2: BEM model: a) BE discretization of the plate domain; b) BE mesh of the
cavity contour; c) Hole arrangement for different cases

The dimensionless excitation frequency for a given value of the P-wave velocity
Cp ranges from ∆Ω = (ω × (2a)/Cp)/40 to Ω = ω × (2a)/Cp = 1 in 40 equal
increments, where a is a characteristic dimension of the cavity. This characteristic
dimension for a circle is obviously the diameter a = d; a = (d1 +d2)/2 for elliptic
holes; a is the side for square holes.
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In the parametric study two key values are tracked, namely the horizontal displace-
ment at node A on the outer boundary and the stress concentration factor (SCF) at
point B of a circular and elliptic contour at point B (see Fig. 2). The reference hole
is always the same, placed at the center of the square plate and marked in red (see
Fig. 3c). The amplitude of the load is σ0 = 400, and the SCF is the value of the
hoop stress at the monitored node σθθ normalized by σ0.

The results for the circular holes are given in Fig. 3. More specifically, the normal-
ized displacement as obtained from the different configurations shown in Fig. 2c,
versus normalized frequency, is depicted in Fig. 3a. In there, the horizontal dis-
placement of node A at the outer contour is normalized by the corresponding dis-
placement obtained from the same plate in the absence of holes, namely u0. The
SCF at B is then shown in Fig. 3b.
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Figure 3: a) Normalized displacement spectra; b) Steady-state SCF response of the
circular hole at ϕ = 0◦.
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Figure 4: a) Normalized displacement spectra; b) Steady-state SCF response of the
elliptic hole at ε = 0◦
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The normalized displacement and SCF versus normalized frequency for the elliptic
hole are all plotted in Fig. 4. As expected, the SCF is larger than the corresponding
value for the circular hole because of the sharper curvature at point B, whereas the
displacement is smaller.

Finally, the square hole displacement curves are plotted in Fig. 5.
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Figure 5: Normalized displacement spectra for the solid with square holes.

4 Conclusion

The 2D elastodynamic problem for a solid containing an arbitrary number of holes
with different shape and position is solved in frequency domain. The results reveal
the sensitivity of both the dynamic stress concentrations and scattered wave field to
hole geometry, their number and position, and their interaction with the incoming
wave.
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